
On combining image features and word embeddings

for image captioning

Mateusz Bartosiewicz, Marcin Iwanowski, Martika Wiszniewska, Karolina Frączak, Paweł Leśnowolski
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Abstract—Image captioning is the task of generating seman-
tically and grammatically correct caption for a given image.
Captioning model usually has an encoder-decoder structure
where encoded image is decoded as list of words being a
consecutive elements of the descriptive sentence. In this work,
we investigate how encoding of the input image and way of
coding words affects the result of the training of the encoder-
decoder captioning model. We performed experiments with image
encoding using 10 all-purpose popular backbones and 2 types of
word embeddings. We compared those models using most popular
image captioning evaluation metrics. Our research shows that the
model’s performance highly depends on the optimal combination
of the neural image feature extractor and language processing
model. The outcome of our research are applicable in all the
research works that lead to the developing the optimal encoder-
decoder image captioning model.

Index Terms—image captioning, neural image feature extrac-
tors, embedding models, LSTM

I. INTRODUCTION

I
MAGE captioning is a task of generating a verbal descrip-

tion of an image. It combines Natural Language Processing

(NLP) and Computer Vision. Image captioning solutions are

used in many application areas. They are adapted for content-

based image retrieval or automated labeling of online images.

Also, in the human-machine interaction field, they are used to

assist visually impaired people in understanding the surround-

ing world or to search fast for photos on the internet.

We focus in this paper on the baseline captioning model

[24] consisting of encoder and decoder. Encoder extracts a

pair of image and text features in parallel. Text features

encoder is responsible for the dense representation of each

word in embedding space providing semantic context for

each token. Image encoder uses convolutional neural network

(CNN) backbone which extracts high-level image features.

Decoder combines image and text features and generates the

resulting image caption. It is based on the long-short term

memory (LSTM) module [18], that generates the descriptive

sentence word-by-word.

In this work, we improve the effectiveness of the baseline

image captioning model by changing the encoding of the input

data. We assume that different image features extractors, even

pretrained on the same training set, provide with various high-

level knowledge of the image content and similarly, different

language processing models extract different semantics of

captions.

During experiments, we investigated how different encoding

of an image and text influence the captioning accuracy. We

tested several backbone models based on pretrained CNN

networks and embedding schemes as image and language

inputs, respectively. It allowed us to investigate which pairs

work best, hence finding the optimal combination of neural

image feature extractor and language processing model.

As a result, we achieved 20 models trained on CNN

networks: Xception, InceptionV3, Resnet152V2, Resnet50,

VGG16, VGG19, DenseNet121, DenseNet201, MobileNet,

MobileNetV2 along with Glove and FastText embeddings.

For training and testing we used MSCOCO 2014 dataset and

as the evaluation metrics: BLEU, METEOR, CIDEr, SPICE,

ROGUE-L, WMD. Finally, thanks to the mentioned metrics,

we assessed which pairs of image features and embeddings

produce better results on the baseline image captioning model.

This paper is organized as follows. Section II describes

how image captioning methods evolved from template-based

techniques to deep neural architectures. Next, in section III,

we describe how our base image captioning model is built and

what neural image features extractors and language embedding

models we use. The experimental procedure applied in our

research is presented in Section IV. Section V have experi-

mental analysis and finally, the final conclusions are found in

Section VI.

II. PREVIOUS WORKS

Image captioning methods combining text and visual data

belong to the multi-modal machine-learning approaches [22],

[40], [59]. Captioning models can be divided into traditional

and deep-learning-based. Originally, traditional image caption-

ing methods were based on hard-coded rules and human-made

features. In [27], [29], [36], authors applied fixed templates

with blank slots filled with various objects, descriptive tokens

and situations extracted from images by the object detection

systems. On the other hand, in [12], authors used already

existing, predefined sentences. They created space of meaning

from images features and compared images with sentences

to find the most appropriate sentences for a photo. Despite

semantic and grammatical correctness, captions from tradi-

tional methods differ often from the way a human described

the image content.

Deep learning image captioning methods tries to overcome

those limitations. In pioneering work [25] authors suggested

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 355–365

DOI: 10.15439/2023F997

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 355 Thematic track: Multimedia Applications and Processing



that neural networks can interpret deep semantics of images

and word embeddings. They proved that combined image

features extracted by the convolutional neural networks (CNN)

and word embeddings could hold semantic meaning. In [11],

authors suggested passing image features and text features

sequentially and individually to the language model. Inspired

by the success in machine translation, [51] proposed using an

encoder-decoder framework in image captioning, which has

recently become dominant in the image captioning field.

Paper [24] by Karpathy et al. introduced architecture similar

to human perception. Method generates novel descriptions

over image regions, with R-CNN (Regional Convolutional

Neural Networks) [13] for image feature extraction and recur-

rent neural network (RNN) to iteratively generate consecutive

words of caption. Model using the multimodal embeddings

space tries to find the parts of the sentence that best fits the

image regions. Differently from other proposed methods ( [9],

[25], [51]), where a global image vector was used, Karpathy

focused on image regions, and a separate caption described

each region. Finally, a spatial map generates the target word for

image regions. These image captioning approaches, focusing

on generating captions for each region of an image, are called

dense image captioning [23], [49], [54].

Encoder-decoder architecture [2], [15], [51], [55] considers

the task of image captioning as the sequence-to-sequence

problem. Encoder encodes the image to the fixed length vector

using the image features extractor. Most widely used are CNN

networks as VGG [14], [32], [45], ResNet [32], [34], [56] or

Inception [10], [53]. Decoder, which in image captioning is

represented by a language model, generates natural language

descriptions to the output. Most popular approaches used

RNN. However, due to the vanishing gradient problem that

occurs in long sequence tasks, LSTM which is a variation

of RNN achieved better results [18]. Most popular encoder-

decoder approaches are the CNN-RNN [33], [41], [51] and

GRU [8].

During the rapid development of image captioning methods,

researchers also investigated other aspects of captions than

just comparability to human judgment. Researchers focused

on captions with a specific style. In [2], authors improved

the descriptiveness of generated captions by combining CNN

and LSTM. In [52], authors focused on captions for visually

impaired people. Developed model tends to create captions

that describe the surrounding environment.

III. PRELIMINARIES

A. Image captioning model

Image captioning encoder-decoder model investigated in

this study is depicted in Fig. 1. Encoder consists of two parts

working, in the learning phase, simultaneously. One is for

handling image features and another is for handling words

in sequences. Firstly, image features are extracted using one

of the image features extractors described in the next section.

They are processed by a dense (fully connected layer) layer

with ReLU (rectified linear unit) activation functions [37]. Its

usage was motivated by promising results in very deep vision

neural networks [17]. Compared with non-linear functions like

sigmoid, ReLU is faster and harder to overfit. Dense layer is

responsible for reducing the dimension of the image feature

space (i.e. the length of the feature vector) to 256 to match

the size of the word sequence prediction output.

In parallel, the text input (caption) is transformed into the

sequence of indices of consecutive sentence words. Although

the length of a caption varies, the length of vector of indices

is constant and equal to 51, which is the maximum sentence

lenght (i.e. number of words in the longest caption sentence).

Such a vector is fed to the embedding layer. It encodes the se-

mantic meaning of words represented by vectors in embedding

space. We used pretrained Glove and FastText embeddings

as two alternative ways of encoding the consecutive words

of a descriptive sentence. Thanks to the embeddings layer,

we reduced the text features size from the vocabulary size

to the vectors of embeddings. Embedding vectors are passed

through a long-short term memory (LSTM) model of size 256.

After the LSTM layer, the outputs of language model and the

image part of the image captioning model are added and finally

forwarded to the decoder consisting of two dense layers.

Long-short term memory (LSTM) was designed for long-

sequence problems and can predict next word in the sequence

based on its predecessors. Each LSTM unit consists of three

gates, that control and monitor the information flow in LSTM

cells. Forgetting gate decides, which information from previ-

ous iteration will be stored in the cell state or is irrelevant and

can be forgotten. In the input gate, the cell attempts to learn

new information. It quantifies relevance of new input value of

the cell and decides to process it or not. Output gate transfers

the updated information from the current iteration to the next

iteration. State of the cell also contains the information along

with a timestamp.

Decoder processes an image feature vector and a sequence

vector to predict captions. Following two dense layers pro-

cesses, added language and image model to reduce the number

of features to the vector of size equal to vocabulary size.

Finally, the softmax layer generates the probability distribution

of the next word in the sequence and selects the word

with maximum probability. Previous words are converted to

embeddings during training to develop the next word. Image

feature vector is fed to the decoder. Goal of the training is to

minimize loss function based on the error between target and

predicted words.

Trained model predicts captions word-by-word, where the

prediction of the next word is based on the previously gen-

erated one and image features. At each iteration, greedy

search algorithm looks for the word in the dictionary with

the highest probability of following words in the sequence.

Process continues till the end of the caption is detected or the

max length of the caption is achieved. Greedy search takes

only tokens with the highest possibility of occurring in the

final sequence based on previously generated tokens.
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Fig. 1: Diagram of image captioning model training process.

B. Neural image feature extractors

Image features are essential in image captioning. In our

experiments we used backbone CNN networks pretrained on

a large number of images, the backbone networks. It makes

possible to focus on the captioning model and restrict training

to the remainder of the model.

The VGG [44] is a group of convolutional neural networks

(CNNs) widely used for image classification tasks. Most

popular variants are VGG16 and VGG19. VGG16 consists

of 13 convolutional and 3 dense layers and was trained to

recognize 1000 object classes referring to objects depicted on

input 224x224x3 color images. By cutting out the dense layers,

the backbone network that produces the image feature vector

of length 4096 has been obtained. VGG19 has 3 more CNN

layers than VGG16. Thanks to this, allows to learn richer

representations of the data and achieves higher prediction

results. On the other hand, VGG19 is more exposed to the

vanishing gradient problem, than VGG16 and requires more

computational power.

The Resnet [16] network was created to support many layers

while preventing the phenomenon of vanishing gradient in

deep neural networks. Most popular variants are Resnet18,

Resnet50, and Resnet100, where the number represents a

number of layers. Network architecture is built among two

stages. In the beginning, the stack of skip connections is built.

Those layers are omitted and the activation function from

the previous layer is used. In the next stage, the network

is learned again, layers are expanded and other parts of

the network (residual blocks) learn deeper features of the

image. Residual blocks are the heart of residual convolutional

networks. They add skip connections to the network, which

preserve essential elements of the picture till the end of the

training, simultaneously allowing smooth gradient flow.

The Inception [47] model was created to deal with overfit-

ting in very deep neural networks by going wider in layers

rather than deeper. It is build among inception blocks that

process input and repetitively passes the result to another

inception block. Each block consists of four parallel layers

1x1, 3x3, 5x5, and max-pooling. 1x1 is to reduce dimension

by channel-wise pooling. Thanks to that network can increase

in depth without overfitting. Convolution is computed between

each pixel and filter in the channel dimension to change the

number of channels rather than the image size. 3x3 and 5x5

filters learn spatial features of the image in different scales

and act similarly to human perception. Final max-pooling

reduces the dimensions of the feature map. Most popular

versions of the Inception network are Inception, InceptionV2

and InceptionV3.

The InceptionV3 [48] incorporated the best techniques to

optimize and reduce the computational power needed for im-

ages features extraction in the network. It is a deeper network

than InceptionV2 and Inception, but its effectiveness was not

compromised. Also, use auxiliary classifiers that improve the

convergence of very deep neural networks and combat the

vanishing gradient problem. Factorized convolutions were used

to reduce the number of parameters needed in the network and

smaller asymmetric convolutions allowed to fasten computa-

tions.

The Xception [6] is a variation of an Inception [47] model

that decouples cross-channel correlations and spatial correla-

tions. Architecture is based on depthwise separable convolu-

tion layers and shortcuts between convolution blocks, as in

Resnet. It consists of 36 convolutional layers divided into 14
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modules. Each module is surrounded by residual connections,

except the first and last module. It has a simple and modular

architecture and achieved better results than VGG16, Resnet

and InceptionV3 in classical classification challenges.

The backbone networks based on the three above ones, in

contrast to the VGG16, produce the image feature vector of

length 2048.

DenseNet [21] Network was created to overcome vanishing

gradient problem in very long deep neural networks, by

simplifying data flow between layers. Architecture is similar to

Resnet, but thanks to the simple change in connection between

layers, DenseNet allow to reuse parameters within network and

produce models with high accuracy. Structure of DenseNet

is based on stack of connectivity, transition and bottleneck

layers, grouped in dense blocks. Every layer is connected, with

every another layer in dense way. Dense block is main part of

DenseNet and reduces the size of feature maps by lowering

their dimensions. In each dense block dimensions of feature

maps are constant, but number of filters change. Between

each dense block, transition layer is placed to concatenate all

previous inputs, hence reduce number of channels and number

of parameters needed in the network. Also, between every

layer bottleneck layer is placed to reduce number of inputs

especially in far away layers. DenseNet also introduced growth

rate parameter to regulate quantity of information added in

each layer. Most popular implementations are DenseNet121,

DenseNet201, where number denotes quantity of layers in the

network.

MobileNet [20] is a small and efficient CNN Network

especially designed for mobile computer vision tasks. It is built

of layers of depthwise separable convolutions, composed of

depth-wise and point-wise layers. MobileNet also introduced

width multiplier and resolution multiplier hyperparameters.

Width multiplier allows to decrease computational power

needed during training, resolution multiplier decreases the

resolution of the input image during training. Most popular

versions of MobileNet are MobileNetV1 and MobileNetV2.

In comparison with MobileNet, MobileNetV2 introduced in-

verted residual blocks and linear bottlenecks. Also, Relu acti-

vation function was replaced by Relu6 (ReLu with saturation

at value 6). Thanks to that accuracy of the model significantly

improved.

C. Word embedding models

Word embeddings are vector representations of tokens that

are fed to a deep learning model. The most common embed-

ding systems used for natural language processing and image

captioning are Glove, Word2Vec and FastText.

One of the first word embedding techniques was one-hot

encoding, where each token is encoded to the binary vector

representation. Method is based on the dictionary created for

all unique tokens in the corpus. A fixed-length binary vector

with the size of a dictionary represents each word. Index of the

word in the vector represents presence. If a word is present

in with vector, just one value is one and others are 0. It is

a straightforward technique that captures a wide variety of

words but misses the semantic relation of words. Furthermore,

fixed-length vectors are sparse, which is not computationally

efficient.

Computationally efficient, Word2Vec [35] method simulta-

neously captures semantic relations between words. It is based

on two techniques: CBOW (Continuous Bag of Words) allows

the prediction of words from the context word list vector and

the Continuous Skip-Gram model, a simple one-layer neural

network that predicts context based on a given word.

FastText [4] comes from the Word2Vec model but analyzes

words as n-grams. An algorithm is similar to the CBOW from

Word2Vec but focuses on a hierarchical structure, representing

a word in a dense form. Each n-gram is a vector and the

whole phrase is a sum of those vectors. To achieve a word

embeddings vector, training is similar to the CBOW.

Glove [39] word embeddings are based on unsupervised

learning to capture words that occur together frequently.

Thanks to the global and local statistics, it creates semantic

relations in the whole corpus. Furthermore, it uses global

matrix factorization to represent the word of lack of words

in the document. It is also called the "count-based model"

because Glove tries to learn how the words co-occur with

other words in the corpus, allowing it to reflect the meaning

of the words conditionally of the other words.

D. Text evaluation metrics

Image captioning is a task that belongs to both computer

vision and natural language processing (NLP) domains. It must

capture objects, the relations between them and the whole

scene context to produce readable sentences in natural lan-

guage. Due to the complexity of the image captioning results,

the evaluation of the image captioning is still a complicated

and comprehensive problem.

Evaluation metrics in image captioning measure the cor-

relation of generated captions with human judgment. They

estimate grammatical correctness, the complexity of the de-

scription and how generated caption generalizes the corre-

sponding image. Evaluation metrics apply their own technique

for computation and have distinct advantages. Standard eval-

uation metrics for image captioning are BLEU-1 to BLEU-4,

METEOR, ROUGE-L, SPICE, and WMD [43]. They calculate

word overlap between candidate and reference sentences and

range it between 1-100. Higher values indicated better results.

BLEU (Bilingual Evaluation Understudy) [38] metric mea-

sures the correlation between predicted and human-made

captions. It compares n-grams in predicted and reference

sentences, where more common n-grams result in higher

metric values. It is worth mentioning that metric exclusively

count n-grams, locations of the n-grams in sentences are not

considered. Metric also allows addition weights for specific

n-grams to prioritize longer, common sequences of words.

Usually, the 1 to 4-grams used when computing the metric

– the respective variants are called BLEU-1 up to BLEU-4.

METEOR (Metric for Evaluation of Translation with Ex-

plicit Ordering) [3] measures the correlation between the pre-

dicted caption and human judgment. Compared with BLEU,
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parts of the sentence are analyzed, not the whole corpus.

METEOR algorithm have two stages. At first, tokens from

reference captions and candidates are compared. In the second

stage final result is calculated. METEOR also analyzes and

allows synonyms.

CIDEr (Consensus-based Image Description

Evaluation) [50] metric calculates correspondence between

candidate and reference captions. It is based on the TF-IDF

metric, calculated for each n-gram. It is widely used for

SCST [41] training, where the strategy is to optimize the

model for a specific metric. It results in higher results during

the testing phase compared with [41]. Furthermore, CIDEr

optimization during training impacts on high scores in BLEU,

METEOR and SPICE metrics.

ROGUE-L (Recall-Oriented Understudy for Gisting Eval-

uation) [30] is a set of metrics: Recall, F1 and precision.

Algorithm finds the longest common sequence of tokens

between predicted and reference captions. Sequences must be

in the same order but not next to each other.

WMD (Word Mover’s Distance) [26] is based on a machine

learning model to count similarity between texts. Metric is

distinguished from others because it measures common sense

between texts. It does not investigate the occurrence of tokens.

Instead, it measures the semantic length between sentences by

counting the probability of the occurrence of synonyms.

All the above metrics are used in various NLP tasks.

However, according to some investigations [7], they do not

correlate with a human judgment, what makes them not

adequate to measure the similarity of image captions 1. Among

the known metrics the one that correlates with the human

judgment is SPICE (Semantic Propositional Image Caption

Evaluation) [1]. This metric measures similarity between sen-

tences, represented by a directed graph. SPICE algorithm at

the beginning creates two directed graphs. First one is for all

reference captions and the second is for the candidate sentence.

Graphs elements can belong to three groups. First group is

objects and activity performers, the second group consists

of descriptive tokens (adjectives adverbs) and the last group

represents relations between objects and links other groups of

tokens on the graph. Based on this representation, sentences

are compared.

IV. EXPERIMENTAL SETUP

A. Datasets

There are several datasets used for image captioning. They

differ in the number of images and their size, also captions

can vary in format and length. Most commonly used are

Flickr8k [19], Flickr30k [58] and MSCOCO 2014 [5], [31].

All these sets consist of a number of images with associated

captions, usually 5 per image.

Dataset Flickr30k includes 30k images and each photo has

five captions. Training set consists of 29k images and 1k is

1The authors of [7] propose their own metric, but due to much its much
lesser (more that 10x) popularity comparing with SPICE, we decided to use
that latter in the current study.

Fig. 2: Diagram of experimental setup.

for testing. Flickr8k is a subset of Flickr30k and contains 8k

images, with five annotations for each picture. Each caption

fully describes a scene and is entirely based on human

judgment. In the test split, there are 7k images and the rest of

the data is used for testing.

During our experiments, we used for the evaluation and

training the MSCOCO dataset. It consists of more than 120k

images from various everyday scenes. Five captions describe

each photo in natural language. In the image captioning

area, the most popular MSCOCO data partitioning for testing,

validation and training purposes is Karpathy split [24], where

there are 113k images in training, 5k in validation and 5k in

test disjoint subsets.

B. Image preprocessing

Motivated by [24], and considering the variety of avail-

able pretrained object detection CNN models and language

processing models, we conducted experiments to check how

input data to the model can affect the learning process. The

whole experimental process involves encoding images and text

features simultaneously and generating a final sequence of

tokens (caption) word by word during decoding.

Images from the dataset are resized and normalized before

entering the image captioning model to be compatible with one

of the CNN networks. For VGG16, VGG19, Resnet152V2,

Resnet50, DenseNet121, DenseNet201, MobileNet, Mo-

bileNetV2 input shape is 224x224x3 and 299x299x3 for In-

ceptionV3, Xception. As a result, we obtained features vectors

with the following sizes, corresponding to the preprocessed

input image: 4096-element vector for VGG16, VGG19; 2048

for InceptionV3, Xception and Resnet152V2; size 1024 for

denseNet121; size 1920 for DenseNet201; 1000 elements for

MobileNet; size 1280 for MobileNetV2. We used CNN models

pretrained on the ImageNet [42] dataset, where the network’s

fully connected layers is removed since we do not need
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the probability distribution on 1000 image categories from

ImageNet.

C. Text preprocessing

A separated preprocessing was performed for captions.

At the beginning, all words were converted to lowercase,

tokenized. We removed punctuations, hanging single-letter

words and discarded rare words that occurred less than five

times. As a result, we achieved the following vocabularies,

also called dictionaries: Flickr8k, Flickr30k, and MSCOCO

2014, that will be used to create embedding matrixes from

embedding vectors. Before being handled by LSTM Network,

word sequences must be represented in word embeddings

vectors. In our model, Glove and FastText have been used

as embedding.

Preprocessed captions, consumed by the captioning model,

are appended with start and stop tokens to mark the beginning

and end of the sentence, respectively. In the next step, a

vocabulary of all words occurring in the captions in the

training set is prepared (along with start and stop tokens). As

a result, a dictionary of all words in our corpus is produced

to identify tokens by index explicitly. Each generated word is

processed by embedding prior to its providing into the LSTM

model input.

We adopted pretrained versions of FastText and Glove to

extract the text features. We preprocessed sentences from the

train and test dataset (described in the previous section) and

finally achieved a vocabulary of size 7293. Each word is then

embedded to a 200-element vector for Glove and 300-element

vector for FastText word embedding space.

D. Training and testing

During training, the model processes combined 256-element

vector of word embeddings and image feature vectors based

on the CNN model for a given image. At each time step model

predicts a word for the processed image and compares it with

the ground truth word from the training set, which corresponds

to the processed image. Predicted word and ground truth word

(from the training set) are compared using the cross-entropy

measure (see Fig. 1).

During the testing, image captioning model is fed by a

preprocessed photo. In the beginning, at the 0-time step, there

is no previously predicted word. Therefore, to denote the

start of prediction, a start of sentence token start is used.

Words are served as the embeddings, corresponding to the

dictionary. Next, the image captioning model predicts words

recursively until the sentence’s end (marked by stop token) or

the maximum length of the sentence has been reached and adds

it to the word list. At each step, the chance of the occurrence

of one word next to another is calculated using embeddings

specific to the tested text features. Finally, a full caption for

the tested image is generated and compared with ground-truth

phrases for the tested image, using specific metrics.

E. Evaluation

We investigated the performance of each image encoder,

with each text encoder mentioned previously, with BLEU-1 –

BLEU-4, METEOR, ROGUE-L, WMD, CIDEr, and SPICE

metrics. The complete process is repeated for other CNN

architectures and embedding methods to achieve a comprehen-

sive perspective of the performance of different CNN archi-

tectures along with different embedding methods. Backbone-

embedding pairs tested during experiments are presented in

Table. I. The complete process of evaluation is presented in

Fig. 2.

For further analysis, we also examined word and bigrams

occurences from a training set and predicted captions to

determine why some captions are incorrectly generated and

what are the collocations of a training set with the parts of the

sentence that do not describe the real image content.

V. RESULTS

Table I shows the results of image captioning metrics

calculated for different image and text features extractors. We

analyzed all models accordingly to the BLEU-1 – BLEU-

4, METEOR, ROUGE-L, WMD, CIDEr, and SPICE metrics.

Following the literature, to evaluate the performance we used

most recent CIDEr and SPICE metrics, keeping the remainder

for comparative purposes. For the same purposes we added

four reference methods in last four rows of the table.

From the obtained results, we can see that model perfor-

mance depends mostly on the CNN backbone used. Best

results considering the CIDEr metric has been achieved for

Xception backbone feature extractor, second place belong to

DenseNet201. The spread between the highest (Xception with

Glove, 78.13) and the lowest (VGG with Glove, 67.35) metrics

value equals 10.78 points difference, which makes the model

strongly dependent from the image backbone feature extractor.

The evaluated quality of caption extractors is correlated with

the accuracy of backbones. Practically for each metric, the

order of models sorted by the metric value is similar to the

order of backbones when sorted by accuracy both in top-1 and

top-5 variants2. One cannot observe any remarkable superiority

of one embedding model over another. For some metrics the

Glove model performs better, while for the remainder – the

FastText. In most cases, FastText embeddings achieve higher

results than Glove for the same image features extractor.

Which suggests that FastText adapts easier for different CNN

models, than Glove. Long feature vectors does not imply

higher performance. The longest feature vectors that are

generated by VGG backbones does not imply higher values

of measures. The winning models are using 2048 (Xception)

and 1920 (DenseNet201) vectors. Average time of sequence

generation is not correlated with the model complexity (no. of

model params). Differences in execution time between models

spreads from 874 to 1417 ms. The fastest is DenseNet201,

which is also second best model.

Example correct captions obtained by the Xception + Glove

pair are given in Table II, the respective images are shown

2Where top-n means that – in case of complete initial model of the backbone
(i.e. model that contains both, the convolutional and fully-connected layers)
the proper answer i.e. predicted class is among n-classes of highest output
probability.
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TABLE I: Evaluation results for MSCOCO 2014 test dataset (5000 images). Metrics’ values are averaged over the whole test

dataset. Higher results implies better image captioning performance.
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FastText 1043 64.47 45.73 31.54 21.86 20.86 47.01 47.43 67.76 13.81
Vgg16 14.71 4096 71.3 90.1

Glove 1088 64.25 45.62 31.63 22.09 20.78 46.99 47.35 67.35 13.64

FastText 1045 65.42 46.89 32.72 22.93 21.61 48.09 48.40 71.79 14.46
Vgg19 20.02 4096 71.3 90.1

Glove 1023 64.10 45.83 31.86 22.34 21.11 47.24 47.71 69.62 13.93

FastText 1209 65.28 46.78 32.47 22.61 21.30 47.58 48.04 70.07 14.16
Resnet152V2 58.33 2048 78 94.2

Glove 1417 64.91 46.78 32.57 22.86 21.38 47.80 48.05 70.77 14.08

FastText 1058 65.97 47.82 33.79 24.02 21.88 48.39 48.79 74.47 14.71
Resnet50 23.59 2048 74.9 92.1

Glove 1234 65.33 47.26 33.26 23.44 21.65 48.28 48.46 73.12 14.43

FastText 961 66.15 47.87 33.57 23.63 21.92 48.41 48.92 75.04 14.83
InceptionV3 21.8 2048 77.9 93.7

Glove 980 66.12 47.72 33.35 23.38 21.84 48.20 48.75 74.16 14.72

FastText 1026 67.01 48.80 34.45 24.30 22.36 48.85 49.50 77.64 15.18
Xception 20.86 2048 79 94.5

Glove 1107 66.59 48.63 34.34 24.33 22.43 48.91 49.43 78.13 15.16

FastText 1180 65.39 47.09 32.89 23.09 21.60 47.99 48.31 72.36 14.25
DenseNet121 7.04 1024 75 92.3

Glove 1234 65.03 47.02 32.96 23.26 21.64 47.87 48.38 71.94 14.13

FastText 874 66.59 48.73 34.57 24.55 22.25 49.01 49.20 76.74 14.83
DenseNet201 18.32 1920 77.3 93.6

Glove 914 66.35 48.41 34.26 24.18 22.46 49.08 49.29 76.54 14.96

FastText 976 65.02 46.93 32.85 23.02 21.65 47.98 48.15 71.24 14.31
MobileNet 4.25 1000 70.4 89.5

Glove 965 64.35 46.14 32.12 22.42 21.20 47.45 47.64 69.28 13.76

FastText 1072 65.13 47.22 33.17 23.32 21.79 48.22 48.62 73.79 14.62
MobileNetV2 2.26 1280 71.3 90.1

Glove 1048 65.39 47.14 33.04 23.24 21.64 47.96 48.35 73.03 14.55

Karpathy [24] 62.50 45.00 32.10 23.00 19.50 - - 66.00 -

Xu [57] 67.9 49.3 34.7 24.3 22.2 48.8 - 75.4 -

Sugano [46] 71.4 50.5 35.2 24.5 21.9 52.4 - 63.8 -

Lebret [28] 73 50 34 23 - - - -

TABLE II: Overview of four images with properly predicted captions (Xception image features extractor, Glove embeddings).

along with the results of evaluation metrics for them.

Image Fig. 3a Fig. 3d Fig. 3b Fig. 3c

Ground

truth

captions

*A young man riding a
skateboard down a street.
*A man riding a skateboard
down a road.
*A man skateboards down
a steep incline on an area
painted with graffiti.
*Man on a skateboard
crossing over some graffiti
*A man riding a skateboard
down a hill.

*Horses walk along a beach
while boats ride at their
moorings offshore.
*Some people riding horses
on some sand and some boats
and water
*A group of people riding
horses on a beach.
*Some people are riding
horses along a shoreline.
*A group of people riding
horses on top of a sandy beach.

*A slice of pizza on a paper plate.
*A slice of pizza being served
on a plate.
*A slice of pizza sits on the
paper plate
*The metal table has a slice
of pizza on a plate.
*A slice of pizza is sitting
on the top of a paper plate.

*A red and gold painted fire
hydrant on the street
*A fire hydrant on the side
of the road
*A multicolored fire hydrant
that is on the sidewalk.
*A fire hydrant on the side
of a street.
*A fire hydrant is standing on
the sidewalk with two spouts.

Predicted

caption

A man riding a
skateboard down a street

A group of people riding
horses on a beach

A slice of pizza on a plate
A fire hydrant on the side of
the street

BLEU-1 100.00 100.00 70.00 100.00

BLEU-2 100.00 100.00 68.31 100.00

BLEU-3 100.00 100.00 66.32 94.99

BLEU-4 100.00 100.00 63.89 91.93

METEOR 41.35 14.28 15.11 28.97

CIDEr 482.15 419.35 411.58 479.30

ROGUE_L 93.13 100.00 79.37 88.89
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(a) (b)

(c) (d)

Fig. 3: Images with properly predicted captions (see Table II for details)

in Fig. 3. The table contains ground-truth 5 captions from

the dataset metadata, captions obtained from the model and

values of metrics. The generated captions sound good, are

grammatically correct and consistent with the image content.

In contrast to the above, Table III presents inadequately

predicted captions for four images obtained using different

methods.

During this experiment, we checked that the resulting cap-

tions’ wrong parts occur more often in the training set data.

For Fig. 4d wrong part of the caption is the with people

standing. Bigram with people occurs 1328 times, people

standing 2740 times in training set. Those bigrams occur

relatively often compared to other parts of the sentence. Also,

for Fig. 4b bigrams that form laying on a couch occur very

often in MSCOCO 2014 training dataset. Especially in the

example Fig. 4c, bigrams "front of", "woman holding" are

very common in the training dataset.

To explore deeply the possible reasons for incorrect cap-

tions, we investigated vocabulary of single words and bigrams

used for training. The total size of vocabulary (the number

of unique words) equals 26335 for 113350 images described

using 5 alternative sentences each, which gives us 566747

captions. The similar numbers for the training set are the

following: number of images 5000, of sentences 25000, of

unique words: 7197 among which 503 words were used only

in the captions in the test set (the remainder i.e. 6694 words

are also present in the training set vocabulary). Considering the

fact that each of investigated models is being learned on the

training set, only words that are present in this vocabulary are

used to predict ANY output sentence (correct or not). In case

the captions in the test set, the number of words that was not

present in the training set equals 503. This implies that, object,

actions, situation, scene elements etc. that was described using

these words, would never be produced properly (when testing,
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(a) (b)

(c) (d)

Fig. 4: Images with improperly predicted captions (see Table III for details)

the words in the test set vocabulary are obviously not used).

For further analysis, we tried to find why parts of the

sentence are inadequate and how it is affected by training data.

Regarding that, we examined how bigrams from predicted

captions compare to those in the training set. We extracted

bigrams from the MSCOCO 2014 training set with the number

of their occurrences. Then we also extracted bigrams from

predicted captions. As a result, we achieved a summary of

bigrams in the training dataset and in a set of predicted

captions, along with a number of their occurrences. The

result for four example images are shown in Fig. III. Not

surprisingly, the model, to construct captions, is using more

frequent bigrams from the training set.

VI. CONCLUSIONS

In this paper, we analyzed how image features and word

encoding affect the results of the encoder-decoder image

captioning model. Our experiments proved that encoding input

data plays in this area the primary role. During our research,

we recognized that image captioning involves merging features

from different modalities. Because of that, encoding of both

image and features must cooperate, so finding the optimal

pair for specific model architecture is crucial and we can

significantly improve the results of the model predictions with

that principle. The influence of the image feature extractor by

the CNN backbone is crucial in this type of captioning model,

it affects more the performance than the word embedding

scheme. The Xception with Glove and DenseNet201 with Fast-

Text, according to our experiment are the best combinations

of models’ components.

The outcome of our research are applicable in all the

research works that lead to the developing the optimal encoder-

decoder image captioning model.
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