Logo PTI Logo FedCSIS

Position Papers of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 36

Evaluation of selected Cardinality Pattern functions and linguistic variables applied to authors dominant discipline classification

,

DOI: http://dx.doi.org/10.15439/2023F2798

Citation: Position Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 36, pages 111117 ()

Full text

Abstract. The ongoing study aimed to investigate the impact of utilizing intelligent counting algorithms to determine the dominant discipline of authors. This paper addresses the issue of ambiguously assigning disciplines to authors, which has become a prevalent problem. The methodology section outlines the approach employed in this study, including the utilization of intelligent counting, cardinality pattern functions, and evaluation metrics. In the results section, we present the findings of the study, demonstrating that by employing specific Cardinality pattern functions and linguistic variables, we were able to achieve a return that surpassed the number of disciplines unambiguously determined for authors by up to 30\%, surpassing the results obtained using well-known methods.

References

  1. Abramo, G., Aksnes D. W., D’Angelo C. A., 2020. Comparison of research productivity of Italian and Norwegian professors and universities. Journal of Informetrics, 14(2), 101023.
  2. Albarrán, P., Crespo, J. A., Ortuño, I., Ruiz-Castillo, J., 2011. The skewness of science in 219 sub-fields and a number of aggregates. Scientometrics. Vol. 88(2). 385–397.
  3. Baas, J., Schotten, M., Plume, A., Côté, G., Karimi, R., 2020. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies. Vol. 1(1). 377–386. https://doi.org/10.1162/qss_a_00019.
  4. Blackmore, P., & Kandiko, C. B., 2011. Motivation in academic life: A prestige economy. Research in Post-Compulsory Education, 16(4), 399–411.
  5. Boekhout, H., van der Weijden, I., Waltman L., 2022. Gender differences in scientific careers: A large-scale bibliometric analysis . Available from: https://arxiv.org/abs/2106.12624
  6. Carrasco, R., Ruiz-Castillo, J., 2014. The evolution of the scientific productivity of highly productive economists. Economic Inquiry. Vol. 52(1). 1–16.
  7. Cassidy R.S., Larivièrev., 2018. Measuring Research, What Everyone Needs to Know. Oxford University Press.
  8. Chan, H. and Torgler, B., 2020. Gender differences in performance of top cited scientists by field and country. Scientometrics, 125(3), pp.2421-2447, https://doi.org/10.1007/s11192-020-03733-w.
  9. Daradkeh M, Abualigah L, Atalla S, Mansoor W., 2022. Scientometric Analysis and Classification of Research Using Convolutional Neural Networks: A Case Study in Data Science and Analytics. Electronics; 11(13):2066. https://doi.org/10.3390/electronics11132066
  10. de Moya-Anegón, F., Z. Chinchilla-Rodríguez, B. Vargas-Quesada, E. Corera-Álvarez, F. Munoz-Fernández, A. Gonzalez-Molina, and V. Herrero-Solana., 2007. Coverage Analysis of Scopus: A Journal Metric Approach. Scientometrics 73 (1): 53–78.
  11. Dyczkowski K., 2018. Intelligent Medical Decision Support System Based on Imperfect Information. The Case of Ovarian Tumor Diagnosis. Studies in Computational Intelligence, https://doi.org/10.1007/978-3-319-67005-8.
  12. Franzoni, C., Scellato, G., & Stephan, P., 2011. Changing incentives to publish. Science, 333(6043), 702–703.
  13. Jöns, H., Hoyler, M., 2013. Global geographies of higher education: The perspective of world university rankings. Geoforum, 46, pp.45-59, https://doi.org/10.1016/j.geoforum.2012.12.014.
  14. Kacprzyk, J., 1985. Group decision-making with a fuzzy majority via linguistic quantifiers. Part I: a consensory-like pooling. Cybernetics and Systems, 16(2-3), pp.119-129, https://doi.org/10.1080/01969728508927761.
  15. Kamalski, J., and Plume. A., 2013. Comparative Benchmarking of European and US Research Collaboration and Researchers Mobility: A Report Prepared in Collaboration Between Science Europe and Elsevier’s SciVal Analytics. Science Europe, Elsevier.
  16. Kickert, W., Mamdani, E., 1978. Analysis of a fuzzy logic controller. Fuzzy Sets and Systems, 1(1), pp.29-44, https://doi.org/10.1016/0165-0114(78)90030-1.
  17. Kwiek, M., 2021. What large-scale publication and citation data tell us about international research collaboration in Europe: Changing national patterns in global contexts. Studies in Higher Education. Vol. 46(12). 2629–2649.
  18. Kwiek, M., Roszka, W., 2022. Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems. Scientometrics, https://doi.org/10.1007/s11192-022-04363-0.
  19. Meen C. K., Seojin N., Fei W., Yongjun Z., 2020. Mapping scientific landscapes in UMLS research: A scientometric review. Journal of the American Medical Informatics Association, 27(10), 1612–1624, https://doi.org/10.1093/jamia/ocaa107
  20. Ruiz-Castillo, J., Costas, R., 2014. The skewness of scientific productivity. Journal of Informetrics. Vol. 8(4). 917–934.
  21. Sood, S.K., Kumar, N. & Saini, M., 2021. Scientometric analysis of literature on distributed vehicular networks : VOSViewer visualization techniques. Artif Intell Rev 54, 6309–6341, https://doi.org/10.1007/s10462-021-09980-4
  22. Starbuck, W. H., 2013. Why and where do academic publish? M@n@gement, 5, 707–718.
  23. Visser, M., van Eck, N. and Waltman, L., 2021. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quantitative Science Studies, 2(1), pp.20-41, https://doi.org/10.1162/qss_a_00112.
  24. Wagner, C. S., 2018. The Collaborative Era in Science. Governing the Network. Cham: Palgrave Macmillan.
  25. Wagner, C. S., and L. Leydesdorff., 2005. Network Structure, Self-Organization, and the Growth of International Collaboration in Science. Research Policy 34 (10): 1608–18, https://doi.org/10.1016/j.respol.2005.08.002.
  26. Wygralak M., 2015. Intelligent Counting Under Information Imprecision. Applications to Intelligent Systems and Decision Support. , Studies in Fuzziness and Soft Computing, https://doi.org/10.1007/978-3-642-34685-9.
  27. Zadeh L.A., 1975. The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, Volume 8, Issue 3, https://doi.org/10.1007/978-1-4684-2106-4_1.