Logo PTI Logo FedCSIS

Position Papers of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 36

Federated Learning for Data Trust in Logistics

, , , ,

DOI: http://dx.doi.org/10.15439/2023F5947

Citation: Position Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 36, pages 5158 ()

Full text

Abstract. In the field of logistics, there is a significant shortage of qualified employees. Artificial Intelligence (AI) can help solve that problem supporting existing employees and reducing their workload. However, large amounts of data to train AI models are required and, in most cases, due to lack of trust between companies, model training is based solely on locally stored data from logistics providers and some publicly available datasets. To address this data scarcity issue, a proposed solution is to employ federated learning (FL), in the context of data trust (DT) by training AI models across multiple companies, based on both centralized data, within the DT platform and decentralized data from logistics providers data silos, while ensuring data sharing access at the attribute level. This paper proposes this approach and points out the importance of data sharing for effective model training for solving workforce challenges in logistics.

References

  1. BMDV. “Amtliche Güterkraftverkehrsstatistik.” https://www.kba.de​/​DE/​Statistik/​Kraftverkehr/​deutscherLastkraftfahrzeuge/​vd_​Inlandsverkehr/​vd_​inlandsverkehr_​node.html (accessed Apr. 18, 2023).
  2. Eurostat. “Summary of annual road freight transport by type of operation and type of transport (1 000 t, Mio Tkm, Mio Veh-km).” https://www.eea.europa.eu​/​ds_​resolveuid/​2952faa0aff24c37aa0cfab6a86730c8 (accessed Apr. 20, 2023).
  3. “A fifth of road freight kilometres by empty vehicles,” Eurostat, 12 Oct., 2021. https://ec.europa.eu​/​eurostat/​web/​products-​eurostat-​news/-/​ddn-​20211210-​1 (accessed: Apr. 20, 2023).
  4. A. Streim and B. Kokott. “In der Logistik werden die Sicherheitsmaßnahmen verschärft.” https://www.bitkom.org​/​Presse/​Presseinformation/​Digitalisierung-​Logistik (accessed Apr. 14, 2023).
  5. C. Kille, T. Schmidt, W. Stölzle, L. Häberle, and S. Rank. “Begegnung von Kapazitätsengpässen im Straßengüterverkehr – Fokus Personal.” http://logistik-digitalisierung.de​/​ (accessed Apr. 18, 2023).
  6. W. Hall and J. Pesenti, “Growing the artificial intelligence industry in the UK,” 2017. [Online]. Available: https://www.gov.uk​/​government/​publications/​growing-​the-​artificial-​intelligence-​industry-​in-​the-​uk
  7. Insititut für Wirtschaftsinformatik – Universität Leipzig, TRANSIT Data trust for logistics: Data Trusts for Enhancing Logistics Collaboration. Accessed: May 22, 2023. [Online]. Available: https://transit-project.de​/​
  8. J. Witkowski, “Electronic Freight exchange and logsitics platforms in buildung of supply chains,” 2018. [Online]. Available: https://www.google.com​/​url​?​sa=​t&​rct=​j&​q=&​esrc=​s&​source=​web&​cd=&​ved=​2ahUKEwi734WPh8L-AhXQp6QKHSo9BdwQFnoECAgQAQ&​url=​https%3A%2F%2Fwww.confer.cz%2Fclc%2F2018%2Fdownload%2F2448-european-electronic-freight-exchange-as-a-future-central-coordinator-in-supply-chains.pdf&​usg=​AOvVaw38zq7w-pkr1klk3gvC12Vu
  9. K. Houser and J. W. Bagby, The Data Trust Solution to Data Sharing Problems, 2022.
  10. B. Liu, N. Lv, Y. Guo, and Y. Li, “Recent Advances on Federated Learning: A Systematic Survey,” Jan. 2023, http://dx.doi.org/10.48550/arXiv.2301.01299. [Online]. Available: http://arxiv.org​/​pdf/​2301.01299v1
  11. S. Stalla-Bourdillon, G. Thuermer, J. Walker, L. Carmichael, and E. Simperl, “Data protection by design: Building the foundations of trustworthy data sharing,” Data & Policy, vol. 2, 2020, http://dx.doi.org/10.1017/dap.2020.1.
  12. X. Zhang, “A commentary of Data trusts in MIT Technology Review 2021,” Fundamental Research, vol. 1, no. 6, pp. 834–835, 2021, http://dx.doi.org/10.1016/j.fmre.2021.11.016.
  13. R. K. Lomotey, S. Kumi, and R. Deters, “Data Trusts as a Service: Providing a platform for multi‐party data sharing,” International Journal of Information Management Data Insights, vol. 2, no. 1, p. 100075, 2022, http://dx.doi.org/10.1016/j.jjimei.2022.100075.
  14. A. Blankertz. “Designing Data Trusts: Why We Need to Test Consumer Data Trusts Now.” https://www.stiftung-nv.de​/​sites/​default/​files/​designing_​data_​trusts_​e.pdf (accessed Apr. 20, 2023).
  15. C. L. Geminn, P. C. Johannes, J. K. M. Müller, and M. Nebel, Data Governance in Germany – An Introduction. Universität Kassel, 2023. [Online]. Available: https://kobra.uni-kassel.de​/​handle/​123456789/​14590
  16. S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture,” National Institute of Standards and Technology, 2020. http://dx.doi.org/10.6028/NIST.SP.800-207. [Online]. Available: https://csrc.nist.gov​/​publications/​detail/​sp/​800-​207/​final​?​ref=​hackernoon.com
  17. Ruoming Pang et al., “Zanzibar: {Google’s} Consistent, Global Authorization System,” in Proceedings of the 2019 USENIX Annual Technical Conference: July 10-12, 2019, Renton, WA, USA, 2019, pp. 33–46. [Online]. Available: https://www.usenix.org​/​conference/​atc19/​presentation/​pang
  18. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas, “Communication-Efficient Learning of Deep Networks from Decentralized Data,” http://dx.doi.org/10.48550/arXiv.1602.05629. [Online]. Available: http://arxiv.org​/​pdf/​1602.05629v4
  19. N. F. Syed, S. W. Shah, A. Shaghaghi, A. Anwar, Z. Baig, and R. Doss, “Zero Trust Architecture (ZTA): A Comprehensive Survey,” IEEE Access, vol. 10, pp. 57143–57179, 2022, http://dx.doi.org/10.1109/access.2022.3174679.
  20. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996, http://dx.doi.org/10.1109/2.485845.
  21. D. F. Ferraiolo, R. Chandramouli, V. C. Hu, and D. R. R. Kuhn, “A Comparison of Attribute Based Access Control (ABAC) Standards for Data Service Applications,” 2016, http://dx.doi.org/10.6028/NIST.SP.800-178.
  22. Ruoming Pang et al., “Zanzibar: Google’s Consistent, Global Authorization System,” 2019. [Online]. Available: https://www.semanticscholar.org​/​paper/​Zanzibar%3A-​Google's-​Consistent%2C-​Global-​Authorization-​Pang-​C%C3%A1ceres/​1362dec32d9d0b9d8b369f7ebcfef19bbc975066
  23. R. Sandhu and J. Park, “Usage Control: A Vision for Next Generation Access Control,” in vol. 2776, 2003, pp. 17–31, http://dx.doi.org/10.1007/978-3-540-45215-7_2.
  24. N. Truong, K. Sun, S. Wang, F. Guitton, and Y. Guo, “Privacy Preservation in Federated Learning: An insightful survey from the GDPR Perspective,” Nov. 2020, http://dx.doi.org/10.48550/arXiv.2011.05411. [Online]. Available: https://arxiv.org​/​pdf/​2011.05411
  25. J. Zhang, H. Zhu, F. Wang, J. Zhao, Q. Xu, and H. Li, “Security and Privacy Threats to Federated Learning: Issues, Methods, and Challenges,” Security and Communication Networks, vol. 2022, pp. 1–24, 2022, http://dx.doi.org/10.1155/2022/2886795.
  26. M. Alazab, S. P. RM, P. M, P. K. R. Maddikunta, T. R. Gadekallu, and Q.-V. Pham, “Federated Learning for Cybersecurity: Concepts, Challenges, and Future Directions,” IEEE Trans. Ind. Inf., vol. 18, no. 5, pp. 3501–3509, 2022, http://dx.doi.org/10.1109/TII.2021.3119038.
  27. J. Zhu, J. Cao, D. Saxena, S. Jiang, and H. Ferradi, “Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions,” ACM Comput. Surv., vol. 55, no. 11, pp. 1–31, 2023, http://dx.doi.org/10.1145/3570953.
  28. G. Yu et al., “IronForge: An Open, Secure, Fair, Decentralized Federated Learning,” Jan. 2023, http://dx.doi.org/10.48550/arXiv.2301.04006. [Online]. Available: https://arxiv.org​/​pdf/​2301.04006
  29. J. Nguyen, J. Wang, K. Malik, M. Sanjabi, and M. Rabbat, “Where to Begin? On the Impact of Pre-Training and Initialization in Federated Learning,” Oct. 2022, http://dx.doi.org/10.48550/arXiv.2210.08090. [Online]. Available: https://arxiv.org​/​pdf/​2210.08090
  30. S. Reddi et al., “Adaptive Federated Optimization,” Feb. 2020, http://dx.doi.org/10.48550/arXiv.2003.00295. [Online]. Available: https://arxiv.org​/​pdf/​2003.00295
  31. S. Augenstein et al., “Mixed Federated Learning: Joint Decentralized and Centralized Learning,” May. 2022, http://dx.doi.org/10.48550/arXiv.2205.13655. [Online]. Available: https://arxiv.org​/​pdf/​2205.13655
  32. K. Yang, S. Chen, and C. Shen, “On the Convergence of Hybrid Server-Clients Collaborative Training,” IEEE J. Select. Areas Commun., vol. 41, no. 3, pp. 802–819, 2023, http://dx.doi.org/10.1109/JSAC.2022.3229443.
  33. X. Zhang, W. Yin, M. Hong, and T. Chen, “Hybrid Federated Learning: Algorithms and Implementation,” Dec. 2020, http://dx.doi.org/10.48550/arXiv.2012.12420. [Online]. Available: https://arxiv.org​/​pdf/​2012.12420
  34. E. Diao, J. Ding, and V. Tarokh, “HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients,” Oct. 2020, http://dx.doi.org/10.48550/arXiv.2010.01264. [Online]. Available: https://arxiv.org​/​pdf/​2010.01264
  35. Y. Pan, J. Ni, and Z. Su, “FL-PATE: Differentially Private Federated Learning with Knowledge Transfer,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, http://dx.doi.org/10.1109/globecom46510.2021.9685079.
  36. P. Kairouz et al., “Advances and Open Problems in Federated Learning,” Dec. 2019, http://dx.doi.org/10.48550/arXiv.1912.04977. [Online]. Available: http://arxiv.org​/​pdf/​1912.04977v3
  37. Dirk Merkel, Docker: lightweight linux containers for consistent development and deployment. Houston, TX: Belltown Media, 2014. [Online]. Available: https://dl.acm.org​/​doi/​10.5555/​2600239.2600241
  38. D. Ferraiolo, V. Atluri, and S. Gavrila, “The Policy Machine: A novel architecture and framework for access control policy specification and enforcement,” Journal of Systems Architecture, vol. 57, no. 4, pp. 412–424, 2011, http://dx.doi.org/10.1016/j.sysarc.2010.04.005.
  39. Y.-A. Du, “Research on the Route Pricing Optimization Model of the Car-Free Carrier Platform Based on the BP Neural Network Algorithm,” Complexity, vol. 2021, pp. 1–10, 2021, http://dx.doi.org/10.1155/2021/8204214.
  40. M. Poliak, A. Poliakova, L. Svabova, N. A. Zhuravleva, and E. Nica, “Competitiveness of Price in International Road Freight Transport,” JOC, vol. 13, no. 2, pp. 83–98, 2021, http://dx.doi.org/10.7441/joc.2021.02.05.
  41. F. Du, S. Ang, F. Yang, and C. Yang, “Price and distribution range of logistics service providers considering market competition,” APJML, vol. 30, no. 4, pp. 762–778, 2018, http://dx.doi.org/10.1108/APJML-09-2017-0208.
  42. UXWing.com, Exclusive collection of free icons download for commercial projects without attribution. [Online]. Available: https://uxwing.com​/​
  43. E. Politou, F. Casino, E. Alepis, and C. Patsakis, “Blockchain Mutability: Challenges and Proposed Solutions,” Jul. 2019, http://dx.doi.org/10.48550/arXiv.1907.07099. [Online]. Available: https://arxiv.org​/​pdf/​1907.07099
  44. H.-S. Jang, T.-W. Chang, and S.-H. Kim, “Prediction of Shipping Cost on Freight Brokerage Platform Using Machine Learning,” Sustainability, vol. 15, no. 2, p. 1122, 2023. http://dx.doi.org/10.3390/su15021122. [Online]. Available: https://www.mdpi.com​/​2071-​1050/​15/​2/​1122