
Towards a Definition of Complex Software System
Jan Žižka

0009-0007-6483-0037
Faculty of Informatics

Masaryk University
Brno, Czech Republic

Botanická 68a, Brno, 60200
Email: jzi@mail.muni.cz

Bruno Rossi
0000-0002-8659-1520
Faculty of Informatics

Masaryk University
Brno, Czech Republic

Botanická 68a, Brno, 60200
Email: brossi@mail.muni.cz

Tomáš Pitner
0000-0002-2933-2290
Faculty of Informatics

Masaryk University
Brno, Czech Republic

Botanická 68a, Brno, 60200
Email: pitner@muni.cz

Abstract—Complex Systems were identified and studied in
different fields, such as physics, biology, and economics. These
systems exhibit exciting properties such as self-organization,
robust order, and emergence. In recent years, software sys-
tems displaying behaviors associated with Complex Systems are
starting to appear, and these behaviors are showing previously
unknown potential (e.g., GPT-based applications). Yet, there is no
commonly shared definition of a Complex Software System that
can serve as a key reference for academia to support research
in the area. In this paper, we adopt the theory-to-research
strategy to extract properties of Complex Systems from research
in other fields, mapping them to software systems to create a
formal definition of a Complex Software System. We support
the evolution of the properties through future validation, and we
provide examples of the application of the definition. Overall, the
definition will allow for a more precise, consistent, and rigorous
frame of reference for conducting scientific research on software
systems.

Index Terms—Software System, Complex System Theory,
Complex Software System

I. INTRODUCTION

C
OMPLEX Systems manifest multifaceted dependencies
and interrelationships with other systems and environ-

ments, making them difficult, if not impossible, to model
in their entirety [1], [2]. Complex Systems show properties
that make them peculiar, such as the property of emergent

behavior, i.e., behavior deriving from the different parts of a
system that cannot easily be determined or forecasted when
components are observed in isolation.

Complex Systems theory focuses on understanding and ex-
plaining the behavior of Complex Systems formed by interact-
ing components [1]. The theory provides a general framework
and a set of methodologies to study the emergent properties
and dynamics embedded in Complex Systems. However, there
is no agreed precise definition of the term as different authors
might have other points of view [3]. Complex Systems have
been studied in various fields [4]–[6], for example, in social
sciences by exploring the complex interactions of individuals
in cities.

The successes of software systems in the past years based
on, for example, Neural Networks, such as systems developed
by DeepMind [7], or OpenAI [8], bring a new range of soft-
ware systems to wide attention. The appearance of applications

such as AlphaFold or ChatGPT and others in a very short time
suggests that many more such systems will rise soon.

The exciting behaviors of these new software systems, such
as self-organization and emergence, cannot be explained by
inspecting the software implementation they are based on. This
range of software systems has specific behaviors correlating
with the behaviors of Complex Systems as defined by the
Complex Systems theory.

While in Computer Science, complexity is studied in differ-
ent contexts, such as code complexity and the complexity of
algorithms [9], this paper focuses on complexity in the context
of software systems. Also, many software systems are socio-

technical systems where humans are part of the system rather
than only forming its environment. Our study is interested
in pure technical systems where humans are not part of the
system but may build the system’s environment.

Our work aims to provide a clear definition of a Com-
plex Software System (CSS) based on the theory-to-research

strategy [10], [11], providing a frame of reference about the
properties of such systems in relation to what is postulated by
Complex Systems’ theory [1].

As the field of Complex Systems is evolving [2], we
suggest a framework that will also allow the evolution of
the definition and terms. The precise definitions will allow
more straightforward and unambiguous communication within
academia and will be able to connect to existing and future
real-world Complex Software Systems. The definition will
also provide boundaries for new research fields with a degree
of focus cleared of possible ambiguity due to the lack of
definitions.

To summarize, we have the following contribution in this
article:

• Setting up a framework under which the definition of a
Complex Software System is created;

• Defining a Complex Software System based on reference
to general Complex Systems theory;

• Listing examples of the use of such a definition;
• Based on the definition and proposed use, list potential

future research directions;

The article is structured as follows. In Section II, we provide
basic definitions that are commonly adopted in the context

Position Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 119–126
DOI: 10.15439/2023F2898

ISSN 2300-5963 ACSIS, Vol. 36

©2023, PTI 119 Thematic track: Software Engineering for
Cyber-Physical Systems



of software systems when discussing Complex Software Sys-
tems, such as System of Systems (SoS), Software Ecosystems
(SECO), and Complex Adaptive Systems (CAS). The purpose
of the need for a precise definition is discussed in Section III.
Section IV discusses the method for creating the definition
of a Complex Software System. We select several postulates
in Section V to form an initial base for defining a Complex
Software System. Section VI provides examples of using
such a definition. Future research directions are discussed in
Section VII, and conclusions are presented in Section VIII.

II. BASIC DEFINITIONS

In Software Engineering, several commonly used terms
and definitions of software systems discuss how software
systems and components can be combined and aggregated.
This section lists some of the main definitions and examines
their relationship to Complex Software Systems.

System of Systems (SoS) is a collection of independent in-
teracting systems [12]. An SoS has several key properties [13]:

• Operational Independence. Any system part of an SoS is
self-standing and can operate even if the whole SoS is
disaggregated.

• Managerial Independence. Every single system in an SoS
is self-governing.

• Geographic Distribution. SoS are often distributed over
geographic regions.

• Evolutionary Development. The existence and develop-
ment of SoS are under constant change.

• Emergent Behaviour. ”Through the collaboration be-

tween the systems in an SoS, a synergism is reached in

which the system behavior fulfills a purpose that cannot

be achieved by, or attributed to, any of the individual

systems.” [13]

The systems which are part of an SoS may also be Complex
Systems, or the SoS as a whole may form a Complex System
– however, the definition of an SoS does not imply that such
a system is a Complex System.

Software Ecosystems (SECO) are ”defined as a set of

businesses functioning as a unit and interacting with a shared

market for software and services, together with relationships

among them” [14]. A SECO may be composed of Complex
Software Systems and is a type of SoS. SECOs are typically
socio-technical systems [15], which exhibit Complex System
behaviors. In a SECO, introducing new elements can poten-
tially have disruptive effects. SECOs features [16], [17] for
example contain and provide:

• Inherited characteristics of natural ecosystems like pre-
dation, parasitism, mutualism, commensalism, symbiosis,
and amensalism.

• Architectural concepts like interface stability, evolution
management, security, and reliability.

• Open source development model.
• Platform for negotiating requirements aligning needs with

solutions, components, and portfolios.
• Capability for process innovation.

• Controlled central part for the core of the technology.

Complex Adaptive Systems (CAS) ”are systems that have

a large number of components, often called agents, that

interact and adapt or learn” [18], [19]. The field of CAS
focuses on the adaptive behavior of Complex Systems.

Software CAS refers to software systems that exhibit
emergent behavior and self-organization, similar to Complex
Adaptive Systems found in nature. These systems can adapt
and evolve based on their interactions with the environment
through feedback loops. They involve multiple interacting
components or agents that collectively exhibit behavior that
cannot be easily predicted from the behavior of individual
components [18].

A software project may also be considered to be CAS, as
suggested by [20].

A subset of Software CAS are Software Self-Adaptive Sys-
tems (SSAS) that focus on the ability of a software system to
autonomously adapt and modify the behavior or configuration
in response to changing conditions or requirements [21], [22].
SSAS have built-in mechanisms that monitor the system’s
state, analyze environmental changes, and take actions to
maintain or improve system properties at runtime [21].

Software CAS [18], [19]:

• Typically operate far from equilibrium.
• Undergo revisions and improvements.
• Do not conform to classic, equilibrium-based mathemat-

ical approaches.
• Continuously adapt through recombination of the build-

ing blocks.

We summarize the main characteristics of SoS, SECO, and
CAS in Table I.

III. WHY THERE IS A NEED FOR A DEFINITION OF A

COMPLEX SOFTWARE SYSTEM?

We need the definition of a Complex Software System for
several reasons. Below we discuss benefits, which are the
motivators for the research presented in this article.

Clarity and precision: ensure that the meaning of the term
Complex Software System is unambiguous.

Consistency: avoid that a software Complex System is
defined differently by different researchers or in other contexts,
and ensure that the term’s meaning remains consistent over
time.

Rigor: provide a framework for scientific research. Scien-
tific definitions are necessary for the development of clear,
precise, and consistent scientific concepts and for the advance-
ment of scientific research.

Once the definition has been developed, it can be used in
various ways. For example for:

Hypothesis testing: support the development of hypotheses
about properties of a Complex Software System and its
behaviors so that they can be tested through experiments and
observations. For example, empirical methods can be used to
verify if a software system fulfills the necessary conditions for
forming a Complex Software System.

120 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE I
SOS, SECO, CAS CONCEPTS

System of Systems (SoS) Software Ecosystems (SECO) Complex Adaptive Systems (CAS)

Definition Collection of independent interacting
systems [12]

Collection of software components, ap-
plications, and services [14]

Collection of components (agents) that
interact and evolve [18], [19]

Focus Collection of interacting systems Software and services relationships Software agents interaction

Emergent Behavior As systems get larger, emergent behav-
ior is more probable [23]

Limited emergence, the introduction of
new elements might have disrupting ef-
fects

Emergence in terms of adaptive behav-
ior and self-organization

Examples Smart Grids Systems Android Ecosystem Robotic Swarm

Classification: allow classification or categorization of
Complex Software Systems based on their properties. For
example, software systems use different paradigms, such as
Neural Networks or multi-agent architectures. This can be
used to create classifications based on system boundaries,
technology, or the form of their implementation.

Comparison: a known Complex Software Systems can be
compared based on the definition with other systems to find
similar or differing properties. This can serve as grounds for
expanding the definition or driving the creation of similar
software systems.

Theory development: develop new theories or models.
Definitions are essential for academic research, providing

a clear and precise framework for developing hypotheses,
conducting experiments, and developing theories. Definitions
allow researchers to communicate effectively and to build upon
each other’s work.

IV. METHODOLOGY TO BUILD THE DEFINITION

To define a Complex Software System, we adopt the theory-

to-research strategy, in which there is a continuous cycle
between theory and empirical validation [10], [11]:

• we extract from the literature (e.g., [1], [2]) common
properties of Complex Systems as have been studied in
the different fields;

• as there is no full agreement on all properties in the
context of the theory of Complex Systems [3], we discuss
the most appropriate in the context of software systems,
both according to our view of software systems imple-
mentation and deployment and with the aid of further
related works [4], [6], [18], [24];

• we map each of the properties to a set of identified
necessary, sufficient and representative conditions to the
context of software systems;

• we provide an initial application of the definition to
showcase the main benefits;

Ladyman [2] defines a Complex System based on reviewing
attempts in the literature to characterize a Complex System and
compiles a set of necessary conditions to represent complexity.
In their work, authors provide conditions that are qualitative
and which may not be sufficient for complexity, but they set
a basis for a way how complexity can be defined. We suggest
using the same method for defining a Complex Software
System.

We base the method of writing a formal definition of a
Complex Software System on a list of properties of three types
that are necessary, sufficient, and representative conditions
written in natural language.

The set of properties is the definition of a Complex

Software System.

The properties will be assembled in the form of graphical
frames followed by a commentary. Different types of prop-
erties will be color-coded for clarity in the following way,
where ”n” is an ordered number and ”keyword” is a word
abbreviating the property:

Property n - ”keyword” - Necessary

A property that is a necessary condition but not suffi-
cient to define a Complex Software System. Any Com-
plex Software System must be fulfilling all properties
that are necessary conditions. But fulfilling all such
conditions doesn’t imply that the Software System is
Complex Software System.

Property n - ”keyword” - Sufficient

A property that is the sufficient condition to define a
Complex Software System. If a software system fulfils
any single property that is sufficient condition then
such a system is a Complex Software System.

Property n - ”keyword” - Representative

A property describing a typical feature of a Complex
System is a representative property. Such property is
neither necessary nor sufficient but does describe a
commonality among Complex Software Systems.

The nomenclature allows referring specific property such
as Pn-N ”keyword” for a necessary condition property,
Pn-S ”keyword” for sufficient condition property and
Pn-R ”keyword” for a representative property.

The numbering of properties is sequential across all the
types. The intention and expectation is that the type of the
property may change based on future validation and research
and keeping the numbering intact will allow for unambiguous
referencing.

JAN ŽIŽKA ET AL.: TOWARDS A DEFINITION OF COMPLEX SOFTWARE SYSTEM 121



V. INITIAL DEFINITION OF A COMPLEX SOFTWARE

SYSTEM

A Complex Software System may be defined by a set of
properties which may be viewed as necessary, sufficient, and
representative for a system to exhibit Complex System be-
haviors. Such properties are generic for any Complex System
and are also described in existing publications such as [1],
[2]. In this section, we will summarize the basic properties of
Complex Systems and put those in the context of software
systems, creating a base for the definition of a Complex
Software System.

Property 1 - ”components” - Necessary

A Complex Software System is composed of many
components.

All definitions of systems complexity [1], [2], [4], [6]
require the system to have many components. In the context
of Complex Systems, the word ”many” refers to the term’s
qualitative rather than quantitative nature. It would, therefore,
be incorrect to attempt to quantify it. For example, a system
composed of two Complex Systems with manifold interactions
and fulfilling other necessary properties is a Complex System,
as well as a system composed of millions of components of a
similar type, maybe a Complex System. This property comes
directly from the definition of the word ”system” [25], [26].
Software systems are typically composed of components. This
property is a necessary condition but not sufficient for a soft-
ware system to exhibit complexity. In software, a component
may describe different entities based on view or perspective.
It can represent a code module, software package, process, or
service. From the perspective of a Complex Software System,
only a subset of such representations can serve as components
in a Complex Software System as they must possess further
attributes discussed in the following paragraphs.

Property 2 - ”communication” Necessary

The components of a Complex Software System have
means of intercommunication.

Communication is an essential condition for a Complex
Software System. As Ladyman [2] explains: ”Without inter-

action, a system merely forms a “soup” of particles which

necessarily are independent and have no means of forming

patterns, of establishing order.”. Communication through mes-
saging shared data, and interfaces is fundamental in software
systems. However, this property is not a sufficient condition
for a Complex Software System, as many software systems
communicate but lack other necessary properties.

Property 3 - ”similarity” - Representative

The components in a Complex Software System are
similar.

Based on Ladyman [2]: ”For interactions to happen and

for pattern and coherence to develop, the elements have to be

not only many but also similar in nature.”. From the software
systems perspective, for example, a system based on front-
end, business logic middle-ware, and back-end database com-
ponents may not form a Complex Software System. This has
fascinating implications for software systems, which may be
considered complex. However, this condition is not sufficient
to determine a Complex Software System. This property may
be necessary, but such a statement cannot be demonstrated
and proven with the current knowledge and it is a question
if a Software System with dis-similar components may still
form a Complex Software System or if the system boundaries
would exclude such dis-similar components into system’s
environment rather than being part of the system itself. It also
remains to be defined what precisely similar means in the
context of software components, and similarity needs to be
inspected along with heterogeneity and homogeneity.

Property 4 - ”interaction-change” - Necessary

The strength of components interactions in a Complex
Software System is dynamic and changes over time.

”Most interactions are mediated through some sort of

exchange process between nodes (components). In that sense,

interaction strength is often related to the quantity of objects

exchanged.” [1]. The interactions among components have to
change over time for a Complex Software System to evolve
and create a self-organized clustered structure [1]. The result-
ing network topology contains information about the nodes’
and links’ dynamics and formation (Chapter 4.5) [1]. This is
a familiar property in software systems studies, for example,
in the field of dynamic or adaptive networks [27], [28]. This
property is necessary for a Complex Software System from
which self-organization and clustering emerge.

Property 5 - ”states” - Necessary

Components of a Complex Software System are char-
acterized by states.

Complex Software Systems are systems that evolve. An
algorithmic description of evolution (Chapter 5) [1] is based
on the fact that the system has states, and the evolution forms
a path through states from time t to time t+1. Therefore the
existence of states is necessary to create a Complex Software
System. The notion of states in software systems is among the
basic concepts of any information systems [29]. However, the
existence of states is not a sufficient condition for Complex
Software Systems.

122 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Property 6 - ”co-evolution” - Representative

The intercommunication and states of components in
a Complex Software System are not independent but
co-evolve.

As discussed in (Chapter 1.5) [2] ”Complex systems are

characterized by the fact that states and interactions are often

not independent but evolve together by mutually influencing

each other; states and interactions co-evolve.”. The Com-
plex Systems are characterized by co-evolutionary dynamics
(Chapter 4.8) [1]. From a software systems perspective, this
can be represented, for example, by adaptive network models
[28], which are known to exhibit such co-evolutionary dy-
namics [30], [31]. The co-evolutionary algorithms may also
be used to solve complex software problems [32].

Property 7 - ”context-awareness” - Representative

A Complex Software System is context-aware.

As shown by Thurner [1], the Complex Systems are often
represented by multi-layer networks and ”... for any dynamic

process happening on a given network layer, the other layers

represent the ’context’ ...”. In other words, such context defines
how components on different layers may be influenced. This
property is typical for Complex Systems to co-evolve through
context dependency and awareness.

Property 8 - ”algorithmicism” - Representative

A Complex Software System is algorithmic.

Based on Thurner [1], the ”... (Complex Systems) algorith-

mic nature is a direct consequence of the discrete interactions

between interaction networks and states.”. This fits software
systems that are naturally algorithmic [29].

The ”algorithmicism” may need to be replaced with ”intel-
ligence” or ”cognition” based on symbolic or sub-symbolic
approaches [33], which might be more appropriate from a
software systems perspective, when comparing this property
to general Complex Systems theory.

Property 9 - ”path-dependency” - Representative

Complex Software System processes are path-
dependent and non-ergodic.

”The Complex Systems are typically governed by path-

dependent processes.” (Section 2.5) [1]. The process, in a
general theory of complex systems, refers to stochastic pro-
cesses [34]. This further means that processes in complex
systems are inherently non-Markovian. It can also be shown
that Complex Systems are non-ergodic (for in-depth discus-
sion, see [1]). From the software systems perspective, this
means that software system to exhibit such Complex System

properties, they must change their boundary conditions as the
system evolves.

Property 10 - ”disorder” - Necessary

A Complex Software System is disordered and out-of-
equilibrium.

Ladyman [2] argues that ”...complex systems are precisely

those whose order emerges from a disorder rather than being

built into them.”. Also, it can be noted that Complex Systems
are generally out-of-equilibrium [1], which drives interesting
challenges to the concepts of entropy. Although it can be
shown [1], [2] that Complex Systems exhibit such properties,
it is not obvious how to apply those to software systems.

It must be noted that disorder doesn’t imply instability,
which might sometimes be associated with the term. In the
sense presented by the property, the disorder is related to
entropy. For example, the use of GA (Genetic Algorithms)
result is seemingly disordered systems when the system is
inspected.

Property 11 - ”robust-order” - Necessary

A Complex Software System exhibits robust order.

The concept of robust order is derived from system disorder.
As shown by Ladyman [2] ”... a system consisting of many

similar components (elements) which are communicating (in-

teracting) in a disordered way has the potential of forming

patterns or structures”. This refers to self-organization and
emergence property. From a software system perspective, this
indicates that a Complex Software System shall be composed
of similar and at least initially disordered components. This
might seem to contradict with P10-N ”disorder” but ”...

although the elements continue to interact in a disordered

way, the overall patterns and structures are preserved. A

macroscopic level arises out of microscopic interaction, and

it is stable” [2] which Ladyman defines it as a robust order
and continues that ”t(T)his kind of robust order is a further

necessary condition for a system to be complex”. Therefore
disorder and robust order may co-exist. One example of
software systems showing such a property are Artificial Neural
Networks (ANN), where initially, input weights of neurons
may be initialized with random values and, through learning,
such initial disorder forms patterns, structures, or clusters.
Also, when examined on a neuron level, ANN will still be
disordered.

From a software systems perspective, it will be interesting
to study also further run-time uncertainties concerning robust
order property.

Property 12 - ”memory” - Necessary

A Complex Software System has memory.

JAN ŽIŽKA ET AL.: TOWARDS A DEFINITION OF COMPLEX SOFTWARE SYSTEM 123



From Holland [18]: ”A system remembers through the

persistence of internal structure”, Ladyman [2] infer that
”Memory is a straightforward corollary of robust order.”. And
Thurner [1] notes that the ”Complex systems often have mem-

ory. Information about the past can be stored in nodes (compo-

nents), if they have a memory, or in the network structure of the

various layers.” In such a sense, memory refers to the internal
self-organized structure of the system. The difference between
memory and states defined by P5-N ”states” is that states

represent the system at a specific point in time, but they do not
represent history-dependent dynamics stored in the systems
memory. This property might have various interpretations in
software systems, such as a path through imitation-learning
[35] or system audit trails. This interesting property might
also have yet unknown interpretations in software systems.

Property 13 - ”SoS sufficiency” - Sufficient

A System of Complex Software Systems is a Complex
Software System.

As an intuitive analogy to properties of a Complex Software
System – as in Ackoff [12] – it may be possible to show
that a system of Complex Software Systems forms a Complex
Software System.

This might have exciting implications in practice as once
a Complex Software System is created and exists, a new
Complex Software System may be formed by creating a
system of such systems (SoS).

As the software does not require any material or physi-
cal manipulation and software systems can be created rela-
tively quickly, this allows the possible rapid advancement of
software-based systems exhibiting Complex System behaviors.

VI. APPLICATION OF THE DEFINITION

A. Unambiguous communication within academia

”Complex Software System” is a widely used term in
academia and industry. It refers to a wide range of software
systems and viewpoints with a generic notion of a system’s
complexity. The definition presented in this paper attempts to
provide a concrete reference that can be utilized throughout
academic discussions to facilitate a common understanding of
the term and properties of such a system. Also, the proposed
definition framework is intended to extend and refine the
definition to support further Complex Software Systems theory
development.

The definition of a Complex Software System may be
referenced as a whole, or specific properties may be the focus
of empirical and other research when studying the properties of
software systems. Having a definition of a Complex Software
System will bring clarity through academic discussions.

B. Complex Software System categorization

Software systems are open systems [36] with external inter-
actions. The boundary of the system defines what belongs to
the system itself and what its surroundings are. The edge of the

system may be used for categorization. Many software systems
nowadays are socio-technical systems [37] where people are
part of the system rather than creating the surroundings and
interacting with the system only through the system boundary.

The software systems also interact with humans or are
part of machine-to-machine interactions. The software system
boundaries can be used as one of the aspects of categorizing
types of software systems. Most importantly, this categoriza-
tion has an essential perspective from Complex Software Sys-
tems theory. Most of the socio-technical systems are Complex
Systems [37], and the involvement of humans fulfills the
necessary conditions presented in Section V.

For example, if we consider the Internet as a Complex
Software System, it can be viewed as a socio-technical system.
In which case, it fulfills the P4-N ”interaction-change” prop-
erty. The changes are done by human developers, companies,
and communities, which interconnect services throughout the
Internet. If the boundary of the Internet as a system excludes
human actors, the P4-N ”interaction-change” might not hold.

The presented properties applied to different boundaries of
a software systems can, in this way, provide mechanisms to
create a categorization and demonstrate which boundary is
allowing the creation of a Complex System and which is not,
as they are not fulfilling the necessary conditions defined by
the presented properties.

C. Complex Software System modeling

To dive into understanding Complex Software Systems, it
will be required to have a model to analyze the properties’
effects, how the necessary and sufficient conditions may be
fulfilled or violated, and how representative properties may
help define a Complex Software System. This can be achieved,
for example, by studying existing Complex Systems, as it
is done in other fields. However, the challenge is that we
might not have access to such systems and, based on the
boundary categorization (Section VI-B), some categories of
Complex Software Systems might not even exist, for example,
pure technical Complex Software Systems, where humans are
outside the system boundary. The categorization based on
modeling may follow, for example, FTG+PM framework [38],
which aims at the categorization of complex cyber-physical
systems.

The model can be designed and developed to study Com-
plex Software Systems based on the presented definition and
specification of necessary conditions for such a system to exist.
Commonality and variability analysis will be required to create
such models.

The model will allow experiments to evaluate the assump-
tions placed by the properties of Complex Software Systems.
Understanding underlying principles might show how such
software systems may be constructed. The models may also be
utilized directly during the process of creation of a complex
software system, as, for example, suggested by [39] with SDD
(Simulation Driven Development) to tackle inherent system
complexity. Modeling ASA (Adaptive Software Architectures)

124 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



[40] might be another way to direct the creation of Complex
Software Systems.

With models based on the defined Complex System proper-
ties, it may be, for example, demonstrated that P13-S ”SoS
sufficiency” is a sufficient condition.

Creating models of different categories of Complex Soft-
ware Systems is another research path we will follow.

VII. FUTURE RESEARCH

Creation of the definition of a Complex Software System
and a framework for describing the definition will open doors
for several research areas:

• Search for and refining Complex Software System prop-
erties;

• Exploring categories of Complex Software Systems;
• Creation of Complex Software System models;
• Search for underlying principles of Complex Software

Systems;

The framework discussed in Section IV provides means of
extending and refining the definition based on future research
in the field of Complex Software Systems. The properties
may be updated or expanded as new information becomes
available. This will require empirical validation of hypotheses
and possibly rejecting null hypotheses posed by the definition.
The validation is expected to trigger a refinement cycle for
the theory, as defined by theory-to-research strategy [10]. The
validation may be based on case studies of existing software
systems or experimental research based on simulations and
modeling.

The list of the initial 13 properties harvested from studies
of Complex Systems in other fields may not always have a
precise mapping to software systems. Some properties that
define necessary conditions will require further research to
understand what they can indicate in the context of soft-
ware systems. Especially P7-R ”context-awareness”, P9-R
”path-dependency”, P10-N ”disorder”, P12-N ”memory” or
P13-S ”SoS sufficiency”.

The categorization, discussed in Section VI-B, based on the
definition, might provide additional research topics while help-
ing to uncover new underlying general principles of Complex
Software Systems. Inspecting academic discussions, aided by
systematic literature reviews, surveys, or questionnaires, will
facilitate such categorization.

Our research aims at technical systems, excluding socio-
technical systems. This constraint, however, might prove to be
challenging to isolate, and it is clear that the cyber-physical
and socio-technical systems will be encountered during fur-
ther research where the discrete and continuous aspects of
Software Systems co-exist. This will require clearly defining
and distinguishing the system boundaries to tackle encountered
involvement of non-technical aspects.

System Complexity is viewed as beneficial property of
Software Systems exhibiting interesting properties, therefore
it is not in the scope of our research to suggest means of
easing or reducing the complexity.

Several Software Systems might be considered complex,
such as modern operating systems with their constant struggle
against cyber attacks. These systems might not fulfill the
criteria for complexity based on the proposed definition. In
future research, it will be required to categorize such systems
and avoid potential confusion on the term as there are different
perspectives through which complexity can be viewed.

The proposed definition suggests one sufficient condition
P13-S ”SoS sufficiency.” In future research, we will identify

other potential sufficient conditions to extend the definition.
However, this task will be challenging.

VIII. CONCLUSIONS

Complex Systems were identified and studied in different
fields, such as physics, biology, and economics. These sys-
tems exhibit properties such as self-organization, robust order,
and emergence. In recent years, software systems started to
display behaviors associated with Complex Systems, showing
previously unknown potential (e.g., GPT-based applications).
However, a commonly shared definition of a Complex Soft-
ware System is not yet available.

For this reason, in this paper, we have presented a definition
of a Complex Software System that can serve as a reference
for academia to support future research. The definition is a set
of 13 initial necessary, representative, and sufficient conditions
for a software system to exhibit Complex System behaviors.
The properties were selected from Complex Systems research
in other fields and mapped to software systems. We suggested
allowing for evolution and refinement of the properties, as the
definition can be refined by evaluating the studied properties
using empirical methods. We have also provided examples
of the use of the definition and discussed further research
directions in the area of Complex Software Systems.

An unambiguous definition of a Complex Software System
is a stepping stone toward understanding its underlying prin-
ciples.

ACKNOWLEDGEMENT

The work was supported from ERDF/ESF “CyberSecurity, Cyber-
Crime and Critical Information Infrastructures Center of Excellence”
(No. CZ.02.1.01/0.0/0.0/16 019/0000822).

REFERENCES

[1] S. Thurner, R. Hanel, and P. Klimek, Introduction to the theory of

complex systems. Oxford University Press, 2018.
[2] J. Ladyman, J. Lambert, and K. Wiesner, “What is a complex system?”

European Journal for Philosophy of Science, vol. 3, no. 1, pp. 33–67,
Jan 2013. doi: 10.1007/s13194-012-0056-8

[3] H. Ledford, “Language: Disputed definitions,” Nature, vol. 455, no.
7216, pp. 1023–1028, Oct 2008. doi: 10.1038/4551023a

[4] M. Mitchell, Complexity: A guided tour. Oxford university press, 2009.
[5] G. J. Klir and H. A. Simon, The architecture of complexity. Boston,

MA: Springer US, 1991, pp. 457–476.
[6] M. M. Waldrop, Complexity: The emerging science at the edge of order

and chaos. Simon and Schuster, 1993.
[7] [Online]. Available: https://www.deepmind.com/
[8] [Online]. Available: https://openai.com/
[9] J. Van Leeuwen, Handbook of theoretical computer science (vol. A)

algorithms and complexity. Cambridge, MA, USA: Mit Press, 1991.
ISBN 0444880712

JAN ŽIŽKA ET AL.: TOWARDS A DEFINITION OF COMPLEX SOFTWARE SYSTEM 125



[10] R. A. Swanson and T. J. Chermack, Theory building in applied disci-

plines. Berrett-Koehler Publishers, 2013.
[11] P. D. Reynolds, Primer in theory construction: An A&B classics edition.

Routledge, 2015.
[12] R. L. Ackoff, “Towards a system of systems concepts,” Management sci-

ence, vol. 17, no. 11, pp. 661–671, 1971. doi: 10.1287/mnsc.17.11.661
[13] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-

leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, pp. 1–41, 2015. doi: 10.1145/2794381

[14] D. G. Messerschmitt, C. Szyperski et al., Software ecosystem: un-

derstanding an indispensable technology and industry. MIT press
Cambridge, 2003, vol. 1.

[15] T. Lima, R. P. dos Santos, and C. Werner, “A survey on socio-technical
resources for software ecosystems,” in Proceedings of the 7th Interna-

tional Conference on Management of computational and collective in-

tElligence in Digital EcoSystems, 2015. doi: 10.1145/2857218.2857230
pp. 72–79.

[16] J. Joshua, D. Alao, S. Okolie, and O. Awodele, “Software ecosystem:
Features, benefits and challenges,” International Journal of Advanced

Computer Science and Applications, vol. 4, no. 8, 2013. doi: 10.14569/I-
JACSA.2013.040833

[17] D. Lettner, F. Angerer, H. Prähofer, and P. Grünbacher, “A case study
on software ecosystem characteristics in industrial automation software,”
in Proceedings of the 2014 International Conference on Software and

System Process, ser. ICSSP 2014. New York, NY, USA: Association
for Computing Machinery, 2014. doi: 10.1145/2600821.2600826. ISBN
9781450327541 pp. 40–49.

[18] J. H. Holland, “Complex adaptive systems,” Daedalus, vol. 121, no. 1,
pp. 17–30, 1992.

[19] ——, “Studying complex adaptive systems,” Journal of systems science

and complexity, vol. 19, pp. 1–8, 2006. doi: 10.1007/s11424-006-0001-z
[20] A. B. Myburgh, “Situational software engineering complex adaptive

responses of software development teams,” 2014 Federated Conference

on Computer Science and Information Systems, FedCSIS 2014, p. 841
– 850, 2014. doi: 10.15439/2014F196

[21] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software
engineering for self-adaptive systems: A second research roadmap,” in
Software Engineering for Self-Adaptive Systems II: International Semi-

nar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected

and Invited Papers. Springer, 2013. doi: 10.1007/978-3-642-02161-9 1
pp. 1–32.

[22] F. D. Macı́as-Escrivá, R. Haber, R. del Toro, and V. Hernandez, “Self-
adaptive systems: A survey of current approaches, research challenges
and applications,” Expert Systems with Applications, vol. 40, no. 18, pp.
7267–7279, 2013. doi: 10.1016/j.eswa.2013.07.033

[23] J. S. Osmundson, T. V. Huynh, and G. O. Langford, “Emergent be-
havior in systems of systems,” in INCOSE International Symposium,
vol. 18, no. 1. Wiley Online Library, 2008. doi: 10.1002/j.2334-
5837.2008.tb00900.x pp. 1557–1568.

[24] J. M. Ottino, “Complex systems,” American Institute of Chemi-

cal Engineers. AIChE Journal, vol. 49, no. 2, p. 292, 2003. doi:
10.1002/aic.690490202

[25] Merriam-Webster. System. [Online]. Available: https://www.
merriam-webster.com/dictionary/system

[26] O. E. Dictionary. system, n. [Online]. Available: https://www.oed.com/
view/Entry/196665

[27] F. Kuhn and R. Oshman, “Dynamic networks: models and algo-
rithms,” ACM SIGACT News, vol. 42, no. 1, pp. 82–96, 2011. doi:
10.1145/1959045.1959064

[28] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014. doi: 10.1109/JPROC.2014.2306253

[29] I. Sommerville, Software Engineering, ser. Always learning. Pearson,
2016. ISBN 9780133943030

[30] D. Antoniades and C. Dovrolis, “Co-evolutionary dynamics in social
networks: A case study of twitter,” Computational Social Networks,
vol. 2, no. 1, pp. 1–21, 2015. doi: 10.1109/SITIS.2014.68

[31] M. Farajtabar, M. Gomez-Rodriguez, Y. Wang, S. Li, H. Zha, and
L. Song, “Co-evolutionary dynamics of information diffusion and net-
work structure,” in Proceedings of the 24th International Conference on

World Wide Web, 2015. doi: 10.1145/2740908.2744105 pp. 619–620.
[32] P. B. Myszkowski, M. Laszczyk, and D. Kalinowski, “Co-evolutionary

algorithm solving multi-skill resource-constrained project scheduling
problem,” Proceedings of the 2017 Federated Conference on Computer

Science and Information Systems, FedCSIS 2017, p. 75 – 82, 2017. doi:
10.15439/2017F318

[33] E. Ilkou and M. Koutraki, “Symbolic vs sub-symbolic ai methods:
Friends or enemies?” CEUR Workshop Proceedings, vol. 2699, 2020.

[34] S. M. Ross, Stochastic processes. John Wiley & Sons, 1995.
[35] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,

J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019. doi: 10.1038/s41586-
019-1724-z

[36] L. v. Bertalanffy, General system theory: Foundations, development,

applications. G. Braziller, 1968.
[37] V. Tomic, “A bionic view on complex software systems-and the conse-

quences for digital resilience,” Master’s thesis, Wien, 2021.
[38] S. Mustafiz, J. Denil, L. Lúcio, and H. Vangheluwe, “The ftg+pm

framework for multi-paradigm modelling: An automotive case study,”
Proceedings of the 6th International Workshop on Multi-Paradigm

Modeling, MPM 2012, p. 13 – 18, 2012. doi: 10.1145/2508443.2508446
[39] T. Baumann, B. Pfitzinger, and T. Jestadt, “Simulation driven

development-validation of requirements in the early design stages of
complex systems-the example of the german toll system,” Proceedings

of the 2017 Federated Conference on Computer Science and Information

Systems, FedCSIS 2017, p. 1127 – 1134, 2017. doi: 10.15439/2017F133
[40] N.-T. Huynh, M.-T. Segarra, and A. Beugnard, “A development process

based on variability modeling for building adaptive software architec-
tures,” Proceedings of the 2016 Federated Conference on Computer

Science and Information Systems, FedCSIS 2016, p. 1715 – 1718, 2016.
doi: 10.15439/2016F170

126 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023


