
Decoupling Types and Representations of Values
for Runtime Optimizations∗

Krajča Petr† and Škrabal Radomír
0000-0003-4278-3130
0000-0003-3929-7238

Palacky University Olomouc
17. listopadu 12, CZ77146 Olomouc

Czech Republic
E-mail petr.krajca@upol.cz, radomir.skrabal01@upol.cz

Abstract—The way data is stored in a computer’s memory
is crucial from the performance point of view. The choice
of the most appropriate data structure depends not only on
the algorithm but also on the input data itself. Unfortunately,
this information may not always be known in advance, requir-
ing programmers to make educated guesses about the data’s
characteristics. If these guesses are inaccurate, it can result in
suboptimal performance. To address this challenge, we introduce
a novel programming language that draws inspiration from
database management systems. This language has the capability
to automatically select optimal data structures and, consequently,
algorithms based on the input data to improve performance.

I. INTRODUCTION

D
ATA types play an increasingly important role in modern
programming. In fact, it is not a single role, but four

roles at once. Data types (i) create abstractions, (ii) define
variable domains (which values can variable hold), (iii) define
representation of values (how data are stored in memory), and
corollary (iv) assists to dispatch operations with data [1].

Much focus has been given to the role (ii) of data types
which allows to build a more robust software, hence simplify
software development. We are to explore the role (iii) which
deals with value representation, since it has significant impact
on performance, due to the role (iv) of the type system.

Let us recall what is meant by type, value, and its rep-
resentation. For simplicity we are to assume that a type is
a set of values. A value can be seen as an abstract entity
which has no location in time or space. However, a value
may have encoding that can be represented in the memory
of the computer. This encoding of a value shall be called
representation and can be assigned to a variable. Naturally,
a single value may have multiple representations. For instance
value 42 may be represented as "42" (two numerals), "forty
two" (words), "XLII" (roman numerals), 00101010 (binary
number), etc. All of these are valid representations of the
number, however, each is suitable for different situations. Note
that the notions of a type and representation are orthogonal.
The type of a variable provides information on values that
can be assigned to a given variable, while representation is

∗Supported by grants IGA_PrF_2022_018 and IGA_PrF_2023_026 of
Palacký University Olomouc.
†Corresponding author.

an encoding of a value, see [2]. Types play an important role
during the compilation process, since they allow to discover
invalid operations, representations are crucial for program exe-
cution since they determine how the program is to be executed.
For example, points can be represented in Cartesian or polar
coordinates while each representation is suitable for different
applications. Analogously, in data analysis various representa-
tions of vectors (dense or sparse) and matrices (dense, sparse,
row/column major) are used. Which of these representations
is more appropriate is determined by the algorithm and often
by the input data itself.

In contemporary programming languages decoupling of
types and their representations is achieved via interface in-
heritance (Java, C#) or type-classes (Haskell). These time-
approved techniques have a particular downside. The selection
of a type representation is often made in compile-time based
on more-or-less accurate assumptions on the future use of the
program. If the data representation does not fit the actual input
data, it may lead to a suboptimal performance, e.g., if a sparse
matrix is stored as a dense matrix in memory.

To deal with this kind of issues we propose a programming
language where types and representations of values are strictly
decoupled. Our motivation comes from the world of rela-
tional database management systems (RDBMS). For instance,
RDBMS stores tuples in a sequential data file. Depending on
the size of data, meta-data and query, RDBMS during query
processing selects the most suitable representation of the data
from the data file. Let us consider join of two data tables in
RDBMS. If the data are small enough then the input is read
and processed sequentially using some trivial algorithm (e.g.
nested loop join). If the data are larger, RBDMS can change
their representation to process it faster. For instance, to a hash
table and process data using a hash-join. Or, if an index is
available, data can be turned into an ordered set and processed
using a sort-merge-join algorithm, see e.g. [3] for details.

Our intention is to design a language where this capability,
i.e., select the most appropriate data representation and by
extension most appropriate algorithms, is available in a general
purpose programming language. The intended applications
come from the area of data analysis where the selection of
an appropriate data representation is of a crucial importance.

Position Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 67–76
DOI: 10.15439/2023F5882

ISSN 2300-5963 ACSIS, Vol. 36

©2023, PTI 67 Thematic track: Advances in Programming Languages

The paper is organized as follows. Section II provides
introduction to the basic of the language we propose. Then,
Section III describes the concept of an extended function

allowing to dispatch functions based on types and values of
arguments. Sections IV and V are devoted to the type inference
in our language. Paper concludes with Sections VI and VII on
the experimental evaluation and notes on the current state of
the language in the future.

II. LANGUAGE VELKA

We propose a programming language called Velka as an
experimental framework, where types and representations are
strictly separated from each other. Velka is loosely based on
Scheme [4] and has a Lisp-like syntax.

Velka is strongly typed, detecting many type-related errors
at compilation time, with no automatic type coercion. How-
ever, Velka can convert between multiple representations of
a single type if it is viable. The evaluation method (strict or
lazy) for Velka is not specified.

The following subsections are brief introduction to Velka
language. We tacitly assume that readers are acquitted with
the Lisp-like language [4], [5], [6], therefore we focus on the
most essential parts of the language.

A. Type and representation signatures

Representation signature is a way of expressing a repre-
sentation statically in Velka syntax. Atomic types use their
name as a signature like Int, Bool for integers or Boolean
values. An atomic representations uses colon : to separate the
type and its representation, for example Int:Native and
Int:Roman denote two different representations of integers,
(i) a binary representation in the memory and (ii) a string
of Roman numerals. Type signatures of tuples are written in
parentheses, e.g., (Int Bool).

B. Expressions

Velka follows in the majority of cases syntax and semantics
of the Lisp-family languages. Expressions are either atoms
(literals, symbols) that evaluate to their associated values or
lists, e.g., (+ 1 2) or (+ 1 (* 2 3)). Lists are evaluated
recursively as follows. First, the first element of the list is
evaluated. If it evaluates to a function, then all remaining
elements (i.e., arguments) are evaluated, and the function is
applied on these values. Besides functions, the first element
may evaluate to a special form (if, define) that is a special
operator that controls evaluation of its operands.

C. Simple functions

Functions in Velka are created with the special form
lambda. It creates a function and returns it as a value. The
special form lambda accepts two arguments: (i) a list of
formal arguments and (ii) an arbitrary expression, called body
of the function. For example, if we are to create a function
which adds two values, we use the following code:

(lambda (x y) (+ x y))

If a particular type or representation is required. We can
specify the type and its representations of the formal argu-
ments of a function. As shows the following example:

(lambda ((Int:Native x) (Int:Native y))

(+ x y))

D. Defining types and representations

Definition of a type in Velka is done using the special form
type. It accepts one argument—a symbol with a name of the
type. For example, a set of integers is defined as follows.

(type IntSet)

Note that type is merely a declaration of a type name.
Its semantics is defined further in the program through its
representation.

Representations are defined with the special form
representation. It accepts two arguments—a name of
the representation and the name of an existing type. To create
representations of a set of integers based on linked lists and
bit-vectors one could use.

(representation LinkedList IntSet)

(representation BitVector IntSet)

Just like the type special form, the representation

special form creates only a declaration. An actual repre-
sentation of a value is given in a constructor, a special
kind of function that creates a value and marks it with the
representation it is constructing.

To define a constructor in Velka, we use the constructor
special form. Its first argument is a signature of an atomic rep-
resentation, the second argument is a list of formal arguments
of the constructor, and the last argument is an expression,
which returns the constructed value. The value is created with
the construct special form. For example, the constructor
is created and used as follows:1

(constructor IntSet:BitVector () 0)

(construct IntSet BitVector)

;;<0 IntSet:BitVector>

E. Deconstruction and Conversions

Naturally, it is necessary to extract a partial information
from a value. For this purpose Velka uses the deconstruc-

tors. The special form deconstruct extracts the original
value from a value created by a constructor. It accepts two
arguments—(i) the deconstructed value and (ii) a representa-
tion signature. When evaluated the deconstruct special
form tries to unpack the deconstructed value into a value
with the representation specified as the second argument. If
the deconstructed value cannot be unpacked into such value,
the execution ends with an error. For example, suppose we
want to check if a set, represented by a previously defined
IntSet:BitVector contains a number 3. We extract the
integer value representing the set and then use the bitwise
AND operation to check if the third bit is set.

1This is a simplified example capable that covers only the values from 0 to
31 for brevity. In practice, a more elaborate solution would be possible and
necessary.

68 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

(define empty-set (construct IntSet BitVector))

(equalp 0

(bit-and 8

(deconstruct empty-set Int:Native))) ;;#f

Conversions between representations are declared with
the special form conversion. It accepts four arguments
(i) a representation from which a value is converted, (ii)
a representation to which a value is converted, (iii) name of
an argument, and (iv) body of a conversion. For example:

(conversion IntSet:BitVector IntSet:LinkedList

(IntSet:BitVector set)

(...))

Conversions are performed either implicitly (in most cases)
or explicitly by the special form convert.

F. let-type and type variables

Velka automatically considers all the symbols in type sig-
natures to be type atoms. To use type variables in type and
representation signatures a let-type special form must be
used. It accepts two arguments—(i) a list of type variable
names and (ii) an expression. It allows us to use type variables
in the expressions. For example, if we want to make a function
that adds an arbitrary value into a collection, we may use the
following code:

(representation Demonstration List)

(define my-add (let-type (A)

(lambda ((List:Demonstration l) (A element))

(tuple element l))))

G. Built-in representations and operators

For convenience Velka contains several built-in representa-
tions that come from the host environment, in our case from
the Java platform. This covers the native representations of
primitive data types (integers, floating point numbers, string),
lists (ArrayList, LinkedList), tuples, or sets.

Naturally, Velka contains also built-in operators to manipu-
late these built-in representations. We have already stumbled
upon some of these like: +, bit-and, tuple, or equalp. It
is out of scope of this text to give a full list of these operators.
Thus, we explain those used in this text as we go. For the full
list of built in operators, please refer to the documentation [7].

III. EXTENDED FUNCTIONS

The key feature of Velka are extended functions. The
purpose of the extended functions is to bring capabilities of
the RDBMS to a general purpose language, allowing Velka to
select the most appropriate data representation and algorithm
based on the input data. This allows to optimize the program
execution without an explicit involvement of a programmer

A. Multiple implementations

Broadly speaking an extended function is a function that
can select the code to run, depending on the arguments it is
applied to. For example, suppose we have an extended function
intersect that performs an intersection of two sets. We
have two representations of sets: the Set:LinkedList and

the Set:BitVector represented by linked lists and bit
vectors, respectively.

We can apply intersect with either both arguments
being a Set:LinkedList, both being a Set:BitVector
or one of each. All of these applications are correct, because
the arguments are of the type Set. However, they can be of
a different representations.

The extended function intersect decides during the
application which algorithm to use. When both arguments
are Set:BitVector values, it chooses binary operations.
If one argument is a Set:BitVector and second is
a Set:LinkedList, it converts the second argument. If
both arguments are Set:LinkedList, it uses merge algo-
rithm. Or if the extended function considers it more efficient,
it can convert both arguments into the Set:BitVector, and
use the bit-wise AND operation.

From the technical point of view an extended functions can
be considered a pair ⟨I, cost⟩, where I is a set of simple
functions {f1, f2, . . . , fn} called implementations and cost is
a function that associates each implementation with a cost
function. Implementations are algorithms that the extended
function chooses from.

All implementations must have the same type; however,
they must have a different representation than the other im-
plementations. This ensures that each implementation accepts
the same number and types of arguments, and returns a value
of the same type. Therefore it can be applied to the arguments
of the extended function.

A cost functions cost(fi) associated with each implemen-
tation are responsible for the selection of an implementation
applied by extended functions.

B. Running Example

We use type Name describing names of persons as a running
example in the following text. Depending on the application,
in some cases it may be reasonable to represent a given and
a family name separately, and in some cases represent them
as a single name. Hence, it makes sense to consider a repre-
sentation Strd (structured) consisting of pair of strings, and
a representation Ustrd (unstructured), consisting of a single
string.

In Velka such type and representations are implemented by
the following code:

(type Name)

(representation Strd Name)

(constructor Name Strd

((String:Native firstname)

(String:Native surname))

(tuple firstname surname))

(representation Ustrd Name)

(constructor Name Ustrd

((String:Native name))

name)

We assume the following functions for extracting underlying
String:Native values:

(define get-name (lambda ((Name:Ustrd name))

PETR KRAJČA, RADOMÍR ŠKRABAL: DECOUPLING TYPES AND REPRESENTATIONS OF VALUES FOR RUNTIME OPTIMIZATIONS 69

(deconstruct name String:Native)))

(define get-given-name

(lambda ((Name:Strd name))

(get (deconstruct name

(String:Native String:Native))

0)))

(define get-family-name ...) ;; analogously

C. Extended functions in Velka

We use the special form extended-lambda to create an
extended function. It accepts a single argument—a list of type
signatures of its arguments. Initially, an extended function does
not contain any implementations. For example, consider an
extended function name-equalp testing equality of names.
We start with a definition of an extended function with two
Name arguments:

(define name-equalp

(extended-lambda (Name Name)))

To add a new implementation into an existing extended
function, we use the special form extend. It accepts three
arguments—(i) an extended function, (ii) a simple function,
and (iii) a cost function. The cost function, however, is not
mandatory. We discuss cost functions in more detail in Section
III-F.

For example, if we want to add an implementation for
Ustrd representation, we use the following code. Also please
note, that the extend special form does not cause side-
effects. It creates a new extended function from the argument,
adds a new implementation to it, and returns it. The original
extended function is not affected. It is therefore necessary
to rebind the symbol name-equalp with the special form
define.

(define name-equalp

(extend name-equalp

(lambda ((Name:Ustrd first)

(Name:Ustrd second))

(equalp (get-name first)

(get-name second)))))

Not any simple function can become an implementation.
A simple function must accept the same number and the same
type (but not the representations) of arguments as the extended
function. Also, the first added implementation sets the return
type of the extended function. Therefore any implementation
after that must return a value of the same type (but not
necessarily of the same representation).

D. Representation of extended function

We cannot use the applicable representation directly to
describe a representation of an extended function. Since the
implementations can have different representations of argu-
ments and return values.

To resolve these ambiguities we introduce a concept of
a representation set. It is a finite set of representations,
where each representation belongs to the same type. The
representation of an extended function is a representation set,
containing representation of each implementation.

For example, function name-equalp clearly has the type
[Name,Name] → Name. However, name-equalp contains
implementation with the Name:Strd and the Name:Ustrd
representation of the argument. Therefore, its representa-
tion is {[Name:Strd,Name:Strd] → Bool:Native,

[Name:Ustrd,Name:Ustrd] → Bool:Native}.

E. Application of extended function

Let’s say we apply the extended function ⟨I =
{i1, i2, . . .}, cost⟩ on the arguments a1, . . . , an. Each argu-
ment aj is evaluated to the value ej . Then, the extended
function iterates through each implementation ik. Each im-
plementation ik has the cost function cost(ik).

The cost function takes the same type of the arguments as
the extended function and returns an integer. Therefore, we
can compute cost for each implementation with respect to the
arguments, i.e., (cost(ik))(a1, a2, . . .).

The extended function searches for an implementation i

such that, its cost is minimal with respect to the arguments.
Then the implementation i is applied as a simple function. For
example, let’s say we apply our function name-equalp with
some arguments of Name:Ustrd representation.

(name-equalp

(construct Name Ustrd "John Doe")

(construct Name Ustrd "James Dee"))

First both arguments are evaluated, getting values
"John Doe" and "James Dee" both of the
Name:Ustrd representation.

The exrended function name-equalp has two
implementations—(i) accepting two arguments of the
Name:Ustrd representations and (ii) accepting two
arguments of the Name:Strd representation. We shall call
these representations the unstructured implementation and the
structured implementation respectively.

Both implementations are defined without a cost function.
Therefore, the default cost function is used. The default cost
function returns the number of arguments that are not in the
expected representation for the implementation.

In our example, the unstructured implementation is ex-
pecting two arguments of the Name:Unstructured repre-
sentation. Both arguments have the Name:Unstructured

representation; therefore default cost function yields 0. On
the other hand the structured implementation is expecting two
arguments of the Name:Structured representation. Since
both arguments have the Name:Unstructured representa-
tion, the cost function yields 2.

The unstructured implementation has the least cost and is
applied on the arguments. If there are two or more implemen-
tation with the lowest cost, we do not specify which one is
selected.

F. Cost functions

A cost function is a function (extended or simple) that is
associated with each implementation of an extended function.
It computes cost of an implementation for the given arguments.
Formally speaking, for the implementation i with the argument

70 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

types t1, t2, . . . , tn, a cost function can be any function with
the type (t1, t2, . . . , tn) → Int.

Let’s take the unstructured representation from the previous
section. For this implementation a cost function must have the
type (Name Name) → Int.

Let’s say this implementation is superior in performance,
and we want to use it, even if only one of the arguments has
the Name:Ustrd representation. We use the following cost
function:

(lambda ((Name:* first) (Name:* second))

(if (or (instance-of-representation first

Name:Ustrd)

(instance-of-representation second

Name:Ustrd))

-1 3))

This cost function takes two arguments of the Name type. No-
tice that we do not specify the representation of the cost func-
tion arguments. Since internally a cost function is applied like
any other function, enforcing a specific representation would
cause conversion of the representation during application.
Therefore special form instance-of-representation

would not work as expected.
When we apply this cost function with at least one

Name:Ustrd argument, the function yields −1, which is less
than the default cost function yields (the default cost functions
minimum is 0). On the other hand, if neither argument is
Name:Ustrd, the cost function yields 3, which is above
what default cost function can yield. Therefore, with this cost
function the extended function name-equalp selects the
unstructured implementation, if at least one of the arguments
is Name:Ustrd.

To maximize flexibility, we impose minimal restrictions on
cost functions. However, this approach introduces challenges
as evaluations may fall into non-trivial infinite loops or lead to
severe performance loss. User must be aware of these caveats
and work accordingly.

IV. TYPE INFERENCE AND UNIFICATION

Velka is a strongly typed functional programming language.
The type inference and unification are crucial parts of the
language design. Especially, since Velka distincts between
types and their representations. In this section we outline the
key and the most distinctive parts of the type system. Detailed
description is to be discussed in the extended version of the
paper.

A. Type and representation unification

Our type unification algorithm is a combination of
J. W. Lloyd’s [8] and Hindley-Milner’s [9] approach. It is ex-
plicitly returning either an unification substitution or a false
answer, while maintaining a predictable and deterministic
traversal through a type structure avoiding any side effects
during its computation.

The unification of representations is in principle the same
as the unification of types. We extended the type unification
algorithm for the representation in a straightforward manner.

However, we do not introduce representation variables, we
use only type variables, which are handled the same way as
in type unification. The representation set is unique for the
representation.

A representation set is meant to represent a set of possible
representations of the value. We can unify a representation set
with an other representation, if any representation in the set
unifies with the other representation.

This trivially holds for a type variable, since it unifies with
any representation substituted for it. For an atomic representa-
tion, the atomic representation must be present in the set and
then they unify with the empty substitution. For functions and
tuples, if set contains a representation that unifies over some
substitution, the set unifies with the same substitution.

Only case of two representation sets remains. However,
we can unify each representation of the first set with the
second set. In a recursive call of the algorithm we unify each
representation of the second set with the current representation
of the first set. Thus we try to unify each representation of the
first set with each representation of the second set.

B. Representation inference limitations

Since the representations can be interchanged freely one for
another one of the same type (assuming there is a conversion),
we cannot unambiguously infer the representation of an ex-
pression.

For example, let’s consider the if expression. In case of
the types, the inference rule for this special form is [1]:

c : {true, false}, t : A, f : A

if(c, t, f) : A

Meaning, if we have an expression c of the type
{true, false} and expressions t and f of the type A, we can
infer the expression (if c t f) is of the type A.

On the other hand, let’s take the Velka expression:
(if (= a 0) 42 (construct Int Roman "XXI")).
For types everything is clear, the first argument is a boolean
and both the second and the third argument are integers.
Therefore the expression yields an integer.

However, for representations, the expression yields either
an Int:Native value or an Int:Roman value. At com-
pile time we cannot decide, which integer representation the
expression yields.

Therefore, the representation inference rule for the if

expression is different:

c : {true, false}Native, t : AR, f : AS

if(c, t, f) : {AR, AS}

This way we can unambiguously infer the representation
of the expression from the previous example. Since
(= a 0) has the representation {true, false}Native,
42 has the representation Int:Native and
(construct Int Roman "XXI") creates a value with
the representation Int:Roman, the inferred representation
of the expression is {Int : Native, Int : Roman}.

PETR KRAJČA, RADOMÍR ŠKRABAL: DECOUPLING TYPES AND REPRESENTATIONS OF VALUES FOR RUNTIME OPTIMIZATIONS 71

Similar ambiguity is linked with the semantics of extended
functions. Therefore, the extended-lambda special form
and applications of extended functions suffer the same predica-
ment. These are discussed in more detail in Sections V-G and
V-H.

V. REPRESENTATION INFERENCE ALGORITHM

An algorithm for representation inference in Velka is de-
signed around the implementation of inference rules for ex-
pressions present in Velka. This includes the most frequent
language constructs like function applications, tuples, literals,
and lambda expressions.

An input of the algorithm consists of two values: e an
expression whose representation is inferred and E an lexical
environment, where the expression is inferred.

In this context, an environment is a map of symbols and
their bindings. For the inference algorithm, it is important that
a symbol is bound to an expression, that infers to the correct
representation.

Argument E influences the inference of symbols as well
as functions (since they carry their creation environment).
Our algorithm creates a new environment during application
inference in a similar manner a lexical closure does.

The inference algorithm returns a pair of values: a repre-
sentation and a substitution. The substitution carries already
inferred or partially inferred type variables over to the fur-
ther computation. A description of inference rules for Velka
expression types follows.

A. Literals and Construct special form

Literal expressions in Velka infers to their assigned repre-
sentations. Returned substitution is always empty.

The special form construct consists of a constructed rep-
resentation xr and constructor arguments a1, a2, . . . , an. The
inferred representation is clearly xr. We must also ensure, that
constructor for the arguments exists, and that the arguments
are of the correct types.

B. Symbols

When a representation of a symbol is inferred, we inspect if
it has a binding in the environment hierarchy. If it has a binding
to an expression eb, we recursively call the inference algorithm
on eb. If a symbol does not have a binding, we cannot infer
its representation, therefore we return a type variable and an
empty substitution.

C. Substitution Merge

There is a class of type related errors, that occur when a
single symbol is used twice, each time as a different type. We
need a way to detect this incompatibility between substitutions,
and also a convenient way to combine compatible substitutions
into a single one. For this purpose we use the substitution
merge algorithm.

The merge is based on the idea that two substitutions need
to substitute the same variable in order for conflict to arise.
If they do not have any common variable, we can use set

Algorithm 1: Substitution merge algorithm

1 Function ∪S(σ, φ)
2 while there is variable A such that A\e ∈ σ, A\f ∈ φ

and e ̸= f do
3 ρ←UNIFYREPRESENTATIONS(e, f);
4 if ρ = false then return false;
5 σ ← σρ ;
6 φ← φρ;

7 return σ ∪ φ

union to merge them, getting a valid substitution. Note that,
even if substitutions have a common variable A, the conflict
only occurs if expressions on the right side of the substitution
are not equal. Otherwise they are the same expression and set
union produces a valid substitution.

Assuming we have two substitutions σ and φ, with a com-
mon variable A, such that A\eσ ∈ σ, A\eφ ∈ φ and eσ ̸= eφ.
If we can find an unifier ρ for e and f , we can compose it
with σ and φ. In that case σρ and φρ still have a common
variable A, however ρ(e) = ρ(f). Therefore σρ∪φρ is a valid
substitution.

This is the idea behind the Algorithm 1. We are iterating
over common variables that are substituted for not equal
expressions of σ and φ. For each such variable we find a
unifier of the substituted expressions, and compose it with the
sets. We end the loop when no such variable can be found and
return a set union of the two substitutions. If at any time an
unifier does not exists, the substitutions are conflicting and an
error is thrown.

D. Special form if

We describe the inference of the if special form as an
example on how a special form representation inference is
handled in Velka. Other special forms and tuples are handled
in a very similar manner.

The special form if takes form of (if c t f), where c is
the condition expression, t is a true branch expression and f is
a false branch expression. The algorithm infers representations
of each of these sub-expressions.

We make sure that the type of c is the boolean and that both
t and f infers to the same type. Once the algorithm takes care
of this basic type checking, it merges the substitutions of sub-
expressions to the substitution for the if expression.

The inferred representation is a representation set of rep-
resentations inferred for t and f , since at compile time it is
not possible to decide which one is used. See Algorithm 2 for
pseudo-code.

E. Lambda Expressions

A lambda expression assigns representations r1, r2, . . . , rn
to its formal arguments a1, a2, . . . , an. We use a mock up
environment and a special inference-only expressions called
representation holders to reflect this.

A representation holder is a special expression that cannot
be evaluated and it infers to an assigned representation with

72 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

Algorithm 2: Special form if inference algorithm

1 Function INFERIFREPRESENTATION(c, t, f , E)
2 ⟨rc, σc⟩ ← INFERREPRESENTATION(c, E);
3 ⟨rt, σt⟩ ← INFERREPRESENTATION(t, E);
4 ⟨rf , σl⟩ ← INFERREPRESENTATION(f , E);
5 φc ← UNIFYTYPES(rc, Bool)
6 if φc = false then raise error;
7 φ← UNIFYTYPES(rt, rf);
8 if φ = false then raise error;
9 ψ ← σc;

10 ψ ← ψ∪Sσt;
11 if ψ = false then raise error;
12 ψ ← ψ∪Sσf ;
13 if ψ = false then raise error;
14 return ⟨{rt, rf}, ψ⟩

Algorithm 3: Lambda expression inference algorithm

1 Function INFERLAMBDAREPRESENTATION([a1, . . . , an],
[r1, . . . rn], eb, E)

2 Γ← ⟨{ai ← eri |i = 1, . . . n}, E⟩;
3 ⟨rb, σ⟩ ← INFERREPRESENTATION(eb, Γ);
4 return ⟨σ([r1, r2, . . . , rn])→ rb, σ⟩

the empty substitution. We denote the representation holder’s
representation using an upper index; for example exr or fA.

When inferring a lambda expression, we create a new mock
up environment Γ. Its parent is E , the environment where
the lambda expression is evaluated. Γ contains each formal
argument ai bound to the representation holder eri . We use the
environment Γ to infer the body eb of the lambda expression.
We denote the computed representation rbody and the used
substitution σ.

It is tempting to use [r1, . . . , rn] → rbody as the resulting
representation. However, consider the following example:

(let-type (A) (lambda ((A a)) (+ a 1)))

In this case the assigned argument representation is A, rbody
is Int:Native, and σ is {A\Int:Native}. Therefore,
[r1, . . . , rn] → rbody is [A] → Int:Native. However, this
lacks already known argument representation.

Thus we use σ([r1, . . . , rn]) → rbody as a resulting repre-
sentation to propagate information from the body inference.
Used substitution is σ. You can see the pseudo code in the
Algorithm 3.

F. Unifying representations on a type level

Velka allows to apply a function with correct types, but
different than declared representations of arguments, assuming
the conversions exists at inference time. Since we infer the
representations of the expressions, we need a tool that ensures
type safety, and allows different representations.

As discussed in IV-A, to unify types and representations
we use the standard algorithm with minor modifications.
The algorithm’s pseudo-code is presented in Algorithm 4. It
accepts representations instead of types and is able to unify
representation sets on the type level.

Algorithm 4: Algorithm for type unification working
with representations

1 Function UNIFYREPRESENTATIONSASTYPES(s, t)
2 if s and t are representation atoms with the same type

name or type variables with the same name then
3 return {}

4 else if s is a type variable then return {s \ t} ;
5 else if t is a type variable then return {t \ s} ;
6 else if s is a s1 → s2 and t is a t1 → t2 then
7 σ ← UNIFYREPRESENTATIONSASTYPES(s1, t1);
8 if σ = false then return false;
9 φ←UNIFYREPRESENTATIONSASTYPES(σ(s2), σ(t2));

10 if φ = false then return false;
11 return σφ

12 else if s is a [s1, . . . , sn] and t is a [t1, . . . , tn] then
13 θ ← {};
14 for i← 1, . . . n do
15 ρ← UNIFYREPRESENTATIONSASTYPES

16 (θ(si), θ(ti));
17 if φ = false then return false;
18 θ ← θρ;

19 return θ;

20 else if s is a {s1, s2, . . . , sn} then
21 return UNIFYREPRESENTATIONSASTYPES(s1, t);

22 else if t is a {t1, t2, . . . , tn} then
23 return UNIFYREPRESENTATIONSASTYPES(s, t1);

24 else return false ;

G. Extended lambda and extend expressions

An extended lambda accepts arguments a1, a2, . . . , an, with
a user assigned types t1, t2, . . . , tn, respectively.

The special form creates an empty container, where im-
plementations are added later. Therefore, we cannot infer
a specific representation for the extended-lambda special
form alone.

We use the representation sets in a form of {tr|tr is a
representation of t}, for a type t. This encompasses any
possible representation of type t. For convenience we use the
following notation: t∗ = {tr|tr is a representation of t}.

For an extended lambda
(extended-lambda t1 t2 . . . tn) where t1, t2, . . . , tn
are argument types defined by the user, we infer
[t∗
1
, t∗

2
, . . . , t∗n] → A where A is a new unused type

variable. The substitution is empty.

For example, the(extended-lambda (Int String))

expression infers to the pair ⟨[Int∗ String∗] → A, ∅⟩.

The other part of the extended functions is the special
form extend. It has the form (extend eext eimpl ecost),
where eext evaluates into an extended function, eimpl evaluates
into a simple function—the future implementation, and ecost
evaluates into the cost function. We put cost function aside for
now.

PETR KRAJČA, RADOMÍR ŠKRABAL: DECOUPLING TYPES AND REPRESENTATIONS OF VALUES FOR RUNTIME OPTIMIZATIONS 73

Algorithm 5: Extend special form inference algorithm

1 Function INFEREXTENDREPRESENTATION(eext, eimpl,
ecost, E)

2 ⟨rext, σext⟩ ← INFERREPRESENTATION(eext, E);
3 ⟨rimpL → rimpR , σimpl⟩ ←

INFERREPRESENTATION(eimpl, E);
4 if UNIFYREPRESENTATIONSASTYPES

5 (rext, rimpL → rimpR) = false then raise error;
6 ⟨rcost, σcost⟩ ← INFERREPRESENTATION(ecost, E);
7 if UNIFY-REPRESENTATION(rcost, ⟨rimpL → Int:Native)

= false then raise error;
8 if rext has form of [r∗1 , r

∗

2 , . . . , r
∗

n]→ A then
9 return ⟨{rimpL → rimpR}, ∅⟩

10 return ⟨eext ∪ {rimpL → rimpR}, ∅⟩

Representations rext and rimpL
→ rimpR

2 are inferred rep-
resentations of the extended function and the implementation
respectively. In the same manner σext is a substitution used in
the inference of eext, and σimp is a substitution used in the
inference of eimpl.

We check if types of rext and rimpL
→ rimpR

unify. If they
do, we add rimpL

→ rimpR
to the set of representations.

A special case arises, if the extended function, does not
have any implementation. In that case, the extended function
infers to a representation in form [r∗

1
, r∗

2
, . . . , r∗n] → A. This

type-wise unifies or not unifies with rimpL
→ rimpR

, but we
have no set to add the representation to. Therefore, we instead
return the singleton {rimpL

→ rimpR
}.

Since the implementation eimpl is specific for certain rep-
resentation, we cannot use its substitution σimpl for merging.
Such merge leads to a conflict, since the arguments of the
implementations differ in representations. Therefore, we infer
with the empty substitution.

We discuss the cost function now. We make sure that
representation rcost unifies with rimpL

→ Int:Native. If
they do, the cost function has the correct type. If they do not,
we return an error. You can see the complete pseudo code in
Algorithm 5.

H. Application

The inference of the function application is more compli-
cated than in other languages, due to the presence of extended
functions and automatic representation conversions. First, we
show an auxiliary algorithm, which is a variation upon the
traditional application inference rule [1]:

f : A → B, x : A

f(x) : B

Then, we proceed to the main algorithm, which takes Velka’s
specifics into account.

The auxiliary algorithm (see its pseudo-code in Algo-
rithm 6) is used to infer the representation of the appli-
cation result, along with the used substitution. It accepts

2We can safely assume, that the representation of eimp have this form,
since eimp is a lambda expression by the definition.

Algorithm 6: Inferring result of a function application

1 Function APPLICATIONRESULTREPRESENTATION

2 ([ra1, . . . , ran]→ rr , σf , [sa1, . . . , sam], σa)
3 ρ← UNIFYREPRESENTATIONSASTYPES([ra1, . . . , ran],

[sa1, . . . , sam];
4 if ρ = false then raise error;
5 ρ′ ← {A\x|A\x ∈ ρ and A /∈ {ra1, . . . , ran}} ;
6 φ← ρ′∪Sσf ;
7 if φ = false then raise error;
8 φ′ ← φ∪Sσa;
9 if φ′ = false then raise error;

10 return ⟨φ(ρ(rr)), φ⟩

[ra1, ra2, . . . , ran] → rr the applicable representation of
the function, [sa1, sa2, . . . , sam] the representation of the
arguments, σf the substitution of the function, and σa the
substitution of the arguments.

We search for a type unifier ρ of [ra1, ra2, . . . , ran] and
[sa1, sa2, . . . , san] on line 3, to ensure type safety. We use
Algorithm 4, since functions in Velka can be applied with
arguments of the correct type and an arbitrary representation.
We assume that an arbitrary conversion between representa-
tions exists. If ρ does not exists, we return an error.

We cannot use ρ in the further inference. It might introduce
an incorrect inference on universally quantified type variables,
that are part of the lexical closure. Consider the following
example:

(define id (let-type (X) (lambda ((X x)) x)))

(tuple (id 42) (id #t))

We can easily see that the representation of the func-
tion id is X → X . In the tuple expression we ap-
ply id with the Int:Native argument, getting ρ =
{X\Int:Native}. In the second application of id we get
ρ = {X\Bool:Native} in the same manner.

We omit the rest of the algorithm for now. If we merge
the ρ in the substitution of the whole tuple, the two inferred
substitutions X\Int:Native and X\Bool:Native con-
flict. But that is not correct, since the type variable X in id

is universally quantified. Thus such information is excluded
from the substitution.

On line 5 we create a substitution ρ′ as {A\x ∈ ρ

such that A is not an universally quantified variable in the
[ra1, ra2, . . . , ran] → rr}. This solves the aforementioned
issue.

Substitution φ aggregates σa (the arguments inference), σf

(the function inference) and ρ′ ensuring the substitutions do
not conflict.

The inferred representation is φ(ρ(rr))—an application of
the original substitution ρ and the merged substitution φ on
the right side of the function representation. Used substitution
is φ.

The application (f a1 a2 . . . an) consists of a function
expression f and an argument tuple [a1, a2, . . . , an]. The
inference of the argument tuple yields the representation

74 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

Algorithm 7: Function application inference algorithm

1 Function INFERAPPLICATIONREPRESENTATION(ef ,
[a1, . . . , an]), E)

2 ⟨rf , σf ⟩ ← INFERREPRESENTATION(ef , E);
3 ⟨[ra1

, . . . , ran
], σa⟩ ← INFERREPRESENATION

([a1, . . . , an], E);
4 if rf is a xr → ys then
5 return APPLICATIONRESULTREPRESENATION

(xr → ys , σf , [ra1
, . . . , ran

], σa)

6 else if rf is a variable A then
7 Let B → C where B and C are new unused

representation variables;
8 return APPLICATIONRESULTREPRESENATION

(B → C , σf ∪ {A\B → C}, [ra1
, . . . , ran

], σa)

9 else if rf is in a form
{xt1 → yu1

, xt2 → yu2
, . . . , xto → yuo

} then
10 Let {⟨xri , σi⟩|⟨xri , σi⟩ =

APPLICATIONRESULTREPRESENTATION

(xti → yui
, σf , [ra1

, . . . , ran
], σa)};

11 return ⟨{xri |i = 1, . . . , o},
∏

i=1,...,o

(σi)⟩

12 else raise error;

[ra1
, ra2

, . . . , ran
] and the used substitution σa. The inference

of the function yields the representation rf and the used
substitution σf . We discern three cases:

(i) The representation rf has form xr → ys. This is the sim-
plest case. We directly use Algorithm 6 to get a representation
and a substitution.

(ii) The representation rf has form A, where A is a type
variable. In this case f is either not bound, or it is a variable of
unknown representation. We make new unused type variables
B and C, and use B → C as the argument for algorithm
6. We also add a binding A\B → C to the substitution σf ,
which is passed to Algorithm 6. This ensures the A\B → C

is passed to the resulting substitution, and the representation,
for which A stands, is known.

(iii) In the last case rf has a form {xt1 → yu1
, xt2 →

yu2
, . . . , xto → yuo

} of a representation set. We cannot discern
which representation is used in the runtime, since the cost
function is not evaluated in the inference phase. Therefore,
we propagate all possible representations of the result in
a representation set.

We call the Algorithm 6 with each representation xti → yui
.

We collect the inferred representations to a set and aggregate
the used substitutions by the substitution composition. You can
see the resulting pseudo-code in the Algorithm 7.

VI. EXPERIMENTAL EVALUATION

We conducted several preliminary experiments in order to
measure the performance impact of suggested algorithms and
concepts. All experiments were carried out by our Velka im-
plementation [7]. This implementation compiles source code
into Clojure [6] source code. This generated Clojure source
was then used to run experiments on a computer with two
Intel Xeons E5-2680, 64 GB RAM, Debian Linux, OpenJDK
11, and Clojure 1.10.

A. Sorting Implementation

We focused our experiments on an implementation of
traditional sorting algorithms. For small data InsertSort al-
gorithm should be faster than QuickSort. Hence, it may be
reasonable to switch the sorting algorithm based on the size
of input data. In our experiments, we sorted arrays of inte-
gers using two representations: Array:Insertsort and
Array:Quicksort. Each representation had its own sorting
algorithm using InsertSort and QuickSort, respectively, their
detailed description can be found in [10]. The underlying data
structure of both representations was a Java ArrayList.

There are three algorithms measured in our experiment.
The first is a function quicksort, which is a simple function
accepting an Array:Quicksort argument and uses Quick-
sort algorithm. The second is insertsort, a simple function
accepting an Array:InsertSort and using InsertSort. The
last algorithm—sort extended is an extended function accept-
ing any Array implementation and using either QuickSort-
like divide and conquer recursively calling itself, or InsertSort
for small arrays. The divided sub-arrays for QuickSort are
eventually sorted using InsertSort once they are small enough.
In fact we implicitly obtained a hybrid algorithm.

The threshold for switching from QuickSort to InsertSort
was obtained experimentally, by previous experiments with
QuickSort and InsertSort algorithms. In the following exper-
iments, the threshold was set to an array of 7 elements, i.e.
arrays with 7 or less elements were sorted using InsertSort and
larger arrays were sorted using QuickSort. Each algorithm is
implemented using an iterative approach in order to get as
much performance as possible.

B. Experiments and their results

We sorted arrays of randomly generated positive integers
in our experiments. We pre-generated experimental data by a
script that uniformly drew numbers ranging from 0 to 9999.

We conducted three batches of experiments to observe
the algorithms running on different array sizes. The first
batch of experiments is focused on small arrays, up to the
100 elements. The intention is to set the threshold for the
sort extended algorithm and prove suitability of extended
algorithms on a small scale. The second batch of experiments
inspects medium-sized arrays ranging from 100 elements to
2900 elements. This experiment intends to compare all three
algorithms on a scale, where each one runs in a reasonable
time. The last batch of experiments inspects large arrays of
integers. It sorted arrays ranging from 200, 000 elements to
500, 000 elements. It intends to compare the performance of
large data. All experiments measure time to sort the array in
milliseconds.

The results for small data are presented in Fig. 1. Small
data were easily handled by each algorithm. Even on the
small scale, InsertSort shows worse performance compared
to QuickSort and sort extended. The comparison between
QuickSort and sort extended is more interesting. You can
see the detail of this comparison in Fig. 1 (bottom). We can
see, that the two algorithms are very similar in performance.

PETR KRAJČA, RADOMÍR ŠKRABAL: DECOUPLING TYPES AND REPRESENTATIONS OF VALUES FOR RUNTIME OPTIMIZATIONS 75

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

T
im

e

Size

insertsort (std. dev.)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

T
im

e

Size

quicksort (std. dev.)

Fig. 1. Algorithm comparison for small data (top), detailed view (bottom)

QuickSort is winning by a small amount. This is probably due
to the overhead of an extended function handling, used in sort
extended. This suggests that even on a small scale an extended
function can be used with only a limited performance loss.

You can see the results for medium-sized data in Fig. 2
(top). The performance of InsertSort is already hindered here.
The two other algorithms are almost flat on the x-axis.
Therefore, we omit results for InsertSort and present only
details for QuickSort and sort extended. The performance
gain of QuickSort over sort extended is diminishing. Although
QuickSort still performs better, it seems that the overhead of
extended functions is reduced due to the performance gain
from switching algorithms. The InsertSort is not useful for
larger data, and it seems that sort extended starts gaining
performance wise on QuickSort and the trend continues.

Results for the experiments with large data are depicted
in Fig. 2 (bottom). Comparison between QuickSort and sort
extended shows significant development. Sort extended al-
gorithm shows a performance gain around 10% on average
compared to QuickSort. It seems, that switching algorithms
outweighs overhead, caused by extended functions, on large
scales.

VII. CONCLUSIONS AND FUTURE RESEARCH

The Velka language is a framework that allows to dynam-
ically optimize data structures and algorithms to align with
input data. We are to extend its standard library to provide var-
ious types and representations applicable in data analysis and

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000

T
im

e

Size

quicksort (std. dev.)

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 200000 250000 300000 350000 400000 450000 500000
T

im
e

Size

quicksort (std. dev.)

Fig. 2. Algorithm comparison for medium size (top) and large (bottom) data

data management. We are to reduce overhead of the Clojure
language by targeting JVM directly. Additionally, we are to
explore the possibility of supporting GPGPU computations for
matrix and similar types. Further, we aim to research different
strategies for setting and fine-tuning cost functions.

REFERENCES

[1] B. C. Pierce, Types and programming languages. MIT Press, 2002.
ISBN 978-0-262-16209-8

[2] C. J. Date, An Introduction to Database Systems, Volume I, 5th Edition.
Addison-Wesley, 1990. ISBN 0-201-52878-9

[3] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database systems - the

complete book. Pearson Education, 2002. ISBN 978-0-13-098043-4
[4] H. Abelson, R. K. Dybvig et al., “Revised report on the algorithmic

language scheme,” High. Order Symb. Comput., vol. 11, no. 1, 1998.
doi: 10.1023/A:1010051815785

[5] G. Steele, Common LISP: the language, 2nd Edition. Digital Pr., 1990.
ISBN 0131556649

[6] R. Hickey, “The clojure programming language,” in Proceedings

of the 2008 Symposium on Dynamic Languages, DLS 2008, July

8, 2008, Paphos, Cyprus, J. Brichau, Ed. ACM, 2008. doi:
10.1145/1408681.1408682 p. 1.

[7] R. Skrabal. (2023) Velka source codes. [Online]. Available: https:
//github.com/Schkrabi/TypeSystem/blob/master

[8] J. W. Lloyd, Foundations of Logic Programming, 2nd ed. Springer,
1987. ISBN 3-540-18199-7

[9] R. Hindley, “The principal type-scheme of an object in combinatory
logic,” Transactions of the American Mathematical Society, vol. 146, pp.
29–60, 1969. [Online]. Available: http://www.jstor.org/stable/1995158

[10] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting

and Searching. Addison-Wesley, 1973. ISBN 0-201-03803-X

76 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

