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Abstract—Multispectral imaging flow cytometry (MIFC) is
capable of capturing thousands of microscopic multispectral cell
images per second. Deep Learning Algorithms in combination
with MIFC are currently applied in different areas such as
classifying blood cell morphologies, phytoplankton cells of water
samples or pollen from air samples or pollinators. The goal of
this work is to train classifiers for automatic and fast processing
of new samples to avoid labor-intensive and error-prone manual
gating and analyses and to ensure rigor of the results. In this
study we compare state of the art Deep Learning architectures
for the use case of multispectral image classification on datasets
from three different domains to determine whether there is a
suitable architecture for all applications or if a domain-specific
architecture is required. Experiments have shown that there are
multiple Convolutional Neural Network (CNN) architectures that
show comparable results with regard to the evaluation criteria
accuracy and computational effort. A single architecture that
outperforms other architectures in all three domains could not
be found.

Index terms—Computer Vision, Classification, Deep Learning,
Multispectral Imaging Flow Cytometry

I. INTRODUCTION

M
ULTISPECTRAL imaging flow cytometry (MIFC) has

been recently shown to be useful for environmental

monitoring of plant-pollinator interactions and assessment of

food and water quality [1], [2], [3]. This measuring technique,

originally designed for immunological analyses as blood cell

analysis, allows to separate single cells from a fluid suspension

by hydro-dynamically focusing of a sample stream in a nar-

rowing flow cell, surrounded by a sheath stream. The resulting

acceleration of the cells, in conjunction with the hydrodynamic

forces acting on them, separates the cells in the liquid flow.

Once the cells occur as single cells in the sample stream they

will be imaged by CCD (charge-coupled device) cameras. Two
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cameras take independent images from LED illumination of

the cells (brightfield images), images from different laser exci-

tation and respective light emission of the cells (fluorescence

images) as well as images from red light illumination (scatter

images). The instrument is capable of capturing 12 images

per particle (two brightfield, nine fluorescence and one scatter

image) with a sample throughput of up to 2000 particles/s [1],

[2], [4]. The high sample throughput allows for an unprece-

dentedly high measuring efficiency in comparison to the tradi-

tional benchmark of manual microscopy. The images produced

by the imaging flow cytometer instrument come with some

specifics in comparison to other images used in common image

recognition tasks. As the microscopic images are recorded in

high throughput, they have a relatively low resolution (a pixel

size of 0.5 × 0.5 µm) but at the same time, a high number

of images per sample can be collected (500-5000 particles

à 12 images/particle). In addition, MIFC already provides

images where the object of interest is depicted in the image

center and the images have a uniform background. We could

already demonstrate the successful application of the different

architectures ResNet V2 [4] and Inception V3 [2] for this kind

of data to distinguish 27 classes of phytoplankton (relevant for

water quality assessment) and 35 classes of pollen (relevant

for plant-pollinator studies, food and air quality), respectively.

[5] used a ResNet50 architecture to discriminate seven classes

of different blood cell morphologies. These examples already

show that for different MIFC datasets, different architectures

have been applied. But no systematic evaluation of different

architectures has taken place so far. The different mentioned

application examples have different numbers of classes which

need to be differentiated. For immunological applications, a

limited set of cell types needs to be distinguished, while

in environmental monitoring, potentially several thousands of

classes need to be differentiated eventually [3].

Most models used to classify MIFC datasets are based

on architectures that were assessed on large image datasets

such as ImageNet [1], [2]. The images of the pre-trained

dataset differ from MIFC images in the way that they depict
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RGB images, have more labels and higher resolution. To

acknowledge the specificity of the images and the multiple

channels available in MIFC datasets, we want to enhance

the existing studies and aim to answer the following research

questions:

• What is the best architecture for different kinds of

datasets with respect to accuracy?

• What is the most suitable degree of CNN architecture

complexity for the individual datasets?

• From the best performing architectures which is the most

sustainable one with respect to computational effort and

resource consumption?

• Is there a general architecture for all different MIFC

datasets with best performance on accuracy and compu-

tational effort?

The remainder of the paper is structured as follows: Section

II presents the applied methods to answer the research ques-

tions. Section III presents the obtained classification results.

A discussion of the results obtained with reference to the

initial research questions, takes place in section IV. Possible

limitations of the work are addressed in Section V. The study

concludes with a summary of all findings and an outlook on

future work in section VI.

II. METHODS

The methodology used, from the selection of CNN architec-

tures, data acquisition, data preparation, MIFC measurements

to training and validation strategy used, is described below.

Selection of CNN architectures

For the comparison of different CNN architectures we

considered seven different architectures: DenseNet [6], In-

ception V3 [7], Inception-ResNet V2 [8], MobileNetV2 [9],

ResNet V2 [10], VGG [11] and Xception [12]. DenseNet (121,

169, 201), ResNet (50, 101, 152) and VGG (16, 19) have

different depth configurations that were also considered. These

architectures represent frequently used architectures in science

and practice and thus were selected for this architecture

comparison. Based on this architecture selection, it is also

possible to assess whether more complex architectures are

more suitable than shallower architectures for classification,

and what correlation there is between the complexity of an

architecture and resource consumption during model training.

Table I provides an overview of the selected architectures with

the specific network depths and input size.

Dataset acquisition and annotation

The availability of high-quality datasets is crucial for the

performance of a supervised learning approach. To ensure

the cross-domain applicability of our study, we used three

datasets from different fields of application. The stored red

blood cells (RBC) dataset consists of 63,000 samples in seven

clinically relevant blood cell morphologies associated with

storage lesions [5].

The phytoplankton dataset consists of six naturally co-

occurring species, three cyanobacteria (Chroococcus minutus

TABLE I: Overview of CNN architectures

Model Depth Input Size

DenseNet-121 121 224x224x3
DenseNet-169 169 224x224x3
DenseNet-201 201 224x224x3
Inception V3 48 229x229x3
Inception-ResNet V2 164 229x229x3
MobileNet V2 53 224x224x3
ResNet-50 50 224x224x3
ResNet-101 101 224x224x3
ResNet-152 152 224x224x3
VGG-16 16 224x224x3
VGG-19 19 224x224x3
Xception 71 229x229x3

- species "C" SAG 41.79, Microcystis aeruginosa - species

"M" SAG 1450-1, Synechocystis sp. - species "S" PCC 6803,

and three chlorophytes Acutodesmus obliquus - species "A"

SAG 276-3a, Desmodesmus armatus - species "D" SAG 276-

4d, and Oocystis marssonii - species "O" SAG 257-1), grown

exponentially under controlled laboratory conditions (60 µmol

photons/ m-2/s-1; 14/10 h light/dark cycle; WC-Medium) [13].

Measurements were performed in subsequent biologically in-

dependent mono-culture experiments (rep 0, rep 1). The total

dataset contains 12,000 samples of species A,C,D,M,O and S.

The pollen dataset samples were collected in the botanical

garden of Leipzig, Germany and natural fields in the surround-

ing area of Leipzig during peak flowering time from 2018

to 2020. It consists of 4,800 samples, which are randomly

stratified, i.e. each class has the same number of samples.

There are twelve species in seven genera, which are mostly

wind-distributed and comprise morphological similar aller-

genic species. Similarity in pollen features within a genus

restricts classical light microscopic discrimination of the se-

lected species to the genus level. For that reason we tested

classification on different taxonomic levels (genus and species)

to see if CNN were even capable of classifying on species

level. To get a representative dataset, we used 20% high-

quality images (pollen in focus, non-cropped, without other

debris particles on image) and 80% low-quality images (pollen

either out of focus, partially cropped or pollen images with

additional debris particles on image).

MIFC measurements

All samples were measured with an Amnis® Image

Stream®X MK II imaging flow cytometer (Amnis part

of Cytek, Amsterdam, Netherlands). For the phytoplankton

dataset, measurements were performed according to [13], for

the blood cell dataset according to [5] and for the pollen

dataset according to [2] as shown in Table II.

Data preparation and augmentation

All images were channel-wise standardized (i. e. rescaled

to have a mean of 0 and unit variance) and normalized (i. e.

rescaled to a value range of 0 and 1) utilizing the pixel values

from the respective training dataset.

Most CNN architectures are translation invariant but not

invariant with regard to scale, rotation and different pertur-

bations. To address the problem of overfitting we artificially
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TABLE II: Datasets

Characteristics Phytoplankton Pollen Blood cell

Classes 6 12 7
No. particles 12000 4800 63000
Channels 12 (1-12) 7 (1-6,9) 3 (1,9,12)
Lasers 3 (488/561/785) 3 (488/561/785) 5
Magnification 40x 40x 60x
Sheath fluid D-PBS D-PBS PBS
References [13] unpublished [5]

increased the dataset size to alleviate scarcity issues. Several

random data augmentations that yield credible images are

introduced to the training datasets to help the models to

generalize better and to be more robust with regard to random

perturbations and noise [14].

Brightness and contrast are randomly adjusted channel-wise

in [-0.3, 0.3] and [0.5, 2.0] intervals to achieve a robustness of

the classifier for different MIFC calibrations, fluorescence and

random background noise. Further random geometric transfor-

mations as rotation, horizontal flipping and central cropping

(interval [0.8, 1.0]) are introduced to make the classifier robust

against different cell orientations and cell sizes that may occur

across different measurements. As all images have varying

aspect ratios they were resized to 116 by 116 pixels, padded

with zeros.

Training and validation strategy

For each dataset a k-fold stratified cross-validation [15]

was performed to find an optimal hyperparameter combina-

tion that is less biased or optimistic compared to a simple

train/validation/test split. For that purpose the datasets were

split into k=5 equally-sized subsets that have the same class

distribution as the original datasets. For each subset the set

is used as a test dataset on which the model performance

is evaluated and the remaining sets are used to train the

model. Over all runs the performance metrics accuracy, macro

averaged precision, recall and F1 score were averaged to get an

estimate how good the final model performs and how robust

it is with regard to data variability.

All models were trained on all available multispectral chan-

nels (1,9,12 for RBC, 1-12 for phytoplankton and 1-6 and 9

for wind pollen).

A grid search was used for hyperparameter optimization.

Considered hyperparameters were optimizer function (RM-

SProp [16], Adam [17]), batch size (16, 32, 64) and learning

rate (1e-4, 1e-5, 1e-6). For all architectures categorical cross

entropy was chosen as a loss function. In total, 18 hyperpa-

rameter combinations were evaluated per architecture.

The learning rate was reduced by a factor of 10 if the valida-

tion loss had not decreased within 20 epochs and the training

was stopped when the validation loss had not decreased within

30 consecutive epochs.

The best hyperparameter combination for each architecture

was assessed on a fixed holdout dataset eventually. For each

model the number of trainable parameters (weights and bi-

ases) was calculated as a measure of model complexity. As

the number of available image channels varies between the

datasets, the number of parameters for the same architecture

differs. Additionally we measured the floating point operations

(FLOPs) for a single forward pass to quantify inference

performance.

III. RESULTS

We wanted to find a CNN architecture that shows the

best metrics for MIFC datasets from different domains and

determine whether complex architectures outperform simpler

ones.

Three datasets recorded with an imaging flow cytometer

containing samples from three different application domains,

i.e., wind pollen, phytoplankton and blood cells, were used

to evaluate the different CNN architectures captured in Table

I. These CNN architectures were trained on the different

datasets. The task of each model was to recognize patterns

and structures in the images in order to achieve the highest

possible accuracy in assigning the images to their respective

classes.

Classification Results

Table III and Table IV show the results for each architecture

on the species or on the genus level. The balanced wind pollen

dataset shows an increase of performance metrics from the

training on the species level to the training on the same dataset

on genus level. This is not surprising, as the number of classes

are reduced from twelve to seven and the number of samples

per class is increased which gives the classifier during training

more exposure to training samples and thus the potential to

generalize better. We observed that the Inception-ResNet is

the best performing architecture (96.88% accuracy on species

level, 98.96% on genus level) in both tests, closely followed

by Inception, DenseNet and Xception. An impact of the size

and complexity of the model on the classification accuracy

cannot be determined on the basis of the results obtained.

The classification results for the phytoplankton dataset are

shown in Table V (train on rep-0, test in rep-1) and Table VI

(train on rep-1, test in rep-0). The phytoplankton dataset was

trained on one independent replicate of the measurement, eval-

uated on another independent replicate of the measurement and

vice versa. In both tests the VGG-16 and VGG-19 architecture

showed the best classification accuracy of approximately 92%,

closely followed by Inception and DenseNet architectures with

comparable accuracies. Again the size of the models regarding

number of parameters seems not to have a real impact on the

accuracy of the model.

Table VII (train on Canadian, test on Swiss) and Table VIII

(train on Swiss, test on Canadian) show the results for the

blood quality dataset. We observed that there is no single

prevailing architecture for the blood cell dataset that was

trained on samples originating from Switzerland, evaluated on

samples originating from Canada and vice versa. DenseNet-

121 and Xception are both the best performing architectures.

Here we observe F1 scores of 75.68% (train on Canadian,

test on Swiss) and 87.90% (train on Swiss, test on Canadian).
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TABLE III: Wind pollen (species level)

Architecture Top-1 Acc. Precision Recall F1 score

Inception-ResNet 96.88% 96.89% 96.88% 96.87%
Inception 96.25% 96.29% 96.56% 96.24%
DenseNet-121 96.25% 96.33% 96.46% 96.24%
Xception 96.04% 96.09% 96.35% 96.04%
DenseNet-169 96.04% 96.19% 96.29% 96.01%
ResNet-152 95.83% 95.95% 96.22% 95.81%
ResNet-50 95.63% 95.72% 96.13% 95.60%
DenseNet-201 95.42% 95.47% 96.04% 95.43%
ResNet-101 95.42% 95.80% 95.97% 95.43%
VGG16 94.38% 94.57% 95.66% 94.39%
VGG19 94.38% 94.42% 95.56% 94.37%
MobileNet 89.38% 89.52% 94.84% 89.34%

TABLE IV: Wind pollen (genus level)

Architecture Top-1 Acc. Precision Recall F1 score

Inception-ResNet 98.96% 98.95% 98.81% 98.87%
Inception 98.75% 98.82% 98.69% 98.69%
DenseNet-201 98.75% 98.42% 98.59% 98.64%
DenseNet-169 98.75% 98.88% 98.66% 98.62%
Xception 98.54% 98.77% 98.58% 98.51%
VGG16 98.54% 98.71% 98.53% 98.48%
DenseNet-121 98.33% 98.28% 98.44% 98.08%
ResNet-152 98.33% 98.05% 98.40% 98.07%
ResNet-101 97.71% 97.54% 98.34% 97.69%
VGG19 97.71% 97.36% 98.30% 97.63%
ResNet-50 97.50% 97.40% 98.06% 97.23%
MobileNet 96.46% 96.32% 97.67% 96.14%

TABLE V: Phytoplankton (train: rep-0, test: rep-1)

Architecture Top-1 Acc. Precision Recall F1 score

VGG16 92.62% 92.72% 92.62% 92.54%
VGG19 92.50% 92.54% 92.56% 92.46%
Inception 92.27% 92.23% 92.46% 92.20%
Inception-ResNet 92.03% 92.03% 92.35% 91.97%
DenseNet-121 91.52% 91.49% 92.19% 91.45%
DenseNet-169 91.47% 91.45% 92.07% 91.41%
ResNet-101 91.22% 91.19% 91.95% 91.16%
DenseNet-201 91.20% 91.15% 91.85% 91.15%
Xception 91.18% 91.14% 91.78% 91.12%
ResNet-152 90.53% 90.47% 91.65% 90.45%
ResNet-50 90.37% 90.27% 91.45% 90.26%
MobileNet 87.32% 87.12% 90.69% 87.16%

TABLE VI: Phytoplankton (train: rep-1, test: rep-0)

Architecture Top-1 Acc. Precision Recall F1 score

VGG16 91.88% 92.01% 91.88% 91.83%
VGG19 91.87% 92.10% 91.87% 91.82%
DenseNet-121 91.87% 91.97% 91.87% 91.82%
DenseNet-201 91.38% 91.64% 91.75% 91.35%
Inception 91.30% 91.52% 91.66% 91.27%
ResNet-152 91.28% 91.43% 91.60% 91.23%
DenseNet-169 91.17% 91.32% 91.54% 91.11%
ResNet-101 90.92% 91.03% 91.46% 90.87%
Xception 90.42% 90.61% 91.34% 90.38%
ResNet-50 90.28% 90.45% 91.24% 90.20%
Inception-ResNet 90.10% 90.46% 91.13% 90.12%
MobileNet 87.45% 87.86% 90.39% 87.27%

TABLE VII: Blood quality (train: Canadian, test: Swiss

Architecture Top-1 Acc. Precision Recall F1 score

DenseNet-121 87.09% 75.07% 81.47% 75.68%
DenseNet-201 86.75% 74.63% 80.53% 75.25%
Inception-ResNet 86.48% 76.29% 79.58% 76.42%
DenseNet-169 86.40% 74.62% 81.02% 75.28%
Inception 86.27% 75.54% 80.14% 76.04%
ResNet-152 85.96% 74.98% 80.58% 75.14%
VGG16 85.93% 73.76% 79.23% 74.23%
ResNet-50 85.69% 72.34% 80.29% 73.47%
ResNet-101 85.35% 72.65% 79.97% 73.11%
VGG19 85.33% 73.85% 81.06% 75.09%
Xception 84.85% 76.07% 79.73% 75.65%
MobileNet 83.89% 71.99% 78.56% 72.91%

TABLE VIII: Blood quality (train: Swiss, test: Canadian)

Architecture Top-1 Acc. Precision Recall F1 score

Xception 87.91% 88.78% 87.71% 87.90%
Inception 87.90% 88.68% 87.67% 87.83%
ResNet-152 87.84% 88.79% 87.91% 87.95%
Inception-ResNet 87.79% 88.54% 87.84% 87.79%
DenseNet-121 87.71% 88.67% 87.82% 87.86%
VGG19 87.68% 88.48% 87.99% 87.75%
DenseNet-201 87.55% 88.68% 87.62% 87.64%
ResNet-50 87.26% 88.48% 87.31% 87.41%
VGG16 87.12% 88.22% 87.35% 87.29%
DenseNet-169 87.04% 88.25% 87.25% 87.23%
ResNet-101 86.85% 88.13% 86.91% 86.97%
MobileNet 86.63% 87.86% 86.41% 86.60%

There is a noticeable difference in the F1 scores obtained

between train on Canadian and test on Swiss and vice versa.

The ability of the models to distinguish between classes

of each dataset is illustrated in Fig. 1 using the associated

confusion matrix. In (a), the accuracies of the mappings for

wind pollen at species level are given. The Inception-ResNet

achieves optimal assignments for the vast majority of pollen

classes and shows only slight weaknesses in distinguishing

pollen from the same genus level (e.g., Corylus avellana

and Corylus colurna). These pollen species from the same

genus level show many similarities in their appearance, so

that misclassifications can occur here. For the genus-level

class assignment in (b), it can be seen that the accuracy

of the Inception-ResNet could be increased compared to the

species-level assignment. Compared to (a), no discrimination

on species level is necessary, allowing the model to more

easily identify differences in classes at the genus level. Con-

fusion matrix (c) shows the accuracy of the VGG16 network

class assignments for phytoplankton (train on rep-0, test on

rep-1), (d) for phytoplankton (train on rep-1, test on rep-

0). No significant differences can be detected between the

two variants in terms of accuracy in class assignment. It is

noticeable that the model shows similar weaknesses in correct

assignment for classes ’C’ (Chroococcus minutus) and ’O’

(Oocystis marssonii) for both variants. The shape and size

of both species is quite similar which might explain a low

discriminatory power. Since both species belong to different

taxonomic groups, the discrimination could be enabled with

flow cytometric taxonomic separation [18]. The accuracy of

class assignment for the Blood Quality dataset is shown in

confusion matrix (e) (train on Canadian, test on Swiss) and

(f) (train on Swiss, test on Canadian). Again, a similar level

of assignment accuracy to classes can be observed for both

variants. In (e), however, the class CrenatedSpheroid with an

accuracy of only 52.3% shows a conspicuously high number

of false assignments, which cannot be observed to the same
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extent in (d). In general, the blood cell group assignment is

more complicated than species identification in the two other

datasets and for a distinction there is less a discrete difference

but rather a continuously diverging morphology.

FLOPs - Floating Point Operations

In addition to identifying a suitable architecture for the

highest possible classification accuracy, the computational

effort and associated resource consumption of the architectures

was considered in terms of FLOPs, number of floating point

operations. Therefore, top-1 accuracy was set in relation to

the number of FLOPs (in billions) and the number of model

parameters (in millions). Fig. 2 (a) and (b) illustrates this

comparison across the model architectures for the wind pollen

dataset. With regard to the classification of wind pollen at

the species level, it was observed that the Top-1 Accuracy

decreased with increasing number of FLOPs. For classification

on genus level this tendency is not observed. On both levels

the best Accuracy-Flops ratio, and thus most resource efficient

architecture, is provided by the Inception-ResNet architecture.

Fig. 2 (c) and (d) illustrates this comparison for the phyto-

plankton dataset. For (c) Phytoplankton (train on rep-0, test

on rep-1) the best Accuracy/FLOP ratio is achieved by the

Inception network. Here, a relativly high accuracy can be

achieved on a small number of FLOPs. That means that less

operations are required to run a single instance of the Inception

model compared to VGG16 or VGG19 to achieve similar

accuracy. The same can be stated for (d) Phytoplankton (train

on rep-1, test on rep-0). Here, the DenseNet-121 architecture

achieves the best Accuracy/FLOP ratio and allows a resource-

efficient use of the model. For the blood quality dataset. shown

in Fig. 2 (e) and (f), DenseNet-169 achieves the best ratio for

(e) RBC (train on Canadian, test on Swiss) and the Inception

networks was found to be the most ressource-efficient one for

(f) RBC (train on Swiss, test on Canadian).

IV. DISCUSSION

In the present work, different architectures of artificial

neural networks are analyzed with respect to their performance

for the classification of different datasets (wind pollen, phyto-

plankton, blood cells) generated by MIFC. With reference to

the research questions raised, the following findings could be

obtained based on this study:

1) What is the best architecture for different kinds

of datasets with respect to accuracy? Our findings differ

from applied techniques used in previous literature, where

different network architectures were used to classify pollen,

phytoplankton and blood cells. In [4], the authors achieved an

average accuracy of 99% for combined images of phytoplank-

ton at species level using a ResNet v2 with 50 convolutional

layers, which was not surpassed by the VGG16 as the best

performing model used in our analysis. In this context, it

should be noted that the models used here are not precisely

tuned, since the focus of this work is on the comparison of

different architectures than on the optimization of a single

architecture.

For the classification of wind pollen, the authors in [2]

achieve an accuracy of max. 96% with an Inception V3

network with 48 convolutional layer. These results can be

confirmed within the scope of this study, so that similar

results could be achieved with the compared architectures

(e.g., Inception-ResNet (164 layers) = 96.88%, Inveption V3

(48 layers) = 96.25%). This suggests, that deeper networks

are not necessarily superior to shallower networks for pollen

classification.

With respect to the classification of the blood cell data set, it

can be highlighted that both similarities and differences can be

identified in recent studies. The authors in [5] used a ResNet-

50 for a classification of red blood cells. The results show that

a comparably good classification accuracy could be achieved

and that similar difficulties exist in the correct assignment of

certain classes (e.g. crenated spheroid). The ResNet-50 in the

comparative study achieves an average accuracy of 80%. The

best performing architectures in this study are DenseNet-121

(87.09% for train on Canadian, test on Swiss) and XCeption

(87.91% for train on Swiss, test on Canadian).

2) What is the most suitable degree of CNN architecture

complexity for the individual datasets? We could show that

deeper neural networks do not necessarily perform better than

shallow networks. Instead, an accurate classification may be

achieved with comparably shallow networks, such as VGG-

16, VGG-19 or Inception (48 layers). This fact leads to the

conclusion that the use of such, shallower networks would

be advantageous, especially in the case of limited hardware

resources.

3) From the best performing architectures which is the

most sustainable one with respect to computational effort

and resource consumption? The advantage of using CNN

with fewer layers is that they have lower hardware require-

ments and shorter training times compared to their deeper

counterparts. Shorter training times allow testing of more

hyperparameters and simplify the overall training process. This

is particularly useful in environments with limited resources

or where a resource-efficient use deep learning techniques is

aspired.

Additionally, shorter training times can facilitate the inte-

gration of improvement methods into the training data, such

as the implementation of "human in the loop" annotations.

Human in the loop means that the training of a network is

monitored by a human expert who can intervene at critical

steps and correct the network. For example, the expert can

check misclassifications, effectively reducing annotation noise.

With shorter training times, such feedback loops can be

executed more quickly.

4) Is there a general architecture for all different

MIFC datasets with best performance on accuracy and

computational effort? Overall, it can be highlighted that no

single best architecture could be identified for the respective

datasets, as they are often very close in terms of accuracy

(deviations in many cases under 1%). It can be emphasized

that there is no best-performing architecture from a generally

valid point of view with regard to the accuracy-resource ratio.
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(a) Confusion matrix Inception-ResNet for wind pollen
(species level)

(b) Confusion matrix Inception-ResNet for wind pollen (genus
level)

(c) Confusion matrix for VGG16 on phytoplankton (train on
rep-0, test on rep-1)

(d) Confusion matrix for VGG16 on phytoplankton (train on
rep-1, test on rep-0)

(e) Confusion matrix for DenseNet-169 on blood quality (train
on Canadian, test on Swiss)

(f) Confusion matrix for VGG19 on blood quality (train on
Swiss, test on Canadian)

Fig. 1: Confusion matrices of the best performing models on the respective datasets
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(c) Phytoplankton (train on rep-0, test on rep-1)
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(d) Phytoplankton (train on rep-1, test on rep-0)
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(e) RBC (train on Canadian, test on Swiss)
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Fig. 2: FLOPs (Billions) compared to Accuracy (Top-1)

Depending on the data set, different architectures achieve an

optimal accuracy-resource ratio.

V. LIMITATIONS

A limitation of the present work is, that different, mostly

larger architectures, may tend to overfit on less complex

datasets, like the blood cell dataset, that is less complex than

the wind pollen dataset. As a consequence, an overfitting

with a lower generalizability of some results cannot be ex-

cluded and should be considered when interpreting our results.

Furthermore, the CNN architectures used in this study not

have fully optimized hyperparameters, which could impact the

performance of the models. Those architectures may not per-

formed as well as they could have following hyperparameter

optimization.

VI. CONCLUSIONS

The aim of the present work was to compare different

CNN architectures for the classification of MIFC datasets.

In this context, seven different architectures with different

complexity and depth were trained and tested on three datasets

PHILIPPE KRAJSIC ET AL.: COMPARISON OF DEEP LEARNING ARCHITECTURES FOR THREE DIFFERENT MULTISPECTRAL IMAGING FLOW 65



(wind pollen, phytoplankton, red blood cells). The evaluation

results demonstrate, that complex architectures with a large

number of trainable parameters or increasing depth are not

always required to achieve state of the art results. A DenseNet

architecture with 121 layers reaches comparable results to

more complex architectures such as Inception-ResNet and

VGG that consume significantly more computing resources

during training. The ecological footprint during model training

and inference can be reduced by using simpler architectures

without sacrificing accuracy.

A CNN architecture that is most qualified for all datasets

under consideration could not be determined, as most consid-

ered architectures show comparable results with regard to the

evaluation criteria.

Future research could include training and testing on even

larger datasets with more classes and higher variability. In

addition, hyperparameter optimizations can be performed on

individual architectures to identify a universally best archi-

tecture for the classification of the investigated datasets. Fur-

thermore, it has to be evaluated whether the use of a single

architecture is reasonable at all and can be complemented by

the implementation of ensemble methods.
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