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Abstract—In this paper the Parallelized Population-based
Multi-Heuristic System controlled by the Reinforcement Learn-
ing based strategy is proposed to solve the Multi-Skill Resource
Constrained Scheduling Problem with Hierarchical Skills, de-
noted as MS-RCPSP. It is an extension of the classical RCPSP
where some given pool of skills has been assigned to the resources.
The MS-RCPSP as well as the RCPSP belong to the class of
strongly NP-hard optimization problems. To solve the MS-RCPSP
the approach consisting of evolving a population of solutions
and using a set of several heuristic algorithms controlled by the
reinforcement learning strategy, and executed in parallel, has
been proposed. To implement the system and take advantage of
the speed-up offered by the parallel computations the Apache
Spark platform has been used. The system has been tested
experimentally using benchmark problem instances from the
iMOPSE dataset with the makespan as the optimization criterion.
The proposed approach produces good quality solutions often
outperforming the existing approaches.

I. INTRODUCTION

R
ESOURCE MANAGEMENT plays an important role in

different domains. It involves planning, scheduling, and

allocating various resources such as machines, technology,

money, people, or teams to a project. In a majority of or-

ganizations, the task of determining some schedules occurs

regularly, often daily. Deciding on schedules requires the

allocation of resources which, usually, are limited and not

freely available. In project management, there are three basic

types of constraints imposed on the availability of resources.

These are time, cost, and scope constraints. Therefore, effec-

tively utilizing scarce resources is important for the success

of any project. Extensive research in project management

has led to the proposal of different models and methods

aimed at optimizing resource utilization to achieve project

goals. Among several possible project management problem

formulations the best known and intensively researched is the

Resource Constrained Project Scheduling Problem (RCPSP)

and its numerous extensions. In recent years a high amount

of papers have reported on various methods of solving the

RCPSP and its variants. Extensive reviews of this research

effort can be found in [5], [6]. Among possible RCPSP

extensions focusing on the use of human resources is the idea

of considering problems where to complete a project various

skills on the part of human resources are needed. The idea of

considering the multi-skill resource-constrained problems has

been motivated by the practical needs of projects where staff

with different skills is required and needs to be scheduled and

assigned. In the MS-RCPSP human resources are considered

each possessing a particular set of skills, which can be applied

to these activities in the project that require such skills. The

primary Multi-Skill Resource Constrained Project Scheduling

Problem (MSRCPSP) with skillsets has been introduced in

[24] and next considered, for example in [3], [17], [1]. The

most recent classification for the MSRCPSP and its extensions

can be found in [27]. One of such extension is MSRCPSP with

hierarchical skills proposed in [2] and commonly denoted in

the literature as MS-RCPSP. It is based on both the classical

RCPSP and the Multi-Purpose Machine Model Problem to

find a schedule that optimizes a performance criterion like,

for example the project duration i.e. makespan.

Both, the MSRCPSP and MS-RCPSP as the generalizations

of RCPSP belong to the class of strongly NP-hard optimization

problems [4]. Hence, most of the approaches in the literature

consider applying metaheuristic algorithms. Example success-

ful approaches include Ant Colony Optimization [20], Greedy

Randomized Adaptive Search Procedure [21], [22] Teach-

ing–learning–based optimization algorithm [28], Differential

Evolution and Greedy Algorithm [22], Genetic Programming

[16], Genetic Programming Hyper-Heuristic [16]. In [19]

the bicriteria MS-RCPSP optimization variant was proposed

including project duration and cost. In [23] a new benchmark

dataset was made available for public use. The approaches

proposed and made available in [19], [23] involved a Greedy

Algorithm that optimizes schedule duration and a Greedy

guided search controlled by a Genetic Algorithm, for mini-

mizing schedule duration and cost [23]. The Decomposition-

Based Multi-Objective Genetic Programming Hyper-Heuristic
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has been proposed in [29].

Heuristic and meta-heuristic approaches have been impor-

tant and intensively expanding area of research and develop-

ment for many years. With the emergence of advanced tech-

nologies, the multi-heuristics and hyper-heuristics are com-

monly used in various fields, including optimization problems,

search algorithms, scheduling, routing, and more generally

various artificial intelligence applications. They often involve

selecting, combining, or switching between different heuristics

based on certain conditions, problem characteristics, or perfor-

mance metrics. They are also used in solving project schedul-

ing problems [15], [18], [25], [29]. The idea behind a multi-

heuristic approach is that different heuristics may be more

effective or efficient in different parts of a problem solution

space. By employing a combination of heuristics, the approach

can exploit their complementary strengths and mitigate their

individual weaknesses. This can lead to improved problem-

solving performance, such as faster convergence to a solution,

better quality solutions, or increased robustness to different

problem instances.

Multi-heuristic approaches can be more efficient using par-

allel computations which are commonly used in optimisa-

tion. They provide significant advantages in terms of speed,

scalability, solution space exploration, and handling complex

problem structures. By leveraging multiple processing units or

distributed computing resources, parallel algorithms can effi-

ciently solve optimization problems, leading to an improved

performance, faster convergence, and better quality solutions.

One of the tools for parallel computing is Apache Spark.

Apache Spark is an open-source framework for processing

big data in parallel across clusters or cloud architectures.

Spark’s core data structure is called Resilient Distributed

Datasets (RDDs), which improves the performance of iterative

algorithms and data mining tools. The platform automati-

cally handles program distribution and data splitting. Spark’s

scheduler optimizes operations using data locality and lazy

evaluation.

In this paper a Parallelized Population based Multi-Heuristic

(PPMHRL) for solving MS-RCPSP is proposed, implemented

and validated. The approach belongs to the population-based

metaheuristics class. It is based on using four types of opti-

mization heuristic algorithms controlled by a strategy based on

Reinforcement Learning technique. The heuristic algorithms

include three types of local search algorithms, the path relink-

ing algorithm and exact solution based heuristic. To implement

this approach the Scala language, Apache Spark framework

and RDD collections have been used. The proposed approach

has been tested experimentally using benchmark instances

from the iMOPSE [30] library. The makespan minimization

has been used as the optimization criterion.

The paper is constructed as follows: Section II contains the

formulation of the MS-RCPSP problem. Section III provides a

description of the proposed Multi-Heuristic Population Based

Approach with Reinforcement Learning for solving instances

of the MS-RCPSP. The section contains also a description of

the optimization heuristic algorithms used: local search and

path relinking. In section IV the computational experiment

carried out has been described, including parameter settings

experiment plan, experiment results, and comparisons of re-

sults with some other approaches. Finally, Section V contains

conclusions and suggestions for future research.

II. PROBLEM FORMULATION

In the paper, we consider the project management problem

where activities to be executed require skills, and the available

multi-skilled resources possess these skills.

The considered Multi-Skill Resource-Constrained Project

Scheduling Problem with hierarchical skills can be described

using classification scheme proposed in [7] for scheduling

problems. An extension of this classification scheme that

allows the representation of multi-skilled resource-constrained

project scheduling problems and their extensions was proposed

in [27] recently. The considered problem class is denoted as

ms, 1, H, TR, F lex|cpm, 1|Cmax, C.

In the MS-RCPSP problem the set of n activities (tasks) and

m renewable resource types are considered. Each activity has

to be processed without interruption to complete the project.

The duration of activity aj , j = 1, . . . , n is denoted by dj .

The types of resources represent human staff with different

skills. Every resource rk, k = 1. . . . ,m possesses a subset of

skills Qk from the skill pool Q defined in a project and the

salary paid for performed work as hourly rate (cost) ck. In a

given period of time, only one resource can be assigned to a

given activity.

Each activity requires a set of skills to be executed denoted

as Qj , but not every resource can be applied to its realization.

Each resource skill is labelled with familiarity level, that is

the resource rk is capable of performing the activity aj only

if rk disposes skill required by aj at the same or higher level.

There are precedence relations of the finish-start type with

a zero parameter value (i.e. FS = 0) defined between the

activities in the project. In other words activity aj precedes

activity ai if ai cannot start until aj has been completed. Sj

(Pj) is the set of successors (predecessors) of activity ai, j =
1, . . . , n.

The objective is to find a schedule S of the project activities

finishing times [fi, . . . , fn], where the resource and prece-

dence constraints are satisfied, such that the schedule duration

(makespan) MS(S) = sn is minimized.

Since the MS-RCPSP is a generalization of the RCPSP, it

belongs to the class of the strongly NP-hard problems [4],

[19].

More detailed description and formal definition of the MS-

RCPSP can be found in [2], [19], [23].

III. PARALLELIZED POPULATION-BASED

MULTI-HEURISTIC SYSTEM WITH RL FOR MS-RCPSP

A. Apache Spark based Implementation

To implement the proposed system Scala language and

Apache Spark environment have been used. Apache Spark is

an open-source framework designed for processing big data in

parallel across clusters or cloud architectures. It prioritizes ease
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of use and leverages data locality to optimize computations

while maintaining the required fault tolerance. Apache Spark

is currently one of the most popular and fastest distributed

computing frameworks, and it stands-out as the largest open-

source project in data processing.

The architecture of Spark involves a master node and mul-

tiple worker nodes. The master node handles task scheduling,

resource allocation, and error management, while the worker

nodes perform parallel processing of Map and Reduce tasks.

The platform automatically handles program distribution and

data splitting for the users.

The core data structure in Spark is called Resilient Dis-

tributed Datasets (RDDs). RDD collections enhance dis-

tributed, parallel computation of iterative algorithms and in-

teractive data mining tools. RDDs enable using parallel data

structures and parallel computing.

Spark’s scheduler efficiently executes operations specified

by RDDs, exploiting data locality to avoid producing unnec-

essary data copies between nodes. RDDs are so called lazy

structures evaluated, meaning the operations are performed

only when the result is requested. This allows to increase

the efficiency of parallel computing. Spark’s built-in constraint

solver can optimize the transformation graph by eliminating

certain operations. RDDs also enable efficient fault tolerance

by tracking the history of transformations rather than dupli-

cating data between nodes.

The proposed Parallelized Population-based Multi-Heuristic

system controlled by Reinforcemant Learning (RL) strategy

is denoted as PPMHRL. The PPMHRL uses the parallel

computing capabilities of Spark in order to solve MS-RCPSP

problem instances stored in a population. In this approach

to use the Spark capabilities efficiently its build-in paral-

lelization mechanism has been used. To solve the MS-RCPSP

the population of solutions, optimization heuristic algorithms

and control strategy have been proposed and implemented.

Individuals from the population of solutions are improved

by optimization heuristic algorithms controlled by the RL

strategy. The proposed optimisation heuristic algorithms are

described in the following subsection.

B. Optimization Heuristic Algorithms Solving MS-RCPSP

To solve the MS-RCPSP with makespan minimalization the

heuristic algorithms coded in Scala language have been used.

The algorithms proposed in [12] have been improved and

adjusted to the new system. Hence, five kinds of optimization

heuristic algorithms are used:

• LSAm - Local Search Algorithm based on activities

moving,

• LSAe - Local Search Algorithm based on activities

exchanging,

• LSAc - Local Search Algorithm based on one point

crossover operation,

• PRA - Path Relinking Algorithm based on activities

moving,

• EPTA - Exact Precedence Tree Algorithm.

All proposed algorithms search for feasible solutions only

and feasible solutions only are stored in the population.

The above mentioned LSA is a simple local search algorithm

which finds the local optimum by moving (LSAm) activities or

exchanging (LSAe) pairs of activities in the solution schedule.

Simultaneously, the necessary change of assigned resources is

checked and performed. In one iteration all possible moves or

exchanges are checked and the best one is carried out. The

best solution found is remembered. The only parameter of

these algorithms is:

• maxItLSAm - the maximum number of iterations without

improvement for activities moving,

• maxItLSAe - the maximum number of iterations without

improvement for activities exchanging.

The LSAc is LSA based on one-point crossover operator

applied to the pair of solutions. The crossover operation can

be applied in each crossing point. Hence for project with n

activities maximum n − 2 crossing points can be checked.

Because for some projects it may be too time consuming

the algorithm stops after fixed number of iteration without

improvement. The best solution found is remembered. The

only parameter of this algorithm is:

• maxItLSAc - the maximum number of iterations without

improvement.

The PRA is a path-relinking algorithm where for a pair

of solutions from the population a path between them is

constructed. Next, the best of the feasible solutions from the

path is selected. To construct the path of solutions the activities

are moved to other possible places in the schedule. All possible

moves are checked. Only feasible solutions are accepted. The

best solution found is remembered. The algorithm has no

parameters.

The EPTA is an exact precedence tree algorithm based on

the concept of finding an optimum solution by enumeration

for a partition of the schedule consisting of some activities.

The implementation proposed for RCPSP [9] has been adopted

for solving MS-RCSP by adjusting constraints for multi hi-

erarchical skill levels. An exact solution for a part of the

schedule beginning from activity on chosen position is found.

The activity position is chosen randomly without repetition.

The best solution found is remembered. The algorithm has

two parameters:

• maxItEPTA - the maximum number of iterations with-

out improvement,

• nPartEPTA - the size of schedule partition for which

the exact solution is found.

C. Architecture of the PPMHRL System

The Parallelized Population-based Multi-Heuristic system

controlled by Reinforcement Learning strategy (PPMHRL)

searches for solutions of MS-RCPSP using a set of improve-

ment heuristic algorithms. The initial population of solutions

(individuals) is generated using random priority rule and serial

forward SGS (Schedule Generation Scheme). An individual

is represented by the sequence of activities with resources
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assigned. To generate a solution from the sequence, the serial

forward SGS is used. Individuals from the population are, at

the following computation stages, improved by optimization

heuristic algorithms described in section III-B. The behaviour

of the system is controlled by the strategy. The control strategy

defines parameters and methods for the whole system and is

based on Reinforcement Learning.

The set of used priority rules includes ones known for

RCPSP and proposed for MS-RCPSP [13], [14], [15], [12]:

• SPT - Shortest Processing Time first,

• LPT - Longest Processing Time first,

• EST - Earliest Start Time first,

• EFT - Earliest Finish Time first,

• LST - Latest Start Time last,

• LFT - Latest Finish Time last,

• HLSR - Highest Level of Skill Required first - activities

are sorted by the level of skill required and SPT, which

means that activities with the same level are sorted

according to SPT,

• LLSR - Lowest Level of Skill required last,

• MRS - Most Required Skills first - for each skill in the

project the sum of durations of activities which need this

skill is calculated, next the activities are sorted by the

duration of required skill and LPT,

• LRS - Least Required Skills last - for each skill in the

project the sum of durations of activities which need this

skill is calculated, next the activities are sorted by the

duration of required skill and LPT.

To implement the approach in Spark two main RDD collec-

tions are used, one to store individuals in the population and

the second one to store tuples. Each tuple contains a solutions

and the algorithm that has been assigned to improve them.

For selecting solutions and assigning algorithms to them the

control strategy is responsible. The system state is stored and

used by the control strategy to manage effectively the process

of searching for the best solution. The general schema of the

proposed approach can be seen in Fig. 1.

The Reinforcement Learning (RL) based cooperation strat-

egy to control agents was proposed in [10], [11] for RCPSP

and next partly adopted in the approach of solving MS-

RCPSP by Asynchronous Team (A-Team) of agents in Multi-

Agent System (ATMAS) described in [12]. In the approach

proposed in this paper the concept of the RL based strategy

has been used to control the execution of optimization heuristic

algorithms using RDD collections in Spark environment. To

describe the approach in a more detailed manner the following

notation is used:

• P - population of |P | solutions (individuals),

• S - solution,

• nSGS - number of SGS procedure calls,

• maxSGS - maximum number of SGS procedure calls,

• angDiv - average diversity in the population P ,

• minAvgDiv - minimum average diversity in P ,

• nSnew - number of newly generated solutions,

• pRA - percent of solution to be removed from population

Fig. 1. Proposed PPMHRL system architecture schema

P , it is equal to the percent of the new ones to generate

and add

• selMet - selection method used to select the individuals

to improve from P ,

• genMet - method generating new individuals,

• merMet - method merging two populations,

• f(S) - fitness function.

Additionally to control the system, two probability measures

have been used:

• pmg - probability of selecting the method mg ∈ Mg to

generate a new individual,

• pma - probability of selecting the optimisation algorithm

ma ∈ Ma used to improve individuals in P .

To generate new individuals we have proposed the following

four possible methods:

• mgr - randomly,

• mgrp - randomly using random priority rule,

• mgb - random changes of the best individual in P ,

• mgw - random changes of the worst individual in P .

For each method the weight wmg is calculated, where mg ∈
Mg, Mg = {mgr,mgrp,mgb,mgw}. The wmgr and wmgrp

are increased when the population average diversity decreases

and they are decreased in the opposite case. The wmgb and

wmgw are decreased where the population average diversity

increases and they are increased in the opposite case.

There are five optimization heuristic algorithms

described above. For each of them the weight

wma is calculated, where ma ∈ Ma, Ma =
{maLSAm,maLSAe,maLSAc,maPRA,maEPTA}.

The wma is increased if the optimization agent received

the improved solution and is decreased if this not the case.

Additionally, the weights for maLSAc and maPRA are
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increased where the average diversity of the population

decreases and they are decreased in the opposite case.

The weights for maLSAm, maLSAe and maEPTA are

increased where the average diversity of the population

increases and they are decreased in the opposite case.

The probabilities of selecting the method are calculated as

following:

pmg =
wmg∑

mg∈M wmg

, pma =
wma∑

ma∈M wma

.

The parameters settings and the resulting probabilities allow

to control the system behaviour and balance the exploration

and exploitation processes. The pma is used in selMet for

selecting the optimization algorithm for individuals from the

population that are subject to an intended improvement. The

method is showed as Algorithm 1.

Algorithm 1 selMet(P )

generate RDD collection

2: arrange the solutions in P in random order

for all solutions in P do

4: as = ∅
copy to as one or two consecutive solutions from P

6: if |as| == 1 then

select ma from {maLSAm,maLSAe,maEPTA}
with the probability pmaLSAm, pmaLSAm and

pmaEPTA, respectively

8: else

select ma from {maLSAc,maPRA} with the prob-

ability pmaLSAc and pmaPRA, respectively

10: end if

add the tuple (as, ma) to RDD

12: end for

return RDD

The pmg is used in merMet method to merge the old

population with the new one created in improvement stage by

RDD transformation. The pseudocode of the merMet method

is presented as Algorithm 2.

It can be noticed that, as a result, the better solutions

received from optimization algorithms replace the worse ones

in the population. Moreover, the new solutions are generated

in each stage with the calculated probability according to

genMet presented as Algorithm 3.

All decreasing–increasing operations are performed follow-

ing the proposed control strategy. As the stopping criterion

the average diversity in the population avgDiv(P ) and the

maximal number of SGS procedure calls are used.

IV. COMPUTATIONAL EXPERIMENT

A. Problem instances

To evaluate the effectiveness of the proposed approach

the computational experiment has been carried out using the

benchmark instances of MS-RCPSP accessible as a part of

Intelligent Multi Objective Project Scheduling Environment

(iMOPSE) [30]. The test set includes 36 instances representing

Algorithm 2 merMet(P, Pn, pRA)

for each solution Sn in Pn do

2: if Sn is obtained from Sk in P then

if f(Sn) < f(Sk)) then

4: add Sn to P

end if

6: end if

if Sn is obtained from Sk1 and Sk2 in P then

8: if f(Sn) < Sk1 or f(Sn) < Sk2 then

add Sn to P

10: end if

end if

12: end for

remove from P the worst pRA · |P | solutions

14: add to P the pRA · |P | of new solutions generated by

genMet

return P

Algorithm 3 genMet(P, pRA,Mg)

generate empty RDD collection

2: for each mg in Mg do

generate pRA · |P | · pmg solutions using mg method

and add them to RDD

4: end for

return RDD

projects consisting from 78 to 200 activities. The file names of

the instances are in the form n_m_pr_st.def, where n means

the number of activities, m the number of resources, pr the

number of precedence relations and st the number of skill

types. The detailed descriptions and benchmark data analyses

can be found in [19], [23].

B. Settings

The computational experiment has been carried out using

Intel Core i7 Quad Core CPU 2.6 GHz, 16 GB RAM. The

PPMHRL is coded in Scala using Apache Spark environment.

In the experiment the following values of parameters have

been used:

• Population P of 30 and 50 solutions,

• 5 optimization heuristic algorithms: LSAm, LSAe, LSAc,

PRA, EPTA using the following parameters:

– maxiItLSAm = 20,

– maxItLSAe = 20,

– maxItLSAc = 10,

– maxItEPTA = 10,

– nPartEPTA = 3,

• maxSGS = 100000 - maximal number of SGS proce-

dure calls,

• minAvgDiv = 0.01 - minimal average diversity in the

population,

• pRA = 10% - given initial value is decreased when the

avgDiv has increased and increased in the opposite case.
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TABLE I
PERFORMANCE OF THE PROPOSED PPMHRL SYSTEM IN TERMS OF SCHEDULE DURATION (MAKESPAN).

ATMAS(|P | = 50) PPMHRL(|P | = 30) PPMHRL(|P | = 50)

Instance Best AV G STD Best AV G STD Best AV G STD

100_5_20_9_D3 392 394 1.67 393 394.8 1.47 388 392.4 2.94

100_5_22_15 484 484.2 0.4 485 485.4 0.49 484 484.6 0.49

100_5_46_15 529 530 1.55 529 530.6 1.02 528 529.2 0.75

100_5_48_9 491 491.4 0.49 492 492.2 0.4 490 491 0.63

100_5_64_15 482 483 0.89 482 482.2 0.75 481 482.8 0.98

100_5_64_9 475 475.2 0.4 475 475.6 0.8 474 474.8 0.75

100_10_26_15 237 238.2 1.17 234 237.6 2.73 234 238.4 2.58

100_10_27_9_D2 216 225.6 6.47 216 225 6.42 207 220.4 9.97

100_10_47_9 257 257.2 0.4 253 255.2 1.72 252 254 2.28

100_10_48_15 245 246.6 0.8 244 244.2 0.4 244 245.4 0.8

100_10_64_9 245 250 3.9 243 246.2 4.07 244 247.2 2.32

100_10_65_15 247 247.4 0.8 244 246.2 2.04 244 245.6 1.62

100_20_22_15 136 136 0 130 133.2 2.32 131 133.2 1.83

100_20_23_9_D1 174 174.6 0.8 172 174 1.41 174 174.6 0.8

100_20_46_15 164 164 0 164 164 0 161 162.8 0.98

100_20_47_9 132 133.4 1.36 127 132.6 3.01 124 128 3.41

100_20_65_15 240 240 0 240 240 0 220 224.8 3.19

100_20_65_9 140 140.8 0.75 140 134 3.35 124 129.2 5.31

200_10_128_15 464 464 0 461 462.6 1.02 460 462.6 1.74

200_10_135_9_D6 710 733.6 13.4 642 687.6 38.61 550 603.2 45.27

200_10_50_15 487 487.8 0.75 485 486.4 1.74 484 487 1.9

200_10_50_9 488 489.6 1.96 490 491 1.1 488 490.8 1.72

200_10_84_9 514 514.8 0.75 507 512.2 3.19 509 511.2 2.04

200_10_85_15 476 477.8 1.33 475 477.6 2.06 477 479 1.1

200_20_145_15 245 246 1.1 245 246.6 1.5 244 246 1.79

200_20_150_9_D5 900 900 0 910 948.2 20.72 900 900 0

200_20_54_15 268 269.6 1.02 263 268.4 2.8 258 262.6 3.77

200_20_55_9 252 257.6 3.07 251 258 4.29 247 256.6 5.82

200_20_97_15 336 336 0 336 336 0 336 336 0

200_20_97_9 251 251.8 0.75 242 246.6 4.03 242 245.6 3.72

200_40_130_9_D4 513 513 0 513 513 0 513 513 0

200_40_133_15 151 156.2 3.71 149 154.8 3.87 135 143.8 8.7

200_40_45_15 164 164 0 164 164 0 160 162.4 1.36

200_40_45_9 150 161 9.65 154 160.6 4.84 144 152.8 5.15

200_40_90_9 150 158.6 6.18 148 158 7.69 135 148.2 9.54

200_40_91_15 138 147.4 5.75 138 144.8 4.66 132 143.2 9.37

Average 331.8 334.5 2 328.8 333.6 3.7 322.7 327.8 4

Computations are stopped when the average diversity in the

population is less then minAvgDev or the number of SGS

procedure calls is grater than maxSGS.

C. Results

During the experiment the following characteristics of the

computational results have been calculated and recorded: best

schedule duration (makespan) (Best), average schedule du-

ration (AV G) and standard deviation (STD). Each problem

instance has been solved 10 times and the results have been

averaged over these solutions.

The computational experiment results for proposed Par-

allelized Population-based Multi-Heuristic system controlled

by Reinforcement Learning strategy (PPMHRL) have been

obtained for population size including 30 and 50 individuals

are presented in Table I.

The results obtained by PPMHRL are good and promising.

The results for the population with 50 individuals are better

than for the population with 30 ones. The average Best result

is better by an average of 1.9%, the AV G by 1.7%, and

simultaneously the STD is slightly lower. Results for both

considered population sizes outperform the earlier approaches

based on A-Team Multi-Agent Algorithm [12] but in this

approach the optimization heuristic algorithms have been

modified and one additional optimization algorithm has been

used.

Comparison of the obtained results with the results known
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TABLE II
COMPARISON WITH THE RESULTS KNOWN FROM THE LITERATURE IN TERMS OF SCHEDULE DURATION (MAKESPAN).

GRASP DEGR GP-HH PPMHRL(|P | = 50)

Instance Best AV G STD Best AV G STD Best AV G STD Best AV G STD

100_5_20_9_D3 401 402 0.6 392 393.2 0.92 387 387 0 388 392.4 2.94

100_5_22_15 503 504 1.2 484 484.5 0.53 484 484 0 484 484.6 0.49

100_5_46_15 552 556 3.9 529 529 0 528 528 0 528 529.2 0.75

100_5_48_9 510 510 0.3 490 490.1 0.32 490 490 0 490 491 0.63

100_5_64_15 501 502 1.2 481 483 0.82 481 481 0 481 482.8 0.98

100_5_64_9 494 494 0.2 474 474.9 0.32 474 474 0 474 474.8 0.75

100_10_26_15 251 258 7.1 234 235 1.05 233 233 0 234 238.4 2.58

100_10_27_9_D2 221 223 1.6 215 220.3 2.5 207 207.9 0.5 207 220.4 9.97

100_10_47_9 263 264 0.9 255 256.4 0.7 252 252.2 0.4 252 254 2.28

100_10_48_15 256 257 1.2 244 245 0.67 243 243.7 0.5 244 245.4 0.8

100_10_64_9 255 257 2.1 243 245.8 1.32 241 242.2 0.6 244 247.2 2.32

100_10_65_15 256 260 3.8 244 245.3 1.16 243 243.9 0.3 244 245.6 1.62

100_20_22_15 134 137 3.7 130 130.7 0.67 126 126.5 0.5 131 133.2 1.83

100_20_23_9_D1 172 172 0 172 172 0 172 172 0 174 174.6 0.8

100_20_46_15 170 174 3.9 164 164 0 161 161 0 161 162.8 0.98

100_20_47_9 133 140 6.8 125 127.5 3.31 123 123 0 124 128 3.41

100_20_65_15 213 213 0.1 240 240 0 205 205 0 220 224.8 3.19

100_20_65_9 135 135 0.4 126 129.1 2.73 123 123.8 0.4 124 129.2 5.31

200_10_128_15 491 496 5.2 461 463.1 0.88 460 460.9 0.5 460 462.6 1.74

200_10_135_9_D6 584 617 20.3 608 694.8 67.9 534 534 0 550 603.2 45.27

200_10_50_15 524 528 3.8 487 487.9 0.74 484 484 0 484 487 1.9

200_10_50_9 506 508 1.9 485 487.8 1.62 484 484 0 488 490.8 1.72

200_10_84_9 526 527 0.8 507 509.3 2.11 505 505.8 0.4 509 511.2 2.04

200_10_85_15 496 498 1.7 475 478 1.56 473 473.7 0.5 477 479 1.1

200_20_145_15 262 271 8.5 237 238.5 0.71 236 237.1 0.5 244 246 1.79

200_20_150_9_D5 900 913 13.6 900 906.9 11.82 900 900 0 900 900 0

200_20_54_15 304 308 3.7 258 261 1.89 258 258.3 0.5 258 262.6 3.77

200_20_55_9 257 258 0.6 249 257.8 10.37 246 246.8 0.4 247 256.6 5.82

200_20_97_15 347 347 0 336 336 0 336 336 0 336 336 0

200_20_97_9 253 256 3.8 241 247.6 8.93 241 241.4 0.5 242 245.6 3.72

200_40_130_9_D4 513 513 0 513 513 0 513 513 0 513 513 0

200_40_133_15 163 170 6.5 141 151.4 8.26 135 136.8 1 135 143.8 8.7

200_40_45_15 164 164 0.3 164 164 0 159 159 0 160 162.4 1.36

200_40_45_9 144 147 3.2 153 182.5 17.83 137 138 0.4 144 152.8 5.15

200_40_90_9 148 153 4.9 148 181.3 22.07 134 135.1 0.5 135 148.2 9.54

200_40_91_15 153 159 5.7 136 144.8 9.44 130 131.6 1.1 132 143.2 9.37

Average 337.6 341.4 3.4 326.1 332.5 5.1 320.5 320.9 0.3 322.7 327.8 4

from the literature are presented in Table II. It can be no-

ticed that the results produced by the proposed approach are

comparable with the results from several recently published

papers. Among several algorithms proposed for solving MS-

RCPSP instances, one seems outstanding and outperforms all

others including the proposed one. It is also a population-

based algorithm with the search for the best solution enhanced

by a hyper-heuristic proposed in [24]. The best makespan

value for the GP-HH algorithm is better on average by 0.7%

as compared with our approach. It should be noted that the

difference in performance between the proposed approach and

the GP-HH one gets smaller or even nonexisting as the number

of activities increases.

V. CONCLUSION

Results of the computational experiment show that the

proposed Parallelized Population-based Multi-Heuristic Sys-

tem control by Reinforcement Learning strategy (PPMHRL)

is an efficient and competitive tool for solving MS-RCPSP

instances. The obtained results are comparable with solutions

presented in the literature.

We believe that there is still room for further improvement

of the proposed approach. Future research will focus on find-

ing more effective methods for tuning optimization algorithms

parameters. The use of reinforcement learning techniques

could be further refined by finding better rules for controlling

the number of iterations, population merging, and generating
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new individuals. Another performance improvement can be

expected from running the solution procedure on a powerful

computer cluster that can easily handle a bigger population

of individuals and thus profit from the scale and synergy of

interactions between optimization agents. It would also be

worthwhile to investigate using different types and numbers

of optimization algorithms.
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[11] P. Jędrzejowicz and E. Ratajczak-Ropel, “Dynamic cooperative inter-
action strategy for solving RCPSP by a team of agents.” in Nguyen,

N.T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds) Computational
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