

Abstract—This paper deals with a benchmark of automated

test generation methods for software testing. The existing meth-

ods are usually demonstrated using quite different examples.

This makes their mutual comparison difficult. Additionally, the

quality of the methods is often evaluated using code coverage or

other metrics, such as generated tests count, test generation

time, or memory usage. The most important feature – the ability

of the method to find realistic errors in realistic applications – is

only rarely used. To enable mutual comparison of various

methods and to investigate their ability to find realistic errors,

we propose a benchmark consisting of several applications with

wittingly introduced errors. These errors should be found by

the investigated test generation methods during the benchmark.

To enable an easy introduction of various errors of various

types into the benchmark applications, we created the Testing

Applications Generator (TAG) tool. The description of the TAG

along with two applications, which we developed as a part of

the intended benchmark, is the main contribution of this paper.

Index terms—Benchmark, software testing methods, automa-

ted test generation, application generation, Java code parsing,

error introduction.

I. INTRODUCTION

HE testing is a very important part of software develop-

ment. It improves the probability of the correct functi-

oning of an application, as it helps to uncover and fix errors

unwittingly introduced into it during its development. As the

manual creation of the tests is a lengthy and error-prone

process, there is an intensive research on automated test

generation methods for more than two decades (see, for

example, [1] or [2]). In existing scientific papers, automated

test generation is proposed or used on various testing levels.

The lowest level is unit testing, which focuses on individual

basic functional elements of the tested application, such as

methods or functions. The middle level is the regression and

integration testing focused on the correct cooperation of

 The work was supported by the Ministry of Education, Youth and

Sports of the Czech Republic university specific research project SGS-

2022-016 Advanced methods of data processing and analysis.

larger parts of the application. The highest level is the testing

of the functionality of the entire application, its cooperation

with its environment, and its adherence to its specification.

At all levels, the expected advantages of the automated

testing is the reduced time spent by programmers on the tests

preparation and/or execution, decreased number of errors

within the tests themselves and increased code coverage of

the tested application. Nevertheless, there are also disadvan-

tages. For example, it is inherently difficult to automatically

verify whether the tested parts of the application give correct

results, as it requires knowledge or generation of correct

results. Another problem (discussed for example in [3]) is

the combinatorial explosion. This means that the number of

generated tests can be very high in order to cover all combi-

nations of representative input values (e.g., values of tested

method parameters). This can lead to long running times.

A different problem is the testing of automated test

generation methods themselves. In many scientific papers,

the method functioning is often demonstrated only on small

examples (e.g., in [4] or [5]), from which the usability in a

real project cannot be concluded. Although there are also

methods tested on more realistic examples (e.g., in [6] or

[7]), these examples are not mutually similar and do not

enable direct comparison of the features of the methods.

It should also be noted that, from the pragmatic point of

view, the most important feature of the method in a real

project is the ability to find realistic errors of various types

[8]. Nevertheless, in scientific papers, this feature is virtually

never used as the metric for method assessing (with some

exceptions, e.g., [9]). A quite common approach used for

automated test generation methods evaluation is mutation te-

sting [10]. Using this approach, several versions of the tested

program (so-called mutants) with small changes imitating

real errors introduced by mutation operators are generated.

The quality of the automated test generation method can be

then assessed by the number of mutants the method is able to

identify [10]. However, a large portion of the papers uses

only code coverage for the methods evaluation (e.g., [11] or

T

Generation of Benchmark of Software Testing Methods for Java

with Realistic Introduced Errors

Tomas Potuzak
0000-0002-8140-5178

Department of Computer Science and Engineering/

NTIS – New Technologies for the Information Society,

European Center of Excellence, Faculty of Applied

Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: tpotuzak@kiv.zcu.cz

Richard Lipka
0000-0002-9918-1299

NTIS – New Technologies for the Information

Society, European Center of Excellence/Department

of Computer Science and Engineering, Faculty of

Applied Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: lipka@kiv.zcu.cz

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 215–222

DOI: 10.15439/2023F3165

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 215 Thematic track: Software Engineering for

Cyber-Physical Systems

[12]) or other metrics, such as generated tests count, test

generation time, or memory usage (e.g., in [13]).

In order to enable mutual comparison of various automa-

ted test generation methods and to investigate their ability to

find realistic errors, we propose to create a benchmark

consisting of several various applications with wittingly

introduced errors. The numbers of the errors discovered and

not discovered by each method can be then used for a direct

assessment of the quality of each method. In order to enable

an easy introduction of various errors of various types into

the benchmark applications, we created a tool called Testing

Applications Generator or TAG. The TAG is designed in

and for Java language, similarly to many automated test

generation methods (e.g., [4] or [14]). It enables to introduce

errors of various types into the source codes of methods

bodies of an application. The description of the TAG and its

functioning and the first two applications, which we plan to

utilize as a part of the benchmark of the automated test

generation methods, are the main contributions of this paper.

The remainder of the paper is structured as follows.

Section II briefly discusses the existing automated test

generation methods. Section III is focused on related work.

In Section IV, the TAG is described in detail. The two

benchmark applications are described in Section V. The tests

of the TAG and their results are described in Section VI. The

conclusions and the future work are discussed in Section VII.

II. AUTOMATED TEST GENERATION METHODS

There is a large number of existing test generation

methods, which are based on various technologies and use

various inputs for their functioning (see [15] for details).

Some examples are summarized in following subsections.

A. Commonly Used Technologies in Testing Methods

The test generation methods can be based on a single

technology, but often employ multiple technologies. Control-

flow-based methods utilize control flow diagrams created by

static analysis, for example in [1]. The diagrams are used to

generate tests covering all branches of the program, often in

conjunction with random input data generation, as in [16].

Specification-based methods are somewhat similar to con-

trol-flow-based methods as the tests can be generated from

diagrams utilized for the description of the application, such

as UML diagrams, as in [17], [18]. Different forms of speci-

fication can be used as well, for example use case descrip-

tions employed in [17], [19] or contracts employed in [20].

The search-based methods typically employ a search

meta-heuristic to generate tests including genetic algorithms

(e.g., in [4], [11]), particle swarm optimization (e.g., in [5]),

or ant colony optimization (e.g., in [21]). The meta-heuristic

is typically combined with a technology enabling to evaluate

the found solutions, for example with control-flow diagrams

(e.g., in [22]) or program instrumentation (e.g., in [23]).

Program-execution-based methods employ real or symbo-

lic executions of the tested program for test generation. If the

real program is executed, there is usually some form of code

instrumentation, such as in [24] or [25]. Examples of sym-

bolic-execution-based methods can be found in [26] or [27].

B. Commonly Used Inputs for Testing Methods

The aforementioned and other existing test generation

methods use various primary inputs. In many cases, it is the

source code of the tested program, as for example in [1], [4],

[11], [26], or [27]. The source code does not have to be used

directly. For example, in [1], the static analysis of source

code is used for the generation of control-flow diagrams,

which are in turn used for the generation of the tests. In [4],

the source code is used for the determination of the method

parameters, which are then used by a genetic algorithm.

The primary input can also be an instrumented execution

of the program (e.g., in [24], [25]), or Java bytecode (e.g., in

[12]). Yet another primary input can be a description of the

tested program in some form, for example the UML diagram

(e.g., in [17], [18]) or the contracts description (e.g., in [20]).

It should be noted however that, regardless of utilized

primary input, the resulting generated tests are used for the

testing of a real tested program (i.e., not its model nor

description). That means that, although the source code

and/or executable version of the program may not be

necessary for the generation of the tests, it is required for the

execution of the generated tests. The executed tests should

then discover errors present in the program.

III. RELATED WORK

As we are working on the creation of automated test

generation methods benchmark, which would solve the diffi-

culties of test generation method comparison (see Section I),

we investigated the existing research in this area.

A. Benchmarks of Testing Methods

The benchmarks of testing methods are quite rare, but

there are a few examples. A benchmark was used for a com-

petition of Java unit tests generating tools (Java Unit Testing

Tool Contest 2018) [28]. The benchmark consisted of 59

real-life Java classes from 7 open-source projects. The pro-

jects were selected randomly from a pool of GitHub reposi-

tories, which met predefined criteria, such as having enough

stars, being able to be built by Maven, and containing JUnit

4 tests [28]. From the total number of 2 566 classes of the 7

projects, only classes with at least 1 method with at least 2

condition points were considered further. From them, 59

randomly selected classes were used as the benchmark [28].

For the selection of the projects, an unspecified script was

used. For the class filtering, an extended CKJM library was

used [28]. No intentional introduction of errors was reported

in [28]. For the evaluation of the contesting tools, code

coverage computed by the JaCoCo tool and mutation testing

analysis performed by PIT tool were used [28].

A similar benchmark was used for the Java Unit Testing

Tool Contest 2020 [29]. The selection of the projects was a

216 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

bit different, the predefined criteria were being able to be

built by Gradle or Maven and containing JUnit 4 tests [29].

In the end, 4 projects were selected. Only 1 094 classes with

at least 1 method with at least 4 condition points were consi-

dered further. These classes were further filtered by trying to

generate tests for them using Randoop tool with 10 seconds

time budget for each class. Only the classes, for which at

least one test was generated, were considered further. Using

this filter, 382 classes remained. From them, 60 classes were

randomly selected for the benchmark, while another 10 were

selected based on the past experience [29]. For the class

filtering, JavaNCSS tool was used [29]. Again, no intentional

introduction of errors was reported in [29]. Similarly to [28],

code coverage computed by the JaCoCo tool and mutation

testing analysis performed by the PIT tool were used for the

evaluation of contesting tools [29].

In [10], the creation of a repository of artifacts, usable for

standardized evaluation of mutation-based testing methods,

is described. The authors used a relational database as the

storage of the artifacts and created import scripts for them.

The basis of the repository is a set of Java classes taken from

4 open source projects from GitHub and from a set of simple

Java programs. From the ca. 2 000 classes, ca. 50 000 test

cases and ca. 195 000 mutants were generated using the

existing EvoSuite and PIT tools, respectively. These test

cases and mutants are also stored in the repository [10].

In [8], a benchmark testbed application with artificial err-

or injection for the evaluation of testing methods is descri-

bed. The application is the University Information System

Testbed (TbUIS), a fictional, but functional university study

information system, which includes students, teachers, mana-

gement of exams, and related processes. It is a layered J2EE-

JSP-Spring web application with relational database storage

and object-relational mapping (ORM) using Hibernate. The

application consists of 87 .java and 18 .jsp files with

more than 10 000 lines of code in total. The TbUIS source

code is highly covered by automated unit and frontend

functional tests in order to reduce the number of errors

introduced during the development of the application [8].

To introduce errors into the TbUIS application, the Error

seeder application is used. It operates on the bean (i.e., class)

level. Each bean of the TbUIS application can be replaced

by a version with introduced error or errors. The errors,

which shall be introduced, are selected from a predefined set.

The resulting version of the TbUIS application with the

beans with introduced errors can be then compiled and used

as a part of the benchmark of testing methods [8].

B. Assessing and Comparability of Testing Methods

The diversity of examples, on which the functionality of

the automated test generation methods is demonstrated in

scientific literature (see Section I), is mentioned in several

review papers. A thorough review paper [30] deals with

search-based test generation methods. One of the conclu-

sions is that there is a lack of standardized rigorous way to

assess and compare various methods. Moreover, it is pointed

out that, while many of the test-generating methods can

achieve high code coverage, it is not clear whether the tests

are actually able to find errors in the source code [30].

Similarly, the review paper [31], which is focused on

mutation testing, concludes that the experimental material

used in the papers describing various test generation methods

is typically non-standardized, lacks reusability, and is rarely

available to be shared to support further experiments [31].

One of the conclusions of the review paper [32] focused on

search-based and mutation testing methods is that the

comparability of the automated methods is difficult [32].

IV. TESTING APPLICATIONS GENERATOR

In order to address the difficult comparability of the

automated test generation methods, we decided to create a

benchmark, which would consist of several various applica-

tions with wittingly introduced errors. The number of the

errors discovered and not discovered by each automated test

generation method can be then used for a direct assessment

of the quality of each method. Nevertheless, since various

methods can be focused on specific types of applications

and/or errors, the creation of a single benchmark application

with hardwired errors would be of limited usefulness. Hence,

we created a prototype implementation of the Testing Appli-

cations Generation (TAG) tool. The TAG enables to introdu-

ce errors of various types into the source codes of imported

applications. The TAG is inspired by the TbUIS [8] (see

Section III.A), but is different in many ways (see below).

A. Usage of TAG

The TAG is a Java desktop application with a graphical

user interface (GUI) enabling to import multiple Java appli-

cations. The entire project can be imported (see Secti-

on IV.C), but the source codes are required. The source code

files of each imported application are parsed and the entire

structure of packages, classes, interfaces, and other code

artifacts are stored down to the level of individual methods.

Each method has a single imported body, but additional

copies of the body can be created on user request. The user

can then introduce one or multiple errors into each copy (see

Section IV.D for details). All the created copies are stored.

In order to export an application with selected introduced

errors, the user then only selects the method bodies contain-

ing the required errors and the application is created in a

selected folder. The exported application can be used as a

part of the benchmark of automated test generation methods,

as it contains known introduced errors and, inevitably, other

errors already present in the application prior its import.

So, the TAG is distantly similar to the Error seeder of the

TbUIS (see Section III.A). However, unlike the Error seeder,

the TAG is not designed for a single application. Multiple

applications can be stored and virtually any Java application

with source codes can be imported. There are no require-

ments for a specific technology, such as Spring, the applica-

TOMAS POTUZAK, RICHARD LIPKA: GENERATION OF BENCHMARK OF SOFTWARE TESTING METHODS FOR JAVA 217

Fig. 1 Scheme of the TAG data model

tion must be only compilable by a standard Java compiler

(currently version 11). The introduced errors are also not

limited to a predefined set. Lastly, the Error seeder operates

at the Java beans level (i.e., an entire bean is replaced with a

faulty one), while the TAG operates at the method level (i.e.,

a method body is replaced with a faulty one).

B. Data Model

All the data utilized by the TAG are stored in a relational

database using ORM via Hibernate. The scheme of the data

model is depicted in Fig. 1. The database enables to save the

entire structure of an application project including folder

structure with various types of files (e.g., libraries, resources,

documentation, or build scripts) and the package structure

with classes, interfaces, and other source code artifacts. The

files other than source code files are stored only as type,

name, content, and parent folder. On the other hand, the fol-

ders representing package structure are also stored as packa-

ges and the contained source code files are parsed and stored

as classes, interfaces, methods, and their bodies. The content

of the class outside any method (i.e., typically attributes), so-

called class attributes section are stored as well. For each

method, multiple bodies can be stored and, for each class,

multiple class attributes sections can be stored. The test clas-

ses (or test cases in JUnit terminology) containing individual

tests are parsed as well. However, each test (corresponding

to a method of the test class) has only one body and each test

class has only one class attributes section. The reason is that

the introduction of errors into tests is not expected.

Besides the structures of the imported applications, the

database also contains all necessary code lists, such as access

rights, modifiers, file and folder types, or error types. Some

of them, for example the access rights and modifiers are

expected to hold constant sets of values. To the others, such

as file and folder types or error types, new values can be

added as needed. The database also contains all the errors,

which are introduced into the applications.

C. Application Import

For each application, its entire project can be imported

including the folder structure, source codes, resources files,

libraries, build scripts, and other files. Nevertheless, only the

source codes are required. The contents of other files are

only stored into the database, while the contents of source

code files (i.e., .java files) are parsed down to the method

body level, but not further. That means that the content of the

body of a method is not parsed and is stored as a text seg-

ment. Similarly, a class attributes section (containing mainly

attributes) is stored as a text segment. On the other hand, the

headers of classes and methods are parsed including method

parameters, return values, type parameters, and so on. Test

classes are parsed and stored similarly to normal classes.

During the import, the content of the selected folder with

the imported application is explored and displayed as a tree

to the user, who must mark the source code and tests

subfolders. He or she can also choose the type of other

folders or mark some not required folders as ignored (see

Fig. 2a). Then, the import including the parsing of the source

code files is performed automatically. There are no specific

requirements for the folder structure, it is possible to import

Eclipse or Maven/Gradle styles or customized structures.

If there is a problem during parsing a source code file, the

import is not stopped. Instead, the source code file is stored

into the database as a general file with its entire content “as

is” (similarly to, for example, a resource file). The import

then resumes with the next source code file. This way, one

(or multiple) file with a parsing error does not hinder the

entire import. It is not possible to introduce errors into the

files, whose parsing failed (unless the application is edited

later directly using the GUI of the TAG), but the other

correctly parsed files are not negatively affected. The parsing

error can be caused by syntax errors or by using an unexpec-

ted construction, such as constructions added to newer

versions of Java. Currently, the parser is set to Java 11.

Once the application is imported, its folder and package

structures are displayed as a tree (see Fig. 2b). It is possible

to display the details of its individual items and add/edit/de-

lete them. Theoretically, it is possible to create the entire

application by adding its individual items one by one (i.e.,

without the import), but this approach would be lengthy and

error-prone and it is not recommended. The TAG is no Inte-

grated Development Environment (IDE), its editing capabili-

ties are intended only for little changes, which might be

necessary during the introduction of the errors (see Secti-

on IV.D) or during other minor adjustments of the applica-

tion (e.g., correction of the failed parsing – see above).

Fig. 2 Application import (a) and imported application structure (b)

218 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

D. Error Introduction

The errors introduction is manual in the sense that the user

must manually edit a method body or a class attributes

section, to which he or she intends to insert the error. The

added error should be also added to the list of errors. Each

specific error has its type, name, description and correspond-

ding method body and/or class attributes section. This way,

each method body and class attributes section can be de-

scribed by the errors it contains. This enables easy selection

of intended method bodies and class attributes sections

during the export of the application (see Section IV.E).

Because, within a class, errors can be introduced into

various bodies of the same or of various methods and also

into various class attributes sections, it is possible that some

of the method bodies would not be compatible with some of

the class attributes sections. Hence, the information, which

bodies are compatible with which class attributes sections, is

stored and then utilized during export (see Section IV.E)

The types of the errors can be selected from a list and the

user can readily add new types. Currently, the list is largely

empty, since the common and realistic error types determina-

tion is the part of our future work (see Section VII).

E. Application Export

Each application can be exported in multiple versions,

with different errors or entirely free of artificially introduced

errors. The errors present in the application during the im-

port (i.e., unwittingly introduced during application develop-

ment) will be of course present. Each version is represented

by so-called configuration. The configuration is created by

specifying, which method body shall be used for each me-

thod with multiple method bodies and which class attributes

section shall be used for each class with multiple class attri-

butes sections. The stored information about the compatible

method bodies and class attributes sections is used for check-

ing whether only compatible method bodies and class attri-

butes sections are used together. There can be multiple

configurations per application. All available configurations

are displayed as part of the application tree (see Fig. 2b).

The version of the application corresponding to the confi-

guration can be exported to a selected folder. The export is

automatic. The generation of the folder and package structu-

re is straightforward. The .java files are generated from

the classes and their contents in folders corresponding to

their packages. For this purpose, the user can specify several

features of the code style, such as the usage of spaces or

tabulators for the indentation. The other files are only

created in corresponding folders and filled with their content

stored in the database.

The exported application can be directly used as a part of

a benchmark. If its compilation is required, for example for

the generation or execution of the tests by the benchmarked

test generation methods, it can be performed using a standard

build script, which is usually present. The contemporary

prototype version of the TAG cannot perform the compilati-

on automatically, but it is part of our future work. It is curre-

ntly possible to import end export .class files with byte-

code. However, without automatic compilation, the exported

.class files do not correspond to exported .java files if

some errors were wittingly introduced using the TAG. Hen-

ce, the manual compilation after the export is recommended.

V. BENCHMARK APPLICATIONS

Concurrently with our work on the implementation of the

TAG, we are working on our own benchmark for test genera-

tion methods. This work consists of two main branches –

creation or selection of the applications used for the bench-

mark and selection of the artificially introduced errors into

these applications.

The selection of the errors is part of our future work (see

Section VII). Regarding the benchmark applications, we

decided to create new applications rather than using existing

projects, similarly to the TbUIS (see Section III.A). The

main reason is the consequent full control over these

applications enabling us, among other things, to prepare and

perform their very thorough testing.

Besides the thorough testing, there were several other

requirements for the applications:

• Usage of relational database

• Usage of ORM

• Usage of web services

• Usage of file input and output

• Usage of command line interface (CLI)

• Optionally usage of third party libraries

• Optionally usage of simple GUI for debugging

purposes and simple data input/output.

Based on these requirements, the resulting applications

should use various common technologies and there should be

an opportunity to introduce errors of very different types

(such as a database error versus a web service error). The

GUI was not considered essential, since the test generating

methods are usually not focused on GUI testing. It is also not

considered necessary for all the resulting applications to

meet all the requirements.

Currently, there are two applications, which were develo-

ped by two of our bachelor students (see Acknowledgment

section). The applications are two parts (frontend and back-

end) of a single system – a school agenda of an elementary

or a high school. Both parts are described in Sections V.A

and V.B. During the development of both applications,

approximately half of the development time was devoted to

the unit, integration, and functional testing to limit the num-

ber of errors unwittingly introduced during the development.

Even then, the applications are expected to contain some

errors. However, these errors are likely to be discovered du-

ring the usage of the applications as a part of the benchmark

sooner or later. Once an unwittingly introduced error is

discovered, it will be only documented and its discovery in

the further usages of the benchmark will be observed.

TOMAS POTUZAK, RICHARD LIPKA: GENERATION OF BENCHMARK OF SOFTWARE TESTING METHODS FOR JAVA 219

A. Benchmark Application 1 – School Agenda Backend

Benchmark application 1 (BA1 – School Agenda Back-

end) manages data of elementary or high school agenda

including students, teachers, classrooms, absences, and so

on. It is a realistic application in sense that it would be

utilizable for a real school, but some aspects may be missing

in its data model. Additionally, there is only a basic HTTP

authentication for the access of the web service.

The BA1 is a standard Java application with a layered

architecture utilizing Spring Boot. The data are stored in a

relational database using ORM via Hibernate. There is no

GUI, the only interface of the application is the REST

(Representational State Transfer) web service. The data

transferred using the web service is in JSON format. Besides

the Java Core API classes, the application utilizes several

third-party libraries, such as Jackson, Hibernate, Spring boot,

or JUnit among others.

The source code of the application consists of 77 classes

in 10 packages with a total length of 328 kB. The source co-

de of the unit and integration tests consists of 57 test classes

with 655 tests with a total length of 448 kB. Functional

testing consisting of 111 scenarios was performed manually.

B. Benchmark Application 2 – School Agenda Frontend

Benchmark application 2 (BA2 – School Agenda Front-

end) provides the user interface for the school agenda. It

communicates with the BA1 using the REST web service. It

provides the JavaFX GUI for manual management of the

data and CLI for bulk data import and export.

The BA2 is a standard Java application with a layered

architecture. All the data are acquired from the BA1 REST

web service, there is no direct access to the database. The

data can be imported and exported from and into .json and

.xml files. The application utilizes Jackson and JUnit

among other libraries.

The source code of the application consists of 141 classes

in 44 packages with a total length of 489 kB. The source co-

de of the unit and integration tests consists of 38 test classes

with 524 tests with a total length of 239 kB. Functional

testing consisting of 437 scenarios was performed manually.

VI. TESTS AND RESULTS

The prototype implementation of the TAG was tested in

order to verify its ability to import and parse and export the

applications, which are intended for the benchmark.

A. Testing Environment and Applications

The tests were performed on a standard notebook. Its

hardware consists of dual-core Intel i5-6200U at 2.30 GHz,

8 GB of RAM, 250 GB SSD, and 500 GB HDD with 7 200

RPM. All the imports and exports were performed using the

500 GB HDD (not the 250 GB SSD). The installed software

was Windows 7 SP1 64bit, and Java 11 (64 bit).

Five applications were used for testing. Each application

was represented by a single folder with the entire project.

The applications were developed using various IDEs and

build tools leading to various folder structures. Also, the

applications were developed by four different authors

leading to different Java code styles and different utilized

Java versions. All these features increase the variability of

the applications and hence improve the quality of testing.

First two applications were the BA1 (see Section V.A)

and the BA2 (see Section V.B). Second two applications

were taken from a project focused on traffic assignment

problem – the Dynamic Traffic Assignment (DTA) and

Static Traffic Modeler (STM). The last application was the

TAG itself. The features of the applications are summarized

in Table I. The “Folder structure” describes the folder

structure of the project. Three applications utilize a Maven/

Gradle-based structure while the two remaining utilize an

Eclipse-based style. That does not mean that the same-based

structures are identical, there are slight variations. The “Size

to import” shows the total size of the folders and files, which

are not ignored during the import. The “.java to import

count” is the number of .java files contained in the

imported folders and the “Others to import count” is the

number of all other files contained in the imported folders.

B. Tests Description

The tests were performed the same way for each applica-

tion. In the TAG, the application import was started and the

root folder of the application project was selected as the

input folder. Then, the structure of the project was explored

and displayed as a tree. The tester marked the source and test

folders and also the ignored folders. The ignored folders

were the project settings folders, build and output folders,

and version control folders. The application was then

automatically imported. No errors were introduced into the

imported application. Rather, the imported application was

exported to a different folder without any functional changes.

Several parameters were observed – the number of folders

and files, the number of packages and classes, the number of

unsuccessfully parsed files (see Section IV.C), the import

time, and the export time. Because of the time measurement,

import and export of each application were performed four

times. First time measurement was discarded, as it was

significantly higher than the others, because the data from

the disk was not present in the cache. Three other time

measurements were averaged. Although only three measure-

ments do not offer significant precision, it is enough to get a

good idea of how long the export and import approximately

last, which is the main purpose of the time measurement. The

other parameters did not change between attempts, since the

import and export are both deterministic.

TABLE I FEATURES OF THE APPLICATIONS USED FOR THE TESTING

Feature BA1 BA2 DTA STM TAG

Folder structure Maven/Gradle Eclipse

Size to import [kB] 835 2 856 899 9 945 11 415

.java to import count 134 179 78 305 62

Others to import count 25 408 97 34 39

220 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

Since the introduction of errors, which is the purpose of

the TAG, was not part of these tests, the exported application

should be identical to its imported counterpart. To determine

this, the exported application was compiled and executed

and manual functional testing of randomly chosen functio-

nalities was performed. Moreover, all unit and aggregation

tests present in the application were executed. Direct

comparison of the imported and exported (i.e., generated)

source code was not performed since there are non-

functional differences, such as different indentation, empty

lines, methods order, and so on.

C. Tests Results

The results of the testing are summarized in Table II. It

can be observed that the import and export times are quite

similar for a single application, with the export time being

slightly higher in all instances. The times are also quite low,

under a second in four of five applications, and under 2.5

seconds in the case of the STM. As such, the import and

export times do not pose any problem for the TAG usage.

The times seem to be influenced mainly by the number of

parsed (and generated) .java files.

The parsing of .java files during the import works very

well. There were no parsing errors in two applications,

namely the BA1 and DTA. There were 5 files (2.9%), which

were not parsed correctly, for the BA2, 13 files (3.6%) for

the STM, and 10 (7.6 %) for the TAG. The parsing errors

were caused by Java 14 record construction in the case of

the BA2. In all other cases, the parsing error was caused by

the usage of methods with type parameters (e.g., <T> void

foo(T t)), which our parser currently does not support.

This setback will be corrected as part of our future work (see

Section VII). The unsuccessfully parsed files were stored as

general files with their entire contents (see Section IV.C) and

were correctly recreated similar to resource or library files

during the export. The counts of these files were added to

“Files count” row in Table II. After this adjustment, the

numbers of actually imported files precisely correspond to

the expected numbers of imported files (compare Table II

“Files count” row and Table I “Others to import count” row).

The testing of the exported applications as described in

Section VI.B was performed for all applications successfully,

no errors unwittingly introduced by the TAG were found.

This indicates that even the unsuccessfully parsed .java

files during the import do not pose a problem as long as their

number is low enough. A high number of unsuccessfully par-

TABLE II RESULTS OF THE APPLICATIONS EXPORT AND IMPORT

Feature BA1 BA2 DTA STM TAG

Packages count 10 44 5 24 8

Classes count 134 174 84 363 132

Folders count 27 183 41 50 21

Files count 25 413 97 47 49

Unsuccessfully

parsed files count
0 5 0 13 10

Import time [ms] 688 725 717 2 231 582

Export time [ms] 757 833 841 2 477 664

sed files (e.g., 50 %) would significantly reduce the amount

of source code, to which an error can be intentionally

introduced. This, in turn, would reduce the usefulness of the

application as a part of the benchmark.

VII. CONCLUSION AND FUTURE WORK

In this paper, we described the proposal for a benchmark

of automated test generation methods consisting of realistic

applications with artificially introduced errors. We focused

primarily on the TAG tool, which enables the error introdu-

ction into imported applications and the export of multiple

versions of multiple applications with various sets of

introduced errors. The tests of the prototype implementation

of the TAG were also described and its ability to import and

export application was demonstrated using five applications.

We also described first two applications, which are planned

to be part of the benchmark.

In our future work, we will continue to work on the

implementation of the TAG. These works include updating

the parser to include newer Java constructions and the

methods with type parameters. We also plan to improve user

experience by automatically analyzing the structure of the

imported folder and presetting all the types of files and

folders to the correct types. The automatic compilation of the

exported applications will be added as well.

We will also add common and realistic types of errors,

which will be then introduced into the applications for their

usage as the part of the benchmark. We plan to semi-

automatically process publicly available contents of bug

tracking tools to determine the common types of errors in

developed and maintained applications and their frequency

of occurrence. Then, we will utilize the obtained information

to introduce realistic errors into our benchmark applications

and finish the benchmark of automated test generation

methods. Both the resulting benchmark and the TAG applic-

ations are planned to be made public, once they are finished.

ACKNOWLEDGMENT

The authors wish to thank to Martin Dub and Martin

Jakubašek, who created the BA1 and BA2 applications,

respectively, as part of their bachelor thesis.

REFERENCES

[1] N. Gupta, A. P. Mathur, and M. L. Soffa, “Generating test data for

branch coverage,” in Proceedings ASE 2000 - Fifteenth IEEE

International Conference on Automated Software Engineering,

Grenoble, September 2000, https://doi.org/10.1109/ASE.2000.873666

[2] P. Fröhlich and J. Link, “Automated Test Case Generation from

Dynamic Models,” in ECOOP '00: Proceedings of the 14th European

Conference on Object-Oriented Programming, Cannes, June 2000, pp.

472–491, https://doi.org/10.1007/3-540-45102-1_23

[3] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained

Interaction Testing: A Systematic Literature Study,” in IEEE Access,

vol. 5, November 2017, pp. 25706–25730, https://doi.org/10.1109/

ACCESS.2017.2771562

[4] Z. J. Rashid and M. F. Adak, “Test Data Generation for Dynamic

Unit Test in Java Language using Genetic Algorithm,” in 2021 6th

International Conference on Computer Science and Engineering

TOMAS POTUZAK, RICHARD LIPKA: GENERATION OF BENCHMARK OF SOFTWARE TESTING METHODS FOR JAVA 221

(UBMK), Ankara, September 2021, pp. 113–117, https://doi.org/
10.1109/UBMK52708.2021.9558953

[5] R. J. Cajica, R. E. G. Torres, and P. M. Álvarez, “Automatic
Generation of Test Cases from Formal Specifications using Mutation
Testing,” in 2021 18th International Conference on Electrical
Engineering, Computing Science and Automatic Control (CCE),
Mexico City, November 2021,
https://doi.org/10.1109/CCE53527 .2021.9633118

[6] H. Homayouni, S. Ghosh, I. Ray, and M. G. Kahn, “An Interactive
Data Quality Test Approach for Constraint Discovery and Fault
Detection,” in 2019 IEEE International Conference on Big Data (Big
Data), Los Angeles, December 2019, pp. 200–205, https://doi.org/
10.1109/BigData47090.2019.9006446

[7] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “DOMINO: Fast
and Effective Test Data Generation for Relational Database Schemas,”
in 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), Västerås, April 2018, pp. 12–22,
https://doi.org/10.1109/ICST.2018.00012

[8] M. Bures, P. Herout, and S. A. Bestoun, “Open-source Defect
Injection Benchmark Testbed for the Evaluation of Testing,” in
Proceedings of the 13th IEEE International Conference on Software
Testing, Validation and Verification (ICST), Porto, October 2020, pp.
442–447, https://doi.org/10.1109/ICST46399.2020.00059

[9] M. Kelly, C. Treude, and A. Murray, “A Case Study on Automated
Fuzz Target Generation for Large Codebases,” in International
Symposium on Empirical Software Engineering and Measurement
(ESEM), Porto de Galinhas, Septemmber 2019, https://doi.org/
10.1109/ESEM.2019.8870150

[10] A. V. Pizzoleto, F. C. Ferrari, and G. F. Guarnieri, “Definition of a
Knowledge Base Towards a Benchmark for Experiments with
Mutation Testing,” in SBES '21: Proceedings of the XXXV Brazilian
Symposium on Software Engineering, Joinville, September 2021, pp.
215–220, https://doi.org/10.1145/3474624.3477060

[11] S. Varshney and M. Mehrotra, “A differential evolution based
approach to generate test data for data-flow coverage,” in 2016
International Conference on Computing, Communication and
Automation (ICCCA), Greater Noida, April 2016, pp. 796–801,
https://doi.org/10.1109/CCAA.2016.7813848

[12] J. Zhang, S. K. Gupta, and W. G. Halfond, “A New Method for
Software Test Data Generation Inspired by D-algorithm,” in 2019
IEEE 37th VLSI Test Symposium (VTS), Monterey, April 2019,
https://doi.org/10.1109/VTS.2019.8758641

[13] H. V. Tran, L. N. Tung, and P. N. Hung, “A Pairwise Based Method
for Automated Test Data Generation for C/C++ Projects,” in 2022
RIVF International Conference on Computing and Communication
Technologies (RIVF), Ho Chi Minh City, December 2022,
https://doi.org/10.1109/RIVF55975.2022.10013824

[14] M. Motan and S. Zein, “Android App Testing: A Model for
Generating Automated Lifecycle Tests,” in 2020 4th International
Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT), Istanbul, October 2020, https://doi.org/
10.1109/ISMSIT50672.2020.9254285

[15] T. Potuzak and R. Lipka, “Current Trends in Automated Test Case
Generation,” in FedCSIS 2023, September 2023, to be published

[16] S. Poulding and J. A. Clark, “Efficient software verification:
Statistical testing using automated search,” in IEEE Transactions on
Software Engineering, vol. 36, no. 6, February 2010, pp. 763–777,
https://doi.org/10.1109/TSE.2010.24

[17] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, “Test Case
Automate Generation from UML Sequence diagram and OCL
expression,” in 2007 International Conference on Computational
Intelligence and Security (CIS 2007), Harbin, December 2007, pp.
1048–1052, https://doi.org/10.1109/CIS.2007.150

[18] Meiliana, I. Septian, R. S. Alianto, Daniel, and F. L. Gaol,
“Automated Test Case Generation from UML Activity Diagram and
Sequence Diagram using Depth First Search Algorithm,” in Procedia

Computer Science, vol. 116, October 2017, pp. 629–637,
https://doi.org/10.1016/j.procs.2017.10.029

[19] M. Zhang, T. Yue, S. Ali, H. Zhang, and J. Wu, “A Systematic
Approach to Automatically Derive Test Cases from Use Cases
Specified in Restricted Natural Languages,” in LNCS, vol. 8769,
2014, pp. 142–157, https://doi.org/10.1007/978-3-319-11743-0_10

[20] D. Xu, W. Xu, M. Tu, N. Shen, W. Chu, and C. H. Chang,
“Automated Integration Testing Using Logical Contracts,” in IEEE
Transactions on Reliability, vol. 65, no. 3, November 2016, pp. 1205–
1222, https://doi.org/10.1109/TR.2015.2494685

[21] H. Sharifipour, M. Shakeri, and H. Haghighi, “Structural test data
generation using a memetic ant colony optimization based on evolu-
tion strategies,” in Swarm and Evolutionary Computation, vol. 40,
June 2018, pp. 76–91, https://doi.org/10.1016/j.swevo.2017.12.009

[22] T. Shu, Z. Ding, M. Chen, and J. Xia, “A heuristic transition
executability analysis method for generating EFSM-specified protocol
test sequences,” in Information Sciences, vol. 370–371, November
2016, pp. 63–78, https://doi.org/10.1016/j.ins.2016.07.059

[23] S. Khor and P. Grogono, “Using a genetic algorithm and formal
concept analysis to generate branch coverage test data automatically,”
in Proceedings. 19th International Conference on Automated Software
Engineering, 2004, Linz, September 2004, pp. 346–349,
https://doi .org/10.1109/ASE.2004.1342761

[24] C. Fetzer and Z. Xiao, “An automated approach to increasing the
robustness of C libraries,” in Proceedings International Conference on
Dependable Systems and Networks, Washington D.C., June 2002, pp.
155–164, https://doi.org/10.1109/DSN.2002.1028896

[25] H. Tanno, X. Zhang, T. Hoshino, and K. Sen, “TesMa and CATG:
Automated Test Generation Tools for Models of Enterprise
Applications,” in 2015 IEEE/ACM 37th IEEE International Confe-
rence on Software Engineering, Florence, May 2015, pp. 717–720,
https://doi.org/10.1109/ICSE.2015.231

[26] T. Su, G. Pu, B. Fang, J. He, J. Yan, S. Jiang, and J. Zhao, “Automated
Coverage-Driven Test Data Generation Using Dynamic Symbolic
Execution,” in 2014 Eighth International Conference on Software
Security and Reliability (SERE), San Francisco, June 2014, pp. 98–
107, https://doi.org/10.1109/SERE.2014.23

[27] L. Hao, J. Shi, T. Su, and Y. Huang, “Automated Test Generation for
IEC 61131-3 ST Programs via Dynamic Symbolic Execution,” in
2019 International Symposium on Theoretical Aspects of Software
Engineering (TASE), Guilin, July 2019, https://doi.org/10.1109/
TASE.2019.00004

[28] U. R. Molina, F. Kifetew, and A. Panichella, “Java Unit Testing Tool
Competition: Sixth round,” in SBST '18: Proceedings of the 11th
International Workshop on Search-Based Software Testing, Gothenb-
urg, May 2018, pp. 22–29, https://doi.org/10.1145/3194718.3194728

[29] X. Devroey, S. Panichella, and A. Gambi, “Java Unit Testing Tool
Competition: Eighth Round,” in ICSEW'20: Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, Seoul, June 2020, pp. 545–548, https://doi.org/10.1145/
3387940.3392265

[30] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” in IEEE Transactions on Software
Engineering, vol. 36, no. 6, August 2009, pp. 742–762,
https://doi.org /10.1109/TSE.2009.52

[31] A. V. Pizzoleto, F. C. Ferrari, A. J. Offutt, L. Fernandes, and M.
Ribeiro, “A Systematic Literature Review of Techniques and Metrics
to Reduce the Cost of Mutation Testing,” in Journal of Systems and
Software, vol. 157, November 2019, https://doi.org/10.1016/
j.jss.2019.07.100

[32] R. Jeevarathinam and A. S. Thanamani, “A survey on mutation testing
methods, fault classifications and automatic test cases generation,” in
Journal of Scientific and Industrial Research (JSIR), vol. 70, no. 2,
February 2011, pp. 113–117.

222 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

