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Abstract—The work is devoted to the problem of nonlinear

modeling of objects based on dynamic neural networks.  The

aim  of  the  work  is  to  improve  the  accuracy  of  modeling

dynamic  objects  with  significant  nonlinearities  using  neural

network  models,  and  identify  the  scope  of  their  effective

application.  This  aim  is  achieved  by  applying  the  dynamic

nonlinear models in the form of time delay neural networks.

The scientific novelty of the work lies in the determination of

the dependences between the accuracy of suggested models and

the types of model input signals, as well as the amplitudes of

model input signals. Practical usefulness of the research lies in

the  determination  of  the  area  of  effective  use  of  suggested

models  of  dynamic  objects  with  significantly  nonlinear

features,  such  us  saturation.  Significance  of  the  obtained

results:  the  application  of  the  proposed  models  for

identification  dynamic  objects  with  significantly  nonlinear

characteristics allows to improve the accuracy of the modelling

process  in  comparison  with  models  based  on  deterministic

identification methods, such as integro-power series based on

multidimensional weight functions.

Index  Terms—Identification,  nonlinear  dynamic  objects,

significant nonlinearities, time delay neural networks.

I. INTRODUCTION

ODAY, as a result of the development of technology and
science, practical applications increasingly consider dy-

namic control objects characterized by significantly nonlin-
ear properties. Due to these characteristics, objects can func-
tion in more complex modes than objects with characteristics
in the form of linear or insignificant nonlinear functions [1].
A non-significantly nonlinear function should be understood
as the case when the nonlinear function and its 1st and 2nd or-
der derivatives are continuous over the entire range of input
signal changes. Nonlinear links that do not satisfy this condi-
tion are considered to be significant nonlinearities [2].

T

For  successful  interaction  with  such  objects  (solving
control, management, and diagnostic tasks), it is first of all
necessary to ensure their adequate mathematical support and
effective  modeling  tools.  However,  the  presence  of
significantly  nonlinear  characteristics  makes  the  use  of
existing analytical  methods ineffective.  Such models don’t
reflect the dynamic and nonlinear properties of a real object,

so they cannot provide high identification accuracy [2]. An
up-to-date approach to modeling nonlinear dynamic objects
is the artificial neural network apparatus [3-7].

The  aim  of  the  work is  to  improve  the  accuracy  of
modeling  dynamic  objects  with  significant  nonlinearities
using neural network models, and identify the scope of their
effective application.

This  goal  can  be  achieved  by  examining  the  existing
architectures  of  neural  networks  for  modeling  nonlinear
dynamic  objects  and  identifying  their  advantages,
disadvantages and determining the areas for their effective
use.  The  following  tasks  are  considered  within  the
framework of this work:

1. Study of modeling accuracy of nonlinear objects with

smooth nonlinearity.

2. Study of modeling accuracy of nonlinear objects with

piecewise linear nonlinearity. 

II. RELEVANT WORKS

Today several methods for modeling nonlinear dynamic
objects based on artificial neural networks are known [8, 9].
There are Dynamic Neurospatial Mapping (Dynamic Neuro-
SM) [10,  11],  Time-Delay Neural  Networks (TDNN) [12,
13]  and  Wiener-type  Dynamic  Neural  Networks  (Wiener-
type DNN) [14-16].

Dynamic Neuro-SM type models are improvements over
the well-known Static Neuro-SM models [10, 11], which aim
to map a given approximate model of an object to an exact
model. Dynamic Neuro-SM models use neural networks to
transform an existing (rough) model into a desired (exact)
model using machine learning approach [10]. Such models
provide improved accuracy compared to Static Neurospatial
Mapping  models,  but  assume  some  a  priori  information
about the laws of functioning of the object under study [11].

Wiener-type DNN is based on the principle of building a
nonlinear  dynamic  Winner  model.  This  model  consists  of
two parts arranged in series: linear dynamic and nonlinear
static models [14, 15]. In this case, the dynamic properties of
the object are reproduced by a linear model, and the non-lin-
ear properties are reproduced in a static non-linear model. In
Wiener-type DNN  static non-linear model is implemented as

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 97–102

DOI: 10.15439/2023F3874

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 97 Thematic track: Complex Networks – Theory

and Application



an artificial neural network [14-16]. This structure can 
significantly increase the reliability of the dynamic neural 
model, but has a complex (hybrid) structure, which imposes 
additional requirements on the network learning algorithms 
and narrows the scope of the model. 

Among the considered variants of models TDNN are the 
most general structures consisting of several layers with direct 
connection (direct signal propagation) [12]. Such models are 
capable of learning from the input-output experimental data of 
nonlinear dynamic objects [12, 13]. These models have good 
convergence, which is an advantage over the models based on 
Dynamic Neuro-SM and Wiener-type DNN models, 
mentioned above. So, using of TDNN for modeling dynamic 
objects with highly nonlinear characteristics provides unique 
advantages over other models. 

III. TIME-DELAYED NEURAL NETS 

TDNN models are an effective tool for modeling non-
linear dynamic objects with continuous characteristics. The 
most commonly used structure of TDNN consists of three 
layers: input, hidden and output. 

There are many structures of neural networks: with several 
hidden layers, different activation functions and topologies. 
However, using this models gives more complex expression 
for model output data. This is a significant disadvantage in 
comparison with three-layer neural networks for modeling 
nonlinear dynamic objects. 

The input layer of TDNN includes M neurons, where M is 
a length of the object’s model memory. The number of 
neurons M is chosen in such a way as to best reflect the 
dynamic properties of the object [17]. 

The number of neurons K is chosen in such a way as to 
best fit the training set.). It receive input data xn(t)=[x(tn), x(tn-

1), … , x(tn-M-1)], tn=n∆t , n=1, 2, … The hidden layer includes 
K neurons with a nonlinear activation function. The number 
of neurons K is chosen in such a way as to best reflect the 
nonlinear properties of the object. 

The output layer includes 1 neuron with a linear activation 
function. The signal yn(t) on the output layer at the time tn 
depends as on the value of input signal xn(t) at the current 
moment tn, as on input data x(tn), … , x(tn-M-1) at the times tn, 
... , tn-M-1. So, the output data yn(t) of TDNN model are 
determined by the expression: 
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where b0, bi – biases of the output and hidden layers neurons 
accordingly; S0, Si – activation functions of the output and 
input layers neurons accordingly; wi, wi,j – weighing 
coefficients of the output and hidden layers neurons 
accordingly. 

The activation function can be expressed as a polynomial 
of degree p. Then the output data yn(t) of TDNN model are 
determined by the expression [17, 18]: 
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Fig. 1 shows a three-layer TDNN with M inputs, a hidden 
layer with J neurons, and one output neuron. 

 

Fig. 1. Three-layer TDNN with M inputs and K hidden neurons 

TDNN network can quickly learns dynamic behavior 
taking into account high-order nonlinear characteristics [18, 
19] if they are trained on the data of input-output experiments. 

IV. EXPERIMENTAL SETUP 

The effectiveness of the TDNN models is studied on the 
example of the test object. Test object simulation model with 
a first-order dynamic block and nonlinear block in feedback 
[20] is shown on Fig. 2. 

 

Fig. 2. Block diagram of the test nonlinear dynamical object 

The polynomial function and function with saturation are 
used as a nonlinear feature f(y) in feedback block of the 
simulation model.  

To research the accuracy of modeling dynamic objects 
with significant nonlinearities using neural network models, 
and identify the scope of their effective application it is 
necessary to create training and test datasets from input and 
output signals. 

To form a training and test dataset the test signals x(t) in 
the form of impulse, step, linear and harmonic functions with 
different amplitudes a are applied to the input of the 
simulation model. As a result, a set of output reactions y(t) and 
sequential segments xn(t) of input signal x(t), shifted by one 
value ∆t for each type of nonlinear feature f(y) forms a training 
and test dataset. 

To model objects with different types of nonlinearity, it is 
necessary to train TDNN on each of the generated datasets 
[21-23]. 

To create a neural network, the Keras (keras.io) software 
tool is used. It is one of the key Python libraries for efficiently 
organizing APIs when modeling neural networks of any 
complexity. The library is most effective when building small 
networks with a sequential structure, where layers follow each 
other and one input and one output layer. Although it is 
possible to model more complex neural network structures 
with multiple inputs and outputs. 
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To build feedforward networks with Keras we can use an 
any number of sequential layers of the predefined types: Input, 
Dense and Activation. The library has a ready-made set of loss 
functions and optimization algorithms that allow us to quickly 
train the model and avoid local minima whenever possible. 

As a result, a three-layer neural network was created and 
trained. The input signal x(t) is fed to the M neurons of the 
input layer. The hidden layer consists of K neurons. The 
output layer consists of one neuron with a linear activation 
function. The block diagram of the TDNN is shown on Fig. 3. 
In this figure, the value None in the data dimension vector 
means a variable number of rows in the dataset. 

 
Fig. 3. Structure diagram of the TDNN with M inputs and K hidden neurons 

To determine the best values of M and K in the given 
structure of TDNN a number of neural networks with different 
numbers of neurons in the input M and hidden K layers are 
constructed [24]. The result of experiment in the form of the 
loss as a function of the neurons number in the input M and 
hidden K layers is presented in Fig. 4. 

 

Fig. 4. Loss as a function of the neurons number in the input M and hidden 

K layers 

The result experiment as a dependence of the learning time 
(epoch) on the neurons number in the input M and hidden K 
layers are presented in Fig. 5. As a result of TDNN structure 
experiment, the values M=15 and K=50 were accepted for the 
number of neurons in the input and hidden layers of the TDNN 
respectively. The resulting TDNN was used to research the 
accuracy of models for dynamic objects with significant 
nonlinearities [25, 26]. 

 

Fig. 5. Epochs as a function of the neurons number in the input M and 

hidden K layers 

For the study the accuracy of modeling dynamic objects 
with significant nonlinearities using neural network models, 
and identify the scope of their effective application, two 
experiments were organized and executed:  

1. Study of the scalability of the model to various input 
signals. 

2. Study of extrapolation properties of the model. 

The results of both experiments are compared with the 
results of simulation and identification using deterministic 
identification methods, such as integro-power series based on 
multidimensional weight functions. 

A. Study of the scalability of the model to various input 

signals. 

The training dataset includes impulse signals x(t) = aδ(t) 
various amplitude (a ∈ (0, 1]) at the input of the object and its 
response y(t) on the output. The test dataset includes step 
x(t)=aΘ(t), linear x(t)=at and harmonic x(t)=asin(t) signals 
various amplitude (a ∈ (0, 1]) at the input of the object and its 
response y(t) on the output. 

A TDNN model builds on the data of the training dataset. 
The accuracy of the model is tested on the data of the test 
dataset (signals that are not part of the training sample). 

The experiment executes for objects with nonlinear feature 
f(y) in feedback block in the form of smooth (polynomial) as 
well as saturation function. Based on the results of the 
experiment, we make a conclusion about the area of effective 
use of TDNN models. The model output yn(t) is compared 
with the model output y(t) obtained by the simulation and the 
model output yv(t) based on deterministic identification 
methods, such as integro-power series based on 
multidimensional weight functions [27-29]. 

Fig. 6 shows a comparison of the output signals yn(t), yv(t) 
and y(t), obtained as a result of the input signal x(t)=aδ(t) on 
the TDNN model, integro-power model and simulation the 
nonlinear dynamical object (fig. 2) for nonlinear feature f(y) 
in feedback block in the form of polynomial function. 

This experiment shows comparable modeling accuracy 
using TDNN and integro-power models under the action of 
input signals x(t) = aδ(t) various amplitude (a ∈ (0, 1]). 
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Fig. 6. Сomparison of the output signals yn(t), yv(t) and y(t), obtained as a 

result of the input signal x(t)=aδ(t) (a=0.65) on the TDNN model, integro-

power model and simulation the nonlinear dynamical object respectively for 

nonlinear feature f(y) in feedback block in the form of polynomial function 

This figure shows a comparison of the output signals yn(t), 
yv(t) and y(t), obtained as a result of the input signals 
x(t)=aΘ(t) (fig. 7a), x(t)=at (fig. 7b) and x(t)=asin(t) (fig. 7c) 
on the TDNN model, integro-power model and simulation the 
nonlinear dynamical object for nonlinear feature f(y) in 
feedback block in the form of polynomial function. This 
experiment shows that the TDNN model is significantly 
inferior in accuracy to integro-power models under the action 
of input signals x(t) various amplitude (a ∈ (0, 1]), which were 
not included in the training dataset. 

The conclusion follows from the experiment: TDNN 
models are not invariant to the form of the input signal. The 
TDNN model can adequately reflect the properties of the 
dynamic object in the case of training on a sufficient amount 
of data. The training dataset must include input signals various 
amplitude of the same type as in the test dataset. This is a 
disadvantage of neural network models in comparison with 
models based on deterministic identification methods, such us 
integro-power series on the base of multidimensional weight 
functions [29, 31]. 

B. Study of extrapolation properties of the model. 

The training dataset includes impulse x(t)=aδ(t), step 
x(t)=aΘ(t), linear x(t)=at and harmonic x(t)=asin(t) signals 
various amplitude (a ∈ (0, 1]) at the input of the object and its 
response y(t) on the output. Simulating data are obtained for 
objects with nonlinear feature f(y) in feedback block in the 
form of saturation function.The test dataset includes the same 
input signals with amplitude in the interval (1, 2] and 
responses at the output. The accuracy of the model is tested on 
the data of the test dataset (signals that are not part of the 
training sample).  

The experiment executes for objects with nonlinear feature 
f(y) in feedback block in the form of saturation function. Based 
on the results of the experiment, we make a conclusion about 
the area of effective use of TDNN models. The model output 
yn(t) is compared with the model output y(t) obtained by the 
simulation and the model output yv(t) based on deterministic 
identification methods, such as integro-power series based on 
multidimensional weight functions. 

 
a 

 
b 

 
c 

Fig. 7. Сomparison of the output signals yn(t), yv(t) and y(t), obtained as a 

result of the input signal x(t) (a=0.65) on the TDNN model, integro-power 

model and simulation the nonlinear dynamical object respectively for 

nonlinear feature f(y) in feedback block in the form of polynomial function: 

a – x(t)=aΘ(t); b – x(t)=at; c – x(t)=asin(t); a=0.65 

This figure shows a comparison of the output signals yn(t), 
yv(t) and y(t), obtained as a result of the input signal x(t)=aΘ(t) 
(a=0.7) on the TDNN model, integro-power model and 
simulation the nonlinear dynamical object respectively for 
nonlinear feature f(y) in feedback block in the form of 
saturation function. 
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Fig. 8. Сomparison of the output signals yn(t), yv(t) and y(t), obtained as a 

result of the input signal x(t)=aΘ(t) (a=0.7) on the TDNN model, integro-

power model and simulation the nonlinear dynamical object respectively for 

nonlinear feature f(y) in feedback block in the form of saturation function 

This figure shows a comparison of the output signals yn(t), 

yv(t) and y(t), obtained as a result of the input signal 

x(t)=aΘ(t) (a=1.65) on the TDNN model, integro-power 

model and simulation the nonlinear dynamical object 

respectively for nonlinear feature f(y) in feedback block in the 

form of saturation function. 

This experiment shows that the integro-power model lose 

their accuracy in interpolation and extrapolation tasks when 

dealing with dynamic objects with significant nonlinear 

features, for example, saturation function f(y). The obtained 

simulation results for the dynamic objects with significant 

nonlinear features allow to conclude that the extrapolation 

properties of TDNN model are far superior in accuracy to 

integro-power models under the action of input signals x(t) 

various amplitude (a ∈ (1, 2]) for all types of signals present 

in the training dataset. 

The obtained results make it possible to determine the 

area of effective application of TDNN models when 

modeling dynamic objects with significant nonlinearities. 

CONCLUSION 

The results of this research are as follows. 

The scientific novelty of the work lies in the 
determination of the dependences between the accuracy of 
TDNN models and the types of model input signals, as well 
as the amplitudes of model input signals.  

Practical usefulness of the research lies in the 
determination of the area of effective use of TDNN models – 
dynamic objects with significantly nonlinear features. 

Significance of the obtained results: the application of the 
proposed models for identification dynamic objects with 
significantly nonlinear characteristics allows to improve the 
accuracy of the modelling process in comparison with models 
based on deterministic identification methods, such as 
integro-power series based on multidimensional weight 
functions. 

 

a 

 

b 

Fig. 9. Сomparison of the output signals yn(t), yv(t) and y(t), obtained as a 

result of the input signal x(t)=aΘ(t) on the TDNN model, integro-power 

model and simulation the nonlinear dynamical object respectively for 

nonlinear feature f(y) in feedback block in the form of saturation function: a 

– interpolation task (a=0.65); b – extrapolation task (a=1.65)  

TDNN models are not invariant to the form of the input 
signal. The TDNN model can adequately reflect the properties 
of the dynamic object in the case of training on a sufficient 
amount of data. The training dataset must include input signals 
various amplitude of the same type as in the test dataset. This 
is a disadvantage of neural network models in comparison 
with models based on deterministic identification methods, 
such as integro-power series on the base of multidimensional 
weight functions. 

The interpolation and extrapolation properties of TDNN 

model are far superior in accuracy to integro-power models 

under the action of input signals x(t) various amplitude (a ∈ 

(1, 2]) for all types of signals present in the training dataset 

for dynamic objects with significant nonlinearities. 

The obtained results make it possible to determine the area 
of effective application of TDNN models when modeling 
dynamic objects with significant nonlinearities. 

The proposed models verified using the data of the test 
dynamical objects with significant nonlinearities such as 
polynomial and saturation functions. 
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