

Abstract—Systems' complexity has exponentially increased

in recent years. Security and safety have become crucial in

critical systems, and end-users now demand clear traceability

to ensure protection against errors and external attacks.

Meeting this requirement necessitates significant effort in

testing. Although automated test sequences can handle a large

portion of testing, it is crucial to identify as many errors as

possible within the initial hours or days of the testing period.

This paper introduces a machine learning-based solution that

utilizes learned patterns to determine the test order. It analyzes

which functionalities are more susceptible to errors and

recursively generates the test sequence to be executed at each

step.

Index Terms—automated tests, machine learning, tests

prioritization

I. INTRODUCTION

ODAY, people's safety, entertainment, business deci-

sions, and lives rely heavily on computers and various

software tools. Therefore, it is crucial to ensure their proper

functioning. The most effective approach to achieve this is

by testing the products before they are released on the mar-

ket. Software testing has become an essential component of

any software project being the only way to guarantee high-

quality applications that meets customer requirements, al-

most defects-free.

T

The complexity of software systems is increasing rapidly,

with approximately one third of development costs currently

being spent on electric/electronic development, a figure that

continues to rise. Multiple variants of components are devel-

oped and tested through a series of prototyping phases, often

with different schedules. Consequently, the level of com-

plexity in specification activities has surpassed what can be

effectively handled by traditional testing methods systems

that are reliant on human input [1].

Most system development projects include a separate

stage devoted to requirements specification, another stage

for development and another for testing. All functional re-

quirements must be validated and verified against the imple-

mentation. Testing is crucial especially for safety related in-

dustry, and software requirements are usually categorized as

either "Integration Test" or "Software Test" requirements

based on the content of requirements information. Specific

testing techniques and methods are employed depending on

this classification.

It is crucial to conduct testing before deploying software

to end users to identify and fix errors in a timely manner and

ensure the software is functional as intended. While testing

aims to minimize errors, it is almost impossible to achieve a

software product that is 100% error-free. Product quality is

dependent on various parameters, such as performance, reli-

ability, correctness, testability, and reusability, which can

only be ensured through testing. Although testing can be

time-consuming and expensive, it is better to invest in it

early rather than after customer issues have arisen [2]. Bal-

ancing project costs and benefits/quality is important to

make a development business case feasible. The key ele-

ments that indicate how much testing is enough are provided

test coverage, time, and cost.

Manual testing was the traditional process, but it was

time-consuming and limited by the available timeframe [3].

Hence, most testing activities have shifted to automated soft-

ware testing execution with different tools that are more effi-

cient, reduce time and cost, and increase test coverage.

There is a wide range of testing tools available on the market

that can be customized based on the complexity of the

projects [4].

Recently, the authors have proposed a new paradigm in

testing by extending classic tools to incorporate artificial in-

telligence (AI). This approach offers several benefits, such

as faster and easier test creation, simpler test execution and

analysis, and reduced test maintenance [5]. AI has trans-

formed the testing approach by simplifying test documenta-

tion steps, decreasing maintenance effort, and providing new

ways to interpret the results.

A machine learning approach for automatic testing

Felix Petcusin

Computer Science and

Information Technology,

University of Craiova

Craiova, Romania
felix.petcusin@edu.ucv.ro

Cosmin Stoica Spahiu

Computer Science and

Information Technology,

University of Craiova

Craiova, Romania
cosmin.spahiu@edu.ucv.ro

Liana Stanescu

Computer Science and

Information Technology,

University of Craiova

Craiova, Romania
liana.stanescu@edu.ucv.ro.

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 209–214

DOI: 10.15439/2023F4426

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 209 Thematic track: Software Engineering for

Cyber-Physical Systems

The aim of the current work paper is to present the results

obtained by a prototype system that uses Machine Learning

algorithms for test-cases prioritization. The input is repre-

sented by an existing database of testcases together with the

results obtained from past releases, in an Automotive project.

The system will analyze existing testcases (executed in past

releases), together with the newly created ones in order to

classify the ones with higher risk of failure. They will be ex-

ecuted first in the list.

The remainder of this article is organized as following:

chapter 2 presents the motivation leading to the present work

and summarizes the prior research in this domain, chapter 3

presents an original proof-of-concept application which was

developed and the results obtained during experiments and in

the final chapter there are presented the conclusion and future

directions.

II. RELATED WORK

In recent years, several machine learning (ML) algorithms

have been used to solve a few particularly difficult problems

in the field of automate classifications for systems. Two as-

pects are considered: requirements and tests classification.

An example of such a problem is the identification and

classification of non-functional requirements in requirements

documents. ML-based solutions have shown promising re-

sults that go beyond those of traditional Natural Language

Processing (NLP) approaches.

In [6], the authors work on automatic classification of re-

quirements by performing a systematic review of 24 ML-

based solutions for identifying and classifying NFRs. The au-

thors selected 24 research papers that use 16 different ML al-

gorithms. These algorithms can be divided into three catego-

ries: supervised learning (7 algorithms), unsupervised learn-

ing (4 algorithms), and semi-supervised learning (5 algo-

rithms). The supervised learning algorithms were used in 17

papers (71%), with SVM being the most popular algorithm in

11 studies (45.8%). The authors come to the following con-

clusions: ML-based solutions have potential in classifying

and identifying NFRs; collaboration between RE and ML re-

searchers is needed to address open challenges in the devel-

opment of ML systems for real-world use; The use of ML in

RE opens up exciting possibilities for the development of

novel expert and intelligent systems to support RE tasks and

processes.

Another article [7] presents an approach to automatically

classify content elements of a requirements specification into

requirements or information. The presented approach could

be used in the following ways: classification of content ele-

ments in previously unclassified documents; Perform an anal-

ysis on a previously classified document and assist the user in

identifying elements that are not correctly classified.

The authors propose Convolutional Neural Networks, a

machine learning algorithm that is receiving more and more

attention in the field of natural language processing. To train

the neural network, the authors used a collection of over

10,000 content elements extracted from 89 requirements

specifications from their industry partner. By using 90% of

the content elements as training data and the remaining 10%

as test data, the authors' approach was able to achieve a stable

classification accuracy of about 81%.

In [13], the authors introduce a methodology for automati-

cally assessing the quality of requirements based on input

from field experts who utilize the methodology. The main ob-

jective of this methodology is to predict the quality of new

requirements. To accomplish this, the experts provide an ini-

tial set of requirements that have been previously classified

according to their quality and deemed appropriate. For each

requirement in the set, the authors extract metrics that quan-

tify the quality value of the requirement. The methodology

suggests employing a Machine Learning technique called rule

inference to learn the value ranges for these metrics and de-

termine how they should be combined to interpret the quality

of requirements, as perceived by domain experts

Strictly related to tests classification, the state-of-the-art

approach involves using machine learning algorithms for test

creation and maintenance. This has led to improvements in

reducing maintenance efforts and enhancing product quality.

Machine learning can be used throughout the software testing

life cycle, from test creation to issue management. So, how

can machine learning be applied in testing? There are several

ways to enhance the process:

A. Handling issues:

ML algorithms can be used to classify issues based on

severity levels, predict assignees for issues based on past

experience, cluster issues based on common features, and

prioritize cases based on their relation to issues. Various tools

have been developed in this area [8]:

• classify issues according to severity levels

• predict assignee of an issue according to previous ex-
perience

• cluster issues to see whether they heap together on spe-
cific features

• prioritization of cases by relating to issues

B. Software maintenance

Machine learning techniques can reduce maintenance

efforts by automating the review process. Self-healing

methods can save time by automatically detecting and

suggesting resolutions for broken test cases caused by code

changes [9].

C. New tests generation

As software systems become more complex, it becomes

challenging to define tests that can check the entire product

spectrum. Investing in an ML system that can automatically

generate pattern-based tests is a cost-effective solution. Once

the ML system is trained, it can learn patterns and generate

tests automatically in the long run. Innovative solutions for

automated test generation have been proposed in [10] and [11]

for embedded systems, while [12] proposes a hybrid ML

algorithm to manage test scenarios for printed-circuit boards.

210 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

Experimental results have shown an increase in fault

identification from 57.3% to 78.9%

III. THE METHOD

The testing phases for successive software versions in com-

plex projects are in most cases particularly challenging, both

in terms of cost and time. Several thousand test cases can be

executed during a full test cycle, and the execution time can

be extended to weeks. Given this long duration of testing, a

serious bug significantly increases the cost of the project if it

is discovered in the final phase of the timeframe. This in-

cludes implementation costs and retesting costs. A big ad-

vantage would be to find a way where topics with a high

chance of failing to be executed first. This would make it pos-

sible to evaluate first those functions where there is a high risk

of failure, then those with lower risk, and so on. At the end of

the test phase, only the functions with the lowest risk of fail-

ure remained.

This article presents an original solution that performs an

automated classification of tests based on their scope and de-

termines step by step which tests need to be run next. The de-

cision is based on previous experience and the results of the

current cycle, based on tests already carried out. The solution

uses machine learning algorithms for automated classifica-

tion, result analysis, and determination of the test sequence

for each next step. The application has been designed as a tool

that supports the testing process in the following areas:

• Automated classification of test cases
• Risk assignment - learning phase

• Selection of the test sequence.

A. Testcases definition

The application was designed to be compatible with sys-

tems where tests are designed based on a template that pro-

vides detailed information about the scope and steps of the

tests. The following elements need to be defined for each test

specification and will be considered as input:

Test scope description: This specifies what will be verified

in the current test and is expressed as free text. For example,

"The test is verifying the system's reaction in case of a dam-

aged LED."

Test preconditions: This describes the initial state of the

system, also in free text. For example, "The system is running

with no active errors."

Test steps description: This provides a step-by-step speci-

fication of the tasks that need to be performed to verify the

test scope. For example:

Step 1: Start the system diagnosis and disconnect the load.

Step 2: Turn on the light.

Step 3: Verify if the system detects any errors.

Pass/fail criteria: This defines how to interpret the results

of the previous steps. For example, "If the system detects the

fault, the test is considered passed."

Automation: This refers to a script that can be executed au-

tomatically to perform the specified steps and evaluate the re-

sults.

During a regular test cycle, the tests are grouped into se-

quences based on functionalities. Each sequence is executed

sequentially, and the results are analyzed and documented.

This means that each test is assigned to only one main func-

tionality and is executed when that functionality is the focus.

The proposed solution use the TensorFlow algorithm to

parse each test individually. Based on the analysis of the de-

fined scope and description, it generates a list of functionali-

ties that are directly or indirectly verified. This classification

creates a graph where all the tests are linked to each other

based on predefined keywords, which represent the function-

alities in focus.

B. Dataset

We have generated a dataset using an existing set of real

Testcases used for the validation of an Electronic Control Unit

(ECU) in the automotive industry. Each individual Testcase

in the dataset possesses the following attributes:

• Test scope description

• Test preconditions

• Test steps description

• Pass/fail criteria

Starting from these attributes we have generated two new

attributes that are used for Testcases prioritization.

The first attribute, called Test Priority is obtained by con-

catenating the text information from the Test scope descrip-

tion, Test preconditions and Test steps descriptions. The sec-

ond attribute is called Test Added Value and is obtained based

on the Pass/fail criteria and the results of the interpretation of

the Testcases executed in each of the five releases. The Test

Added Value is a label having values with 0 and 1.

0 - Testcase low value added

1 - Testcase high value added

These labels from the Test Added Value were automati-

cally assigned via a script to each of the Testcases. Prepro-

cessing was performed on the Test Priority attribute to elimi-

nate extraneous information, such as logical expressions and

statements that could not be converted into lexical tokens.

The resulting dataset comprises 5000 Tescases , which

serve as the raw input for our Test prioritization process.

C. The Application description

We utilized two computational methods for our dataset.

The first method is checking the traditional "bag of words"

(BoW) representation, where word occurrences are counted

to create a vector for each sentence. The second method uti-

lizes "word embeddings," a newer approach that assigns each

word a vector preserving semantic meaning. Our experiments

aimed to evaluate the potential of word embeddings (VE)

compared to the classic BoW representation when combined

with deep neural networks for automated Testcases prioriza-

tion.

IV. EXPERIMENTS AND RESULTS

The experiments performed followed a two-step pro-

cessing pipeline:

FELIX PETCUSIN ET AL: A MACHINE LEARNING APPROACH FOR AUTOMATIC TESTING 211

Text vectorization: Each Testcase document was trans-

formed into a numerical vector using either the BoW or VE

method.

Deep learning classification: A suitable deep neural net-

work (NN) was defined, trained, and validated to classify the

vectorized representations obtained in the previous step.

For both models, we applied the standard approach of

cross-validation. Our dataset was split into training and test-

ing sets, with 75% of the examples used for training and the

remaining 25% for testing to measure model accuracy. The

split was performed using the "train_test_split" method from

the scikit-learn package.

A. First Model:

Initially, we made the BoW representation of text. To ac-

complish this, we constructed a vocabulary from our dataset

consisting of a unique word list. Each word was assigned an

index, and every Testcases (example) was then associated

with a vector of dimensions equivalent to the vocabulary size,

which was 2135 in our specific case. Within the vector, each

element indicates the count of occurrences for the correspond-

ing word in our dataset.

For the Testcases classification using deep neural networks

(NN), we utilized Keras. The NN architecture consisted of an

input layer, one hidden layer with 10 nodes, and an output

layer. The hidden layer employed a densely-connected NN

layer of type layers. Dense with the ReLU activation function.

Since we were dealing with a binary classification problem,

we used the sigmoid activation function with a dimensionality

of 1 for the output layer. The optimization of the NN was per-

formed using the Adam algorithm, and binary cross-entropy

served as the loss function.

Using the constructed model, we trained it using our train-

ing data. The training process involved 10 samples per gradi-

ent update, and we performed 20 iterations. The first layer had

21,360 parameters, while the second layer had 11 parameters.

The total number of parameters was calculated as follows:

each feature vector had 2135 dimensions, which required

weights for each feature dimension and each node, resulting

in 2135 * 10 (adding 10 times bias for each node). The layer

had 10 weights and one bias. During the training process, all

21,371 parameters were determined. The results are presented

in Figure 1.

To evaluate the performance of the trained network, we

measured accuracy on both the training and test sets, as well

as the training and validation loss. The first model achieved

an accuracy of 85%.

B. Second Model

In our second model, we employed word embeddings to

represent the requirements, departing from the previous

model that used the Bag-of-Words (BoW) approach to map

each requirement to a single feature vector. Instead, we rep-

resented each word as a numeric vector. There are two options

to acquire word embeddings: training them separately on the

new corpus or using pre-trained versions. In our experiment,

we opted to utilize pre-trained GloVe word embeddings, spe-

cifically the glove6B.50d.txt file, which encompasses

400,000 unique words and has a total size of 822MB. How-

ever, we filtered the embeddings to include only the words

present in our dataset.

To prepare the data for our word embeddings model, we

utilized the pre-processed test and training data and per-

formed tokenization. The Keras Tokenizer utility class was

employed to convert the dataset into a list of integers. Each

integer in the list corresponds to a word in the dictionary that

Fig. 1 Results obtained using first model

212 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

represents the entire corpus. As the length of each require-

ment (example) may differ, we padded the word sequences

with zeros to ensure a consistent length of 100 for our exper-

iment.

For the architecture of our second model, we employed a

deep neural network (NN) comprising an input layer, three

hidden layers, and an output layer. The first layer utilized the

layers.Embedding data type, enabling us to map the examples

represented as lists of integers to a suitable representation for

processing by the subsequent GlobalMaxPool1D layer. The

embedded layer was configured with the following parame-

ters:

Input dimension: 2135, representing the vocabulary size.

Output dimension: 50, indicating the size of the dense vec-

tor.

Input length: 100, denoting the length of the word se-

quence.

The second hidden layer was of type GlobalMaxPool1D,

employing default parameters to downsample the incoming

feature vectors by selecting the maximum value across each

feature dimension.

The third hidden layer was of the Dense Layer type, similar

to the first model.

As we were dealing with a binary classification problem,

akin to the first experiment, we employed the sigmoid activa-

tion function with an output dimension of 1 for the NN mod-

el's output layer. Binary cross-entropy was used as the loss

function to measure the discrepancy between the actual output

and the predicted output.

We optimized our NN using the Adam optimizer. With the

model created, we proceeded to train it using our training

data. We used 10 samples per gradient update and conducted

50 iterations. The results obtained are depicted in Figure 2.

To evaluate the performance of the trained network, we

measured the accuracy on the training and test sets, as well as

the training and validation loss. This model showcased im-

provement over the first model, achieving an accuracy of

89%.

V. CONCLUSION

In the last years, artificial intelligence started to transform

the testing paradigm in ways that could not have been consid-

ered possible some years ago. In the current paper it is pre-

sented an innovative solution applied in the testing domain

based on machine learning algorithms for tests execution.

It is considered the first results and experiments towards

automating classification of new written Testcases in soft-

ware engineering for automotive industry towards test execu-

tion. We have investigated the potential of combining deep

NN models with word representations for improving the per-

formance of this task.

Our results are preliminary, nevertheless, we were able to

obtain an improvement in performance for the word embed-

dings approach, as compared with the baseline bag of words

approach. In the near future we plan to strengthen our results

by expanding our experiments to include different and larger

data sets, as well as to use different and suitably trained deep

NN architectures.

REFERENCES

[1] M.Weber, J.Weisbrod (2003) Requirements engineering in automotive

development: experiences and challenges. IEEE Software,2003,

20(1):16–24

[2] F. Azaïs, S. Bernard, M. Comte, B. Deveautour, S. Dupuis, H. El

Badawi, M.-L. Flottes, P. Girard, V. Kerzerho, L. Latorre, F. Lefèvre,

B. Rouzeyre, E. Valea, T. Vayssadel, A. Virazel, "Development and

Fig. 2 Results obtained using the second model

FELIX PETCUSIN ET AL: A MACHINE LEARNING APPROACH FOR AUTOMATIC TESTING 213

Application of Embedded Test Instruments to Digital Analog/RFs and

Secure ICs", IEEE 26th International Symposium on On-Line Testing

and Robust System Design (IOLTS), pp. 1-4, 2020

[3] A. Adekanmi, “Research on software testing and effectiveness of au-

tomation testing”, 2019

[4] H. Gamido, M. Gamido “Comparative Review of the Features of Au-

tomated Software Testing Tools”, International Journal of Electrical

and Computer Engineering, vol 9, pp. 4473-4478, 2019

[5] https://www.functionize.com/machine-learning-in-software-testing

[6] Binkhonain M., Zhao L, “A review of machine learning algorithms for

identification and classification of non-functional requirements”,

2019, Expert Systems with Applications: X, 1, doi: 10.1016/

j.eswax.2019.100001

[7] Winkler J., Vogelsang A. (2016) Automatic Classification of Require-

ments Based on Convolutional Neural Networks, In: IEEE 24th In-

ternational Requirements Engineering Conference Workshops

(REW), 39–45 doi: 10.1109/REW.2016.021.

[8] K. Sneha, G. M. Malle, "Research on software testing techniques and

software automation testing tools," International Conference on En-

ergy, Communication, Data Analytics and Soft Computing (ICECDS),

pp. 77-81, 2017

[9] https://www.infoq.com/news/2021/03/machine-learning-testing/

[10] S.Roy, S. K. Millican, V.D. Agrawal, "Training Neural Network for

Machine Intelligence in Automatic Test Pattern Generator", 20th In-

ternational Conference on Embedded Systems (VLSID) 2021, pp.

316-321, 2021

[11] S. Roy, S.K. Millican, V.D. Agrawal, "Principal Component Analysis

in Machine Intelligence-Based Test Generation", Microelectronics

Design & Test Symposium (MDTS), pp. 1-6, 2021

[12] M. Liu, F. Ye, X. Li, K. Chakrabarty, X. Gu, “Board-Level Functional

Fault Identification Using Streaming Data”, Computer-Aided Design

of Integrated Circuits and Systems, vol 40, no. 9, pp. 1920-1933,

2021

[13] Parra E., Dimou C., Llorens J., Moreno V., Fraga, A. (2015) A

methodology for the classification of quality of requirements using

machine learning techniques, Information and Software Technology,

67:180–195, doi: 10.1016/j.infsof.2015.07.006.

[14] M.N. Velev, C. Zhang, P. Gao, and A.D. Groce, “Exploiting Abstrac-

tion, Learning from Random Simulation, and SVM Classification for

Efficient Dynamic Prediction of Software Health Problems,” 16th In-

ternational Symposium on Quality Electronic Design (ISQED ’15),

March 2015, pp. 412–418

214 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

