


Abstract—Systems'  complexity  has  exponentially  increased

in  recent  years.  Security  and  safety  have  become  crucial  in

critical systems, and end-users now demand clear traceability

to  ensure  protection  against  errors  and  external  attacks.

Meeting  this  requirement  necessitates  significant  effort  in

testing. Although automated test sequences can handle a large

portion of testing,  it  is  crucial  to identify as many errors as

possible within the initial hours or days of the testing period.

This paper introduces a machine learning-based solution that

utilizes learned patterns to determine the test order. It analyzes

which  functionalities  are  more  susceptible  to  errors  and

recursively generates the test sequence to be executed at each

step.

Index  Terms—automated  tests,  machine  learning,  tests

prioritization

I. INTRODUCTION

ODAY, people's  safety,  entertainment,  business  deci-

sions, and lives rely heavily on computers and various

software tools. Therefore, it is crucial to ensure their proper

functioning. The most effective approach to achieve this is

by testing the products before they are released on the mar-

ket. Software testing has become an essential component of

any software project being the only way to guarantee high-

quality  applications  that  meets  customer  requirements,  al-

most defects-free.

T

The complexity of software systems is increasing rapidly,

with approximately one third of development costs currently

being spent on electric/electronic development, a figure that

continues to rise. Multiple variants of components are devel-

oped and tested through a series of prototyping phases, often

with  different  schedules.  Consequently,  the  level  of  com-

plexity in specification activities has surpassed what can be

effectively handled by traditional  testing methods systems

that are reliant on human input [1].

Most  system  development  projects  include  a  separate

stage  devoted  to  requirements  specification,  another  stage

for development and another for testing. All functional re-



quirements must be validated and verified against the imple-

mentation. Testing is crucial especially for safety related in-

dustry, and software requirements are usually categorized as

either  "Integration  Test"  or  "Software  Test"  requirements

based on the content of requirements information. Specific

testing techniques and methods are employed depending on

this classification.

It is crucial to conduct testing before deploying software

to end users to identify and fix errors in a timely manner and

ensure the software is functional as intended. While testing

aims to minimize errors, it is almost impossible to achieve a

software product that is 100% error-free. Product quality is

dependent on various parameters, such as performance, reli-

ability,  correctness,  testability,  and  reusability,  which  can

only  be  ensured  through  testing.  Although  testing  can  be

time-consuming and  expensive,  it  is  better  to  invest  in  it

early rather than after customer issues have arisen [2]. Bal-

ancing  project  costs  and  benefits/quality  is  important  to

make a  development  business  case  feasible.  The key ele-

ments that indicate how much testing is enough are provided

test coverage, time, and cost.

Manual  testing  was  the  traditional  process,  but  it  was

time-consuming and limited by the available timeframe [3].

Hence, most testing activities have shifted to automated soft-

ware testing execution with different tools that are more effi-

cient,  reduce  time  and  cost,  and  increase  test  coverage.

There is a wide range of testing tools available on the market

that  can  be  customized  based  on  the  complexity  of  the

projects [4].

Recently, the authors have proposed a new paradigm in

testing by extending classic tools to incorporate artificial in-

telligence (AI). This approach offers several benefits, such

as faster and easier test creation, simpler test execution and

analysis,  and  reduced  test  maintenance  [5].  AI  has  trans-

formed the testing approach by simplifying test documenta-

tion steps, decreasing maintenance effort, and providing new

ways to interpret the results.
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The aim of the current work paper is to present the results 

obtained by a prototype system that uses Machine Learning 

algorithms for test-cases prioritization. The input is repre-

sented by an existing database of testcases together with the 

results obtained from past releases, in an Automotive project. 

The system will analyze existing testcases (executed in past 

releases), together with the newly created ones in order to 

classify the ones with higher risk of failure. They will be ex-

ecuted first in the list. 

The remainder of this article is organized as following: 

chapter 2 presents the motivation leading to the present work 

and summarizes the prior research in this domain, chapter 3 

presents an original proof-of-concept application which was 

developed and the results obtained during experiments and in 

the final chapter there are presented the conclusion and future 

directions. 

II. RELATED WORK 

In recent years, several machine learning (ML) algorithms 

have been used to solve a few particularly difficult problems 

in the field of automate classifications for systems. Two as-

pects are considered: requirements and tests classification. 

An example of such a problem is the identification and 

classification of non-functional requirements in requirements 

documents. ML-based solutions have shown promising re-

sults that go beyond those of traditional Natural Language 

Processing (NLP) approaches. 

In [6], the authors work on automatic classification of re-

quirements by performing a systematic review of 24 ML-

based solutions for identifying and classifying NFRs. The au-

thors selected 24 research papers that use 16 different ML al-

gorithms. These algorithms can be divided into three catego-

ries: supervised learning (7 algorithms), unsupervised learn-

ing (4 algorithms), and semi-supervised learning (5 algo-

rithms). The supervised learning algorithms were used in 17 

papers (71%), with SVM being the most popular algorithm in 

11 studies (45.8%). The authors come to the following con-

clusions: ML-based solutions have potential in classifying 

and identifying NFRs; collaboration between RE and ML re-

searchers is needed to address open challenges in the devel-

opment of ML systems for real-world use; The use of ML in 

RE opens up exciting possibilities for the development of 

novel expert and intelligent systems to support RE tasks and 

processes. 

Another article [7] presents an approach to automatically 

classify content elements of a requirements specification into 

requirements or information. The presented approach could 

be used in the following ways: classification of content ele-

ments in previously unclassified documents; Perform an anal-

ysis on a previously classified document and assist the user in 

identifying elements that are not correctly classified. 

The authors propose Convolutional Neural Networks, a 

machine learning algorithm that is receiving more and more 

attention in the field of natural language processing. To train 

the neural network, the authors used a collection of over 

10,000 content elements extracted from 89 requirements 

specifications from their industry partner. By using 90% of 

the content elements as training data and the remaining 10% 

as test data, the authors' approach was able to achieve a stable 

classification accuracy of about 81%.  

In [13], the authors introduce a methodology for automati-

cally assessing the quality of requirements based on input 

from field experts who utilize the methodology. The main ob-

jective of this methodology is to predict the quality of new 

requirements. To accomplish this, the experts provide an ini-

tial set of requirements that have been previously classified 

according to their quality and deemed appropriate. For each 

requirement in the set, the authors extract metrics that quan-

tify the quality value of the requirement. The methodology 

suggests employing a Machine Learning technique called rule 

inference to learn the value ranges for these metrics and de-

termine how they should be combined to interpret the quality 

of requirements, as perceived by domain experts 

Strictly related to tests classification, the state-of-the-art 

approach involves using machine learning algorithms for test 

creation and maintenance. This has led to improvements in 

reducing maintenance efforts and enhancing product quality. 

Machine learning can be used throughout the software testing 

life cycle, from test creation to issue management. So, how 

can machine learning be applied in testing? There are several 

ways to enhance the process: 

A. Handling issues: 

ML algorithms can be used to classify issues based on 

severity levels, predict assignees for issues based on past 

experience, cluster issues based on common features, and 

prioritize cases based on their relation to issues. Various tools 

have been developed in this area [8]: 

• classify issues according to severity levels 

• predict assignee of an issue according to previous ex-
perience 

• cluster issues to see whether they heap together on spe-
cific features 

• prioritization of cases by relating to issues  

B. Software maintenance  

Machine learning techniques can reduce maintenance 

efforts by automating the review process. Self-healing 

methods can save time by automatically detecting and 

suggesting resolutions for broken test cases caused by code 

changes [9]. 

C. New tests generation 

As software systems become more complex, it becomes 

challenging to define tests that can check the entire product 

spectrum. Investing in an ML system that can automatically 

generate pattern-based tests is a cost-effective solution. Once 

the ML system is trained, it can learn patterns and generate 

tests automatically in the long run. Innovative solutions for 

automated test generation have been proposed in [10] and [11] 

for embedded systems, while [12] proposes a hybrid ML 

algorithm to manage test scenarios for printed-circuit boards. 
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Experimental results have shown an increase in fault 

identification from 57.3% to 78.9% 

III. THE METHOD 

The testing phases for successive software versions in com-

plex projects are in most cases particularly challenging, both 

in terms of cost and time. Several thousand test cases can be 

executed during a full test cycle, and the execution time can 

be extended to weeks. Given this long duration of testing, a 

serious bug significantly increases the cost of the project if it 

is discovered in the final phase of the timeframe. This in-

cludes implementation costs and retesting costs. A big ad-

vantage would be to find a way where topics with a high 

chance of failing to be executed first. This would make it pos-

sible to evaluate first those functions where there is a high risk 

of failure, then those with lower risk, and so on. At the end of 

the test phase, only the functions with the lowest risk of fail-

ure remained.  

This article presents an original solution that performs an 

automated classification of tests based on their scope and de-

termines step by step which tests need to be run next. The de-

cision is based on previous experience and the results of the 

current cycle, based on tests already carried out. The solution 

uses machine learning algorithms for automated classifica-

tion, result analysis, and determination of the test sequence 

for each next step. The application has been designed as a tool 

that supports the testing process in the following areas:  

• Automated classification of test cases  
• Risk assignment - learning phase  

• Selection of the test sequence. 

A. Testcases definition 

The application was designed to be compatible with sys-

tems where tests are designed based on a template that pro-

vides detailed information about the scope and steps of the 

tests. The following elements need to be defined for each test 

specification and will be considered as input: 

Test scope description: This specifies what will be verified 

in the current test and is expressed as free text. For example, 

"The test is verifying the system's reaction in case of a dam-

aged LED." 

Test preconditions: This describes the initial state of the 

system, also in free text. For example, "The system is running 

with no active errors." 

Test steps description: This provides a step-by-step speci-

fication of the tasks that need to be performed to verify the 

test scope. For example: 

Step 1: Start the system diagnosis and disconnect the load. 

Step 2: Turn on the light. 

Step 3: Verify if the system detects any errors. 

Pass/fail criteria: This defines how to interpret the results 

of the previous steps. For example, "If the system detects the 

fault, the test is considered passed." 

Automation: This refers to a script that can be executed au-

tomatically to perform the specified steps and evaluate the re-

sults. 

During a regular test cycle, the tests are grouped into se-

quences based on functionalities. Each sequence is executed 

sequentially, and the results are analyzed and documented. 

This means that each test is assigned to only one main func-

tionality and is executed when that functionality is the focus. 

The proposed solution use the TensorFlow algorithm to 

parse each test individually. Based on the analysis of the de-

fined scope and description, it generates a list of functionali-

ties that are directly or indirectly verified. This classification 

creates a graph where all the tests are linked to each other 

based on predefined keywords, which represent the function-

alities in focus. 

B. Dataset 

We have generated a dataset using an existing set of real 

Testcases used for the validation of an Electronic Control Unit 

(ECU) in the automotive industry. Each individual Testcase 

in the dataset possesses the following attributes: 

• Test scope description 

• Test preconditions 

• Test steps description 

• Pass/fail criteria 

Starting from these attributes we have generated two new 

attributes that are used for Testcases prioritization. 

The first attribute, called Test Priority is obtained by con-

catenating the text information from the Test scope descrip-

tion, Test preconditions and Test steps descriptions. The sec-

ond attribute is called Test Added Value and is obtained based 

on the Pass/fail criteria and the results of the interpretation of 

the Testcases executed in each of the five releases. The Test 

Added Value is a label having values with 0 and 1.  

0 -    Testcase low value added 

1 -    Testcase high value added 

These labels from the Test Added Value were automati-

cally assigned via a script to each of the Testcases.  Prepro-

cessing was performed on the Test Priority attribute to elimi-

nate extraneous information, such as logical expressions and 

statements that could not be converted into lexical tokens.   

The resulting dataset comprises 5000 Tescases , which 

serve as the raw input for our Test prioritization process.  

C. The Application description 

We utilized two computational methods for our dataset. 

The first method is checking the traditional "bag of words" 

(BoW) representation, where word occurrences are counted 

to create a vector for each sentence. The second method uti-

lizes "word embeddings," a newer approach that assigns each 

word a vector preserving semantic meaning. Our experiments 

aimed to evaluate the potential of word embeddings (VE) 

compared to the classic BoW representation when combined 

with deep neural networks for automated Testcases prioriza-

tion. 

IV. EXPERIMENTS AND RESULTS 

The experiments performed followed a two-step pro-

cessing pipeline: 
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Text vectorization: Each Testcase document was trans-

formed into a numerical vector using either the BoW or VE 

method. 

Deep learning classification: A suitable deep neural net-

work (NN) was defined, trained, and validated to classify the 

vectorized representations obtained in the previous step. 

For both models, we applied the standard approach of 

cross-validation. Our dataset was split into training and test-

ing sets, with 75% of the examples used for training and the 

remaining 25% for testing to measure model accuracy. The 

split was performed using the "train_test_split" method from 

the scikit-learn package. 

A. First Model: 

Initially, we made the BoW representation of text. To ac-

complish this, we constructed a vocabulary from our dataset 

consisting of a unique word list. Each word was assigned an 

index, and every Testcases (example) was then associated 

with a vector of dimensions equivalent to the vocabulary size, 

which was  2135  in our specific case. Within the vector, each 

element indicates the count of occurrences for the correspond-

ing word in our dataset. 

For the Testcases classification using deep neural networks 

(NN), we utilized Keras. The NN architecture consisted of an 

input layer, one hidden layer with 10 nodes, and an output 

layer. The hidden layer employed a densely-connected NN 

layer of type layers. Dense with the ReLU activation function. 

Since we were dealing with a binary classification problem, 

we used the sigmoid activation function with a dimensionality 

of 1 for the output layer. The optimization of the NN was per-

formed using the Adam algorithm, and binary cross-entropy 

served as the loss function. 

Using the constructed model, we trained it using our train-

ing data. The training process involved 10 samples per gradi-

ent update, and we performed 20 iterations. The first layer had 

21,360 parameters, while the second layer had 11 parameters. 

The total number of parameters was calculated as follows: 

each feature vector had 2135 dimensions, which required 

weights for each feature dimension and each node, resulting 

in 2135 * 10 (adding 10 times bias for each node). The layer 

had 10 weights and one bias. During the training process, all 

21,371 parameters were determined. The results are presented 

in Figure 1. 

To evaluate the performance of the trained network, we 

measured accuracy on both the training and test sets, as well 

as the training and validation loss.  The first model achieved 

an accuracy of 85%. 

B. Second Model 

In our second model, we employed word embeddings to 

represent the requirements, departing from the previous 

model that used the Bag-of-Words (BoW) approach to map 

each requirement to a single feature vector. Instead, we rep-

resented each word as a numeric vector. There are two options 

to acquire word embeddings: training them separately on the 

new corpus or using pre-trained versions. In our experiment, 

we opted to utilize pre-trained GloVe word embeddings, spe-

cifically the glove6B.50d.txt file, which encompasses 

400,000 unique words and has a total size of 822MB. How-

ever, we filtered the embeddings to include only the words 

present in our dataset. 

To prepare the data for our word embeddings model, we 

utilized the pre-processed test and training data and per-

formed tokenization. The Keras Tokenizer utility class was 

employed to convert the dataset into a list of integers. Each 

integer in the list corresponds to a word in the dictionary that 

Fig.  1 Results obtained using first model 
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represents the entire corpus. As the length of each require-

ment (example) may differ, we padded the word sequences 

with zeros to ensure a consistent length of 100 for our exper-

iment. 

For the architecture of our second model, we employed a 

deep neural network (NN) comprising an input layer, three 

hidden layers, and an output layer. The first layer utilized the 

layers.Embedding data type, enabling us to map the examples 

represented as lists of integers to a suitable representation for 

processing by the subsequent GlobalMaxPool1D layer. The 

embedded layer was configured with the following parame-

ters: 

Input dimension: 2135, representing the vocabulary size. 

Output dimension: 50, indicating the size of the dense vec-

tor. 

Input length: 100, denoting the length of the word se-

quence. 

The second hidden layer was of type GlobalMaxPool1D, 

employing default parameters to downsample the incoming 

feature vectors by selecting the maximum value across each 

feature dimension. 

The third hidden layer was of the Dense Layer type, similar 

to the first model. 

As we were dealing with a binary classification problem, 

akin to the first experiment, we employed the sigmoid activa-

tion function with an output dimension of 1 for the NN mod-

el's output layer. Binary cross-entropy was used as the loss 

function to measure the discrepancy between the actual output 

and the predicted output. 

We optimized our NN using the Adam optimizer. With the 

model created, we proceeded to train it using our training 

data. We used 10 samples per gradient update and conducted 

50 iterations. The results obtained are depicted in Figure 2. 

To evaluate the performance of the trained network, we 

measured the accuracy on the training and test sets, as well as 

the training and validation loss. This model showcased im-

provement over the first model, achieving an accuracy of 

89%. 

V. CONCLUSION 

In the last years, artificial intelligence started to transform 

the testing paradigm in ways that could not have been consid-

ered possible some years ago. In the current paper it is pre-

sented an innovative solution applied in the testing domain 

based on machine learning algorithms for tests execution. 

It is considered the first results and experiments towards 

automating classification of new written Testcases in soft-

ware engineering for automotive industry towards test execu-

tion. We have investigated the potential of combining deep 

NN models with word representations for improving the per-

formance of this task.  

Our results are preliminary, nevertheless, we were able to 

obtain an improvement in performance for the word embed-

dings approach, as compared with the baseline bag of words 

approach. In the near future we plan to strengthen our results 

by expanding our experiments to include different and larger 

data sets, as well as to use different and suitably trained deep 

NN architectures. 
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