
Compilation through interpretation
Adam Grabski

0000-0002-6283-8461
Warsaw Univeristy of Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
Email: adam.gr@outlook.com

Ilona Bluemke
0000-0002-2894-5976

Warsaw Univeristy of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Email: Ilona.Bluemke@pw.edu.pl

Abstract—As static metaprogramming is becoming more rele-
vant, compilers must adapt to accommodate them. This requires
exposing more information about the code, from the compiler to
the programmer as well as more powerful compile-time function
execution capabilities. The Interpreter component of a compiler
therefore becomes more important.

In this paper a novel approach to compiler architecture that
places the Interpreter as the central component of the compiler
is proposed. Translation of user code into the executable form is
done by an Interpreter, written in the target language. The data
structures of Interpreter are accessible also to the programmer.
Such solution significantly improves flexibility and extensibility
of the compiler and enables execution of any code at the compile-
time.

Compile Time Function Execution (CTFE) First pattern was
designed for low-level, non-garbage-collected, reflection-enabled
language C-=-1. This is a new programming language, which
allows the programmer to execute any code at the compile time,
as well as to analyze and modify the program structure. Grace
to the extensibility of the designed compiler, programs written in
C-=-1 can also generate marshalling bindings for other languages
and support a variety of programming paradigms.

The significant flexibility and extensibility of CTFEF caused
severe problems in compiler construction. The compiler appeared
very complex, its parts, especially Interpreter, were very diffi-
cult to debug. Compiler operates on inflexible data structures,
accessible also for a programmer. They are therefore a part
of the compiled languages standard library and backwards
compatibility must be maintained.

I. INTRODUCTION

C
OMPILE-time function execution (CTFE) is an aspect of
a programming language, that allows the programmer to

execute code at compile-time. It has been gaining popularity
with programming languages without virtual machines such as
Rust [1] or C++ [2]. The goals and capabilities of CTFE de-
pend on the language and are discussed in details in section II.

In this paper a new approach to compiler construction
that places Compile Time Function Execution capabilities
as the first priority is proposed. This architecture is called
CTFEF: Compile Time Function Execution First. CTFEF
builds the compiler around the Interpreter component. The
goal of this approach is to shorten the initial stage of compiler
bootstrapping [3], [4], better support languages built around
static metaprogramming and make the compiler more exten-
sible. The role of the compiler is to construct the semantic
model of the program being compiled and pass it as data to
the interpreted Compiler-Interface module. Compiler-Interface
then transforms the model into the assembly language to be

compiled into executable. This approach was created during
implementation of the compiler for C-=-1, a new language that
prioritizes static metaprogramming. Using CTFEF approach
causes many implementation difficulties. Data structures used
within the compiler are tightly coupled with the compiled
language. These problems and how they were solved in C-
=-1 compiler are described in section V.

The design of that language is described in section III.
Related work is briefly shown in section II. In section IV
the structure of a CTFEF compiler and interactions among its
components are presented.

II. RELATED WORK

Many currently used programming languages allow the pro-
grammer to execute some code at compile time, for example:
C# [5], [6], Rust [1], [7] and C++ [8].

Rust language compiler is the most similar in capability, to
what was demonstrated with C-=-1, as a feature of CTFEF.
It allows the user to write code that performs some transfor-
mations of the program, and interact with the environment
during the build process. The two relevant features are build
scripts and macros. Rust macros, similar to the classic C-
style preprocessor macros, generate additional code as text.
The major difference between the systems is that Rust macros
operate on tokens, rather than text, and use syntax similar to
regular Rust code. This mechanism is powerful, allowing the
user to rewrite code to avoid repetition, simplify certain tasks
and create new syntax. They are however unable to reflect
on the program or obtain some information available to the
compiler.

Build scripts, on the other hand, are programs that execute
before the compilation of the main package. They prepare the
environment for building the program, for example, compile
external dependencies. The structure of the program being
compiled, is not available for build scripts. Build scripts
accessing such data, would have to analyze the code by
themselves, without any compiler assistance, and that makes
automatic generation of bindings for other programming lan-
guages very difficult.

C# compiler, called Roslyn [9], has the closest set of
capabilities to what CTFEF aims to achieve. Its architecture
allows for user-defined analyzers and code generators using
a program model generated by the compiler [9]. These com-
piler extensions can be used and distributed as regular code

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 103–109
DOI: 10.15439/2023F4830

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 103 Topical area: Software, System and Service Engineering



packages, for example using nuget package manager [10].
C# code analyzers have access to entire analyzed code-base
and to semantic analysis functionality of the compiler. Using
CTFEF for the purposes of code analysis would not offer any
additional benefits.

C# code generators are more limited. They can only add new
files, not modify the existing ones. All code generators operate
on a read-only snapshot of the code base. This also means that
if more than one generator operates during compilation, they
are unaware of the files created by other generators[11]. This
limitation was introduced for a number of reasons. If source
generators could influence each other, the order in which they
run would become important and could lead to unpredictable
behavior. Compilation performance would also be affected,
as parallelization of source generators would become more
difficult or even impossible.

Although CTFEF was inspired by the C# compiler, there
are significant differences between them. C# compiler ex-
tensions are separate, compiled, dynamic libraries loaded by
the compiler and executed as a regular code. In CTFEF
components that analyze and generate code are part of regular
code base and are not compiled separately. The intermediate
representation of these modules is interpreted at compile time,
together with other parts of compiler, and operate on the same
representation of user program. CTFEF is further described in
section IV.

III. DESIGN OF C-=-1

C-=-1 is a new programming language, designed as low-
level and non-garbage-collected and compiled to native ma-
chine code, similar to C, C++ or Rust. What differentiates
C-=-1 are its two core principles: all code is executable at
compile-time and support for metaprogramming. The primary
purpose of this language was to investigate how these ideas
influence software written in it [12].

C-=-1 is a simple language, built with minimum set of
features needed to demonstrate the usefulness of the proposed
metaprogramming features. They are discussed further in
section III-B. The primary motivation for those mechanisms
was to provide to a programmer the ability to create domain
specific static analysis and code generation tools, without
creating a separate program.

A. Type system

C-=-1 type system is similar to type system in C++. Program
may contain user defined classes, with members which may
have limited accessibility. Generic programming is achieved
by templates, although they are much more limited than the
ones present in C++. The user may also use pointers to objects,
with arbitrary indirection (for example pointer to pointer to
object). Additionally, the language contains the concept of an
interface, similar to the one found in C# [13].

B. Attributes and metaprogramming

Metaprogramming in C-=-1 is based on attributes. Attributes
work in a manner similar to the ones found in C#. They are

types, which may contain fields and methods. They can also
be used to annotate other elements of the program, such as
types, functions or variables.

In C-=-1 these attributes may implement special member
functions that react to the use of an annotated program
element. For example, an attribute that can be attached to
a function, may implement onCall special member function.
It will be called at compile time, for each invocation of the
annotated procedure. Within the special method the attribute
will have access to the semantic model of the call site. It may
then modify the semantic model or report warnings or errors.

Listing 1 contains an example of a C-=-1 attribute providing
static analysis: noDiscard. It works in the same manner as the
attribute of the same name present in C++17 [14]: the result
of invoking the annotated function must be used. To declare
an attribute in C-=-1, the att keyword is used. After that,
attribute targets should be listed in angled brackets, as in line
0 of Listing 1. Valid targets for attributes include a number
of language elements, such as types, functions, variables and
fields. Attribute from Listing 1 declares two member functions:
attach in line 4 and onCall in line 6. Listing 2 contains an
example of using the noDiscard attribute. All uses of the
noDiscardFunction, except for the one on line 3 are valid.
Using the function in a statement as opposed to an expression
causes a compile-time error.

The attach method is called after names of all program
elements have been gathered, but before compiler starts to
analyze function bodies. It is common among all attribute
targets and accepts the descriptor of the attached program
element (function, field, type, etc.). Attribute can change
aspects of the program that affect function overload resolution,
such as whether a function is invokable at run or compile time,
only from within the attach method.

The onCall method is an example of a function reacting to
use an annotated program element. These methods are specific
to a given attribute target. Within this function, the attribute
may analyze and modify the code, as well as raise errors or
warnings.

Listing 1: noDiscard attribute in C-=-1
0public att<function> NoDiscard

1{

2public fn attach(f: functionDescriptor)

3{}

4public fn onCall(call:

functionCallExpression*)

5{

6if(call._parentStatment != null<

IInstruction>())

7raiseError(

8&(call._pointerToSource),

9"Return value of a no-

discard function is not

used",

10123

11);

12}

13}

Lines 6 to 11 of Listing 1 are an example of a C-=-1 attribute
providing static analysis. The onCall method checks whether

104 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



the attached function is invoked in an expression or instruction
context. Calling a function as a statement means that the result
of that invocation is discarded by the caller. This may indicate
an error, when the function has no other side effects. If that is
the case, the attribute calls the raiseError function, which is
provided as a compiler intrinsic, that generates a compilation
error. The example presented in Listing 1, although very basic,
demonstrates the ability to implement a form of static analysis
that typically requires modifying the compiler or creating an
external tool.

Listing 2: Example of using noDiscard attribute from Listing 1
0 [noDiscard()]

1 fn noDiscardFunction() -> usize;

2 fn main() -> usize {

3 noDiscardFunction();

4 // error 123: Return value of

5 // a no-discard function is not used

6 let x = noDiscardFunction(); // ok

7 let y = x + noDiscardFunction(); // ok

8 return noDiscardFunction(); // ok

9 }

IV. DESIGN OF THE COMPILER

CTFEF approach was created during implementation of the
first compiler for the C-=-1 language[12]. CTFEF compiler
has four major components:

1) Frontend.
2) Interpreter.
3) Compiler Interface.
4) Backend.

Figure 1 contains a diagram with an overview of how these
parts interact with each other, during the compilation process.
Frontend, described in section IV-A, parses the code in the
compiled language and constructs its intermediate represen-
tation, using Interpreter’s data structures. The structure and
form of the intermediate representation is not specified by
the CTFEF approach, as long as it contains all semantically
relevant information from the source program. It is used to
analyze both user code and the Compiler Interface. After the
intermediate representation is constructed, it is passed to the
Interpreter, which is described in section IV-B. Compiler In-
terface intermediate representation is then executed, using the
user program as data. This step converts the semantic model
of the program into the Backends intermediate language.
This process is further explained in section IV-C. Finally, the
Backend generates the executable file.

A. Frontend

In the CTFEF approach, Frontend serves the same role of
constructing the programs intermediate representation, as in
conventional compilers [3]. The major difference lays in the
data structures used to describe the program. For a CTFEF
compiler, they must be accessible to the program running
within the Interpreter. This may make Frontend more complex.
The additional challenge of representing a user program,
using Interpreter data structures, depends on the design of the
Interpreter.

Fig. 1: CTFEF compiler structure

Fig. 2: Example of circular reference in meta code

B. Interpreter

In CTFEF, Interpreter is main component of the compiler. It
executes the Compiler-Interface which translates the interme-
diate representation into the Backend’s assembly and serves as
what is sometimes called the ’middle-end’ of the compiler[15].
To do it, it must be able to treat the program’s intermediate
representation both as code and data.

An important issue for CTFEF compiler is decision what

ADAM GRABSKI, ILONA BLUEMKE: COMPILATION THROUGH INTERPRETATION 105



code can be executed at compile-time. In some languages
it may be possible to introduce circular references between
the functions that modify the codebase. Figure 2 contains a
diagram of such scenario. A, B and C are functions. If function
B is modified by function C and B invokes C, the behavior
of function A is unpredictable. This problem will only be
magnified by larger program sizes.

One of possible solutions, to the above-mentioned problem,
is to restrict which functions can be invoked at compile time.
C-=-1 allows code within a compile time context to invoke
procedures only from other packages, declared explicitly as de-
pendencies. Circular references between packages, as in most
other languages, are forbidden. C-=-1 additionally prohibits
modification of dependencies. Therefore, it is impossible for
a function to modify a procedure, it depends on.

C. Compiler Interface

Compiler Interface translates the program’s intermediate
representation into the Backend’s assembly language. This
component is interpreted during compilation and may be
provided by the user. In case of C-=-1, compiler interface
could be supplied to the compiler, the same way that the code
being compiled is passed, as a collection of source files. Figure
IV reflects this decision, treating the Compiler Interface as an
input into the compiler, same as user code.

What is unique about CTFEF is that this part of the
compiler can be written in the target language, during initial
bootstrapping of the compiler bootstrapping process, i.e. initial
implementation using another language [3], [4]. In case of
the C-=-1 compiler, C++ was used to implement Frontend,
Backend and Interpreter, with Compiler Interface written in
C-=-1 [12].

Compiler Interface contains a function marked as the Com-
piler Interface Entry-point. That procedure must accept a set of
modules to be compiled and a Compilation Context that is used
to generate the Backends assembly. The module descriptors
that are passed to the Compiler Interface are built by the
Frontend, as can be seen in Figure 1.

After the Compiler Interface finishes generating Backend
assembly, the Compiler Backend is invoked to generate the
binary executable.

D. Backend

CTFEF does not put any additional requirements on com-
piler Backend. When using this approach, a generic Backend
library can be used. C-=-1 compiler used LLVM[16] as its
backend.

The Backend code must be invokable from within the inter-
preted program in the target language. Depending on how the
Interpreter was designed, this may require significant effort.
Compiler Backends are large and for the Compiler Interface
to take advantage of them, their entire interface must be fully
available in the interpreted context. This means exposing each
function and type within the library to the interpreted code, by
duplicating their signatures. These bindings could feasibly be
generated automatically [17], but this technique was not used
when implementing C-=-1 compiler.

V. IMPLEMENTATION

The first CTFEF was created for a new language: C-=-
1, using generic parser generator and Backend. The most
important aspect of implementing a CTFEF compiler is the
design of the data structures, described in section V-A, that
will be used by the Interpreter.

In order to exploit CTFEF approach in design of a compiler
the language should contain a set of data structures to describe
user code i.e. a Semantic Model. It will allow the programmer
to interact and manipulate the structure of the program at
compile-time. The Semantic model designed and implemented
for C-=-1 is described in section V-B.

The final part of a CTFEF compiler is the Backend Interface.
It is a program, written in the target language, and executed
at compile-time that translates the semantic model into the
Backends’ assembly language. Backend Interface implemented
for C-=-1 is relatively small and is described in section V-C.

A. Interpreter data structures

Data structures of the C-=-1 Interpreter have been designed
having the ease of development and debugging in mind. They
are thus not particularly efficient.

Figure 3 contains a class diagram of most of the types used
to represent values within C-=-1. All of them derive from
IRuntimeValue and are managed via C++ smart pointers. The
interface of the base class allows the value to be converted
to a human-readable format, serialization, deserialization and
copying.

The most primitive types within the hierarchy are
StringValue and IntegerValue. They are simple wrappers for
strings and integers, present in host language. Floating point
numbers were not implemented as they were not necessary for
implementation of a basic compiler.

User-defined types are represented using ObjectValue. The
contents of an object is kept as a string - IRuntimeValue

dictionary, with field names as keys and uniqe_ptr<

IRuntimeValue> as values. C-=-1 object is therefore spread
out in memory, even if the fields are directly contained within
the class, without any indirection.

There are several types of reference within the C-=-1
Interpreter. The most basic pointer type is a reference to C-=-1
value. It was realized as a pointer to the owning pointer of the
value.

B. Program semantic model

A major motivation for creating CTFEF was the ability
to support languages with compile-time metaprogramming.
This includes reflection and modification of the code being
compiled. User program has to be represented as a complete
and modifiable object, using the Interpreters’ data structures.

C-=-1 language model divides the user program into assem-
blies. They represent an individual program package: a library
or an executable file. The compiler is invoked to compile an
assembly, together with its dependencies. Assembly is the root
object of C-=-1 program model, it stores a list of assemblies
it depends on and the root namespace of the package it

106 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 3: Class diagram of C-=-1 Interpreter data structures

represents. The remainder of user code is organized into
namespaces, types, functions and fields. These parts of the
model are represented by native classes of the host language
and form the basis for the rest of the model.

The most complex part of the model is the representation
of the function body. Like in most programming languages, a
C-=-1 function can contain a variety of instruction types. That
includes complex statements and blocks of statements that
can be arbitrarily nested. Each instruction may also contain
expressions of any complexity.

To deal with this complexity, C-=-1 semantic model for
functions is build around two interfaces: IInstruction and
IExpression and their concrete implementations. Every cat-
egory of instruction or expression is represented by its own
type. The user may then analyze the structure of the program,
using a dynamic type conversion mechanism similar to C++
dynamic_cast [2].

All elements of the semantic model, have a sourcePointer.

It is a simple structure, that contains the filename and the line
number of the expression or instruction. This information can
be passed to compiler intrinsic functions, such as raiseError

, to generate error messages for the user. Listing 1 contains
an example of this functionality. The pointerToSource makes
the messages generated by the compiler easier to understand
for the programmer.

Component responsible for creating the semantic model is a
major part of the compiler. There are two operations that this
module performs: building the definition of the types used to
describe a program, and creating an instance of the model,
given semantic information. C-=-1 compiler has a hard-coded
definition of its base library. It contains definitions of primitive
types and types used to build the semantic model of a program.
The description of this library must be built manually, as it is
very closely integrated with the compiler.

C. Backend interface

The C-=-1 Backend interface uses LLVM [18] code gener-
ation API that has been exposed by the compiler. The func-
tionality which has been made available to C-=-1 represents

a minimal subset of LLVM, that is sufficient to implement a
basic compiler.

Besides translating user code, the Backend Interface must
also generate the assembly for certain intrinsic operations.
Functions such as integer arithmetic operators, array indexers
or memory allocators are concepts too low-level to be ex-
pressed in C-=-1. They are therefore expressed as functions,
without bodies, which are then replaced by appropriate intrin-
sic operations.

Listing 3 contains a simple function written in C-=-1 (line
2), its ideal LLVMIR (line 5) and LLVMIR generated by C-=-
1 compiler (line 21). The current implementation generates a
function for each operator, regardless of whether it was defined
by the programmer or is a primitive operation. They are merely
wrappers around the actual LLVM intrinsic, meant to simplify
implementation of the Backend Interface. Future versions, with
additional effort, may generate the ideal LLVMIR from line
21 of Listing 3.

Certain other intrinsic operations are defined using exter-
nal dependencies. C-=-1 memory management library, in the
runtime context, uses a simple interface capable of allocating
and deleting a continuous buffer. It consists of two functions:
unsafe_new and delete. In the standard library, they are
explicitly mapped to malloc and free functions from the C
runtime.

Backend interface must also allow the programmer to influ-
ence how the executable code is generated. There are many
practical reasons for this capability. Specifying the name of a
function in order to link it to an external symbol is one of them.
For example, C-=-1 standard library uses malloc and free to
manage memory. These symbols are imported as unsafe_new

and delete in excerpt in Listing 4. This is accomplished using
the mapToExternalSymbol attribute and specifying the symbol
name as a parameter, as was done in lines zero and three.

One of possible ways of achieving this, is to declare an
interface for an attribute generating a functions symbol name.
Listing 5 contains relevant code of a Backend Interface that
uses such an attribute to override mark external symbols.
Interface ISymbolNameOverride contains only one method:

ADAM GRABSKI, ILONA BLUEMKE: COMPILATION THROUGH INTERPRETATION 107



createSymbolName that returns the name of the symbol in the
generated assembly.

Listing 3: Representation of average function in C-=-1 and
LLVM IR

1 // C-=-1 function in source code

2 fn average(a: usize, b: usize, c: usize) -> usize {

3 return (a + b + c) / 3;

4 }

5 // Ideal representation in LLVMIR

6 define i32 @average(i32 %0, i32 %1, i32 %2){

7 %4 = add i32 %1, %0

8 %5 = add i32 %4, %2

9 %6 = sdiv i32 %5, 3

10 ret i32 %6

11 }

12 // Generated LLVM IR

13 define i32 @__operator___plus____usize__usize(i32

%0, i32 %1){

14 %3 = add i32 %1, %2

15 ret i32 %3

16 }

17 define i32 @__operator___div____usize__usize(i32 %0,

i32 %1){

18 %3 = sdiv i32 %1, %2

19 ret i32 %3

20 }

21 define i32 @average(i32 %0, i32 %1, i32 %2){

22 %4 = call __operator___plus____usize__usize(i32

%1, i32 %0)

23 %5 = call __operator___plus____usize__usize(i32

%4, i32 %2)

24 %6 = call __operator___div____usize__usize (i32

%5, i32 3)

25 ret i32 %6

26 }

Functions buildFunction and getFunctionName, from List-
ing 5, are parts of Backend Interface. They are invoked in
order to convert a C-=-1 functionDescriptor to a LLVMIR
function. They were included in the Listing, because they
are the only parts of the Backend Interface that need to
interact with ISymbolNameOverride attributes. Both of these
procedures, check whether an attribute implementing this in-
terface is attached to the function they are currently processing.
This happens on lines two and eighteen of Listing 5. If that
attribute is present, code of that function is ignored, and it
is treated as an external symbol: condition on line eighteen
omits execution of build_block function on line twenty-one.
Procedure getFunctionName contains a similar condition on
line two, that decides how the name should be generated. If
an ISymbolNameOverride attribute is present, it will be created
by createSymbolName method of the attribute attached to the
function. Otherwise, the mangleName function will create name
of function’s symbol based on its parameters and return type.

Listing 4: C-=-1 memory allocation functions from
standard library

0 [mapToExternalSymbol("malloc", "")]

1 private fn unsafe_new(size: usize) -> char* {}

2
3 [mapToExternalSymbol("free", "")]

4 internal fn delete<typename T>(val: T*) {}

Listing 5: Part of a Backend Interface, using
ISymbolNameOverride interface

0private fn getFunctionName(f:

functionDescriptor) -> string {

1let attribute = f.get_attribute<

ISymbolNameOverride>();

2if(attribute != null<

ISymbolNameOverride>())

3return attribute.createSymbolName();

4return mangleName(f);

5}

6private fn buildFunction(

7f: functionDescriptor,

8llvmF: llvmFunction,

9registry: packageRegistry*,

10mod: llvmModule)

11{

12let variables = dictionary<

variableDescriptor, llvmValue>();

13let params = f.parameters();

14for(i in enumerate(0, params.length()))

15variables.push(params[i], llvmF.

getParameter(i));

16let builder = llvmF.getBuilder();

17let attribute = f.get_attribute<

ISymbolNameOverride>();

18if(attribute == null<

ISymbolNameOverride>())

19{

20let code = f.code();

21build_block(&code, &builder, &

variables, registry);

22}

23}

VI. CONCLUSIONS

CTFEF is a new approach to compiler construction which
offers high degree of compiler extensibility, at the cost of de-
velopment time and performance, compared with conventional
compilers. It places the interpreter as the main component of
the compiler and focuses on executing user code at compile
time. The user code has access to the same information as
the compiler at compile time and may perform analysis or
transformation of the compiled program. The thesis that in-
troduced this approach [19] demonstrated numerous practical
application: generating bindings for other languages, static
analysis and extending semantics of the language. These goals
are significantly easier to accomplish, thanks to the access to
semantic model of the program, constructed by the compiler.
Authors of language tools do not need to analyze the user
program.

On the other hand, using CTFEF approach has some
drawbacks. Implementing a compiler is more difficult. Since
a significant part of the compiler is interpreted, the initial
implementation requires working with the target language.
The lack of available tools, such as integrated development
environments, debuggers and libraries, for this new language,
makes this part of the process significantly more difficult. On
the other hand also means the work on the compiler in the
target language may start at the very beginning of compiler
bootstrapping process[3], [4].

The compiler created for C-=-1 has unacceptable perfor-
mance, as noted by the original C-=-1 paper [12]. Compiling
the C-=-1 standard library, containing around 200 lines of
code, takes approximately 10 minutes. Majority of that time
is spent on interpreting the compiler interface. This is a

108 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



significant barrier to adopting CTFEF approach. Since the
compiler implemented for C-=-1 was made as a research tool
with minimal effort, further work is needed to explore the
performance issues of CTFEF approach.

REFERENCES

[1] N. D. Matsakis and F. S. Klock, “The rust language,” ACM SIGAda Ada

Letters, vol. 34, no. 3, pp. 103–104, 2014.
[2] “Programming languages — C++,” International Organization for

Standardization, Geneva, CH, Standard, Mar. 1998. [Online]. Available:
https://www.iso.org/standard/25845.html

[3] A. Puntambekar, COMPILER DESIGN. Technical Publications, 2011.
[4] D. Novillo, “Gcc internals,” in International Symposium on Code

Generation and Optimization (CGO), San Jose, California, 2007.
[5] Source generators. [Online]. Available: https://docs.microsoft.com/

en-us/dotnet/csharp/roslyn-sdk/source-generators-overview
[6] Dotnet. Roslyn. [Online]. Available: github.com/dotnet/roslyn
[7] S. Klabnik and C. Nichols, The Rust Programming Language (Covers

Rust 2018). No Starch Press, 2019.
[8] “Programming languages — C++,” International Organization for

Standardization, Geneva, CH, Standard, Mar. 2020. [Online]. Available:
https://www.iso.org/standard/79358.html

[9] N. Vermeir, “.net compiler platform,” in Introducing .NET 6. Springer,
2022, pp. 275–295.

[10] M. Balliauw and X. Decoster, “Nuget package manager console power-
shell reference,” in Pro NuGet. Springer, 2013, pp. 331–338.

[11] B. O. SLIMÁK and R. J. Pelikán, “Source generators in c#,” Master’s
thesis, Department of Computer Systems and Communications, Masaryk
University, 2022.

[12] A. Grabski, “Compilation through interpretation: static metaprogram-
ming in c-=-1,” Master’s thesis, Warsaw University of Technology, 2022.

[13] A. Hejlsberg, S. Wiltamuth, and P. Golde, C# language specification.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[14] “Programming languages — C++,” International Organization for
Standardization, Geneva, CH, Standard, Mar. 2017. [Online]. Available:
https://www.iso.org/standard/68564.html

[15] M. Hsu, LLVM Techniques, Tips, and Best Practices Clang and Middle-

End Libraries: Design powerful and reliable compilers using the latest

libraries and tools from LLVM. Packt Publishing, 2021.
[16] C. Lattner, “Llvm and clang: Next generation compiler technology,” in

The BSD conference, vol. 5, 2008.
[17] P. Dietz, T. Weigert, and F. Weil, “Formal techniques for automatically

generating marshalling code from high-level specifications,” in Proceed-

ings. 2nd IEEE Workshop on Industrial Strength Formal Specification

Techniques, 1998, pp. 40–47.
[18] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic,

“Formalizing the llvm intermediate representation for verified program
transformations,” in Proceedings of the 39th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 427–440. [Online]. Available: https://doi.org/10.
1145/2103656.2103709

[19] A. Grabski, “Rose parser generator,” Bachelor’s thesis, Wydział Elek-
troniki i Technik Informacyjnych, Politechnika Warszawska, 2020.

ADAM GRABSKI, ILONA BLUEMKE: COMPILATION THROUGH INTERPRETATION 109


