
Can ChatGPT Replace a Template-based Code

Generator?

Adam Bochenek

0009-0005-1259-3418

National Information Processing Institute

al. Niepodległości 188b, 00-608 Warsaw, Poland

Email: adam.bochenek@opi.org.pl

Abstract—This article examines whether a large language
model (LLM) tool, such as ChatGPT, can replace a template-
based source code generator. To this end, we conducted an ex-
periment in which we attempted to replace an existing template-
based DAO class generator (which creates entity classes and
a repository for a specified database table) with a solution in
which templates of target classes were presented to ChatGPT
alongside the source model. We then instructed ChatGPT to
generate new classes. A novelty in this work is an attempt
at two-stage cooperation with ChatGPT: first we provide the
pattern, then we fill it. The experiment proved that, at present,
such a solution yields results that are neither predictable nor
replicable, and successive attempts to execute the same commands
returned wildly varying results. ChatGPT randomly recognises
the rules that are present in templates, and complex instructions
impact the generated results negatively. At present, classic code
generation methods yield markedly superior results.

I. INTRODUCTION

T
HIS article aims to determine whether, and if so, to

what degree, large language model (LLM) can work as

a source code generator [2]. Can the manual creation and

subsequent population of a template be replaced by an LLM

tool, such as ChatGPT, which has been taught to read patterns

and treat them as templates to be populated with specific data?

Software engineers strive to ensure that the degree of

abstraction in which they operate is as close as possible to the

concepts that are present during the stages of application anal-

ysis and modelling. This approach streamlines work, increases

productivity, and reduces the number of potential errors.

Typically, this involves increasing the degree of abstraction

and applying concepts related to a specific domain directly

and as broadly as possible during the software development

stage.

One method of achieving this goal involves the application

of a model-driven development (MDD) methodology, such

as domain-specific modelling (DSM). The essence of this

methodology lies in its capability to model and specify the

target application at an abstraction degree that caters to the

needs of experts and analysts who are familiar with the

given domain [1]. When such specification is completed,

the final product (i.e. application code) should be generated

automatically. The manner in which the code is generated is

the focal point of our study.

The findings of this article should be considered an ex-

periment. We examine whether the classic method of code

generation based on available templates can be replaced by

an LLM-based tool (for the purposes of this article, we used

ChatGPT in its 2023, Mar 14 version).

In this work, we first list the areas of knowledge that will

be of interest to us, i.e. Model Driven Development, code

generation and the use of LLM in the field of programming.

Then we move on to the description of the SDSM method,

the Osfald tool and the experiment itself, which will consist

in using ChatGPT as a template-based code generator. The

most important point is the description of the results of the

experiment and the conclusions drawn from it.

II. RELATED WORK

A. Model-driven development, domain-specific modelling, and

template-based code generators

Model Driven Development (MDD) is a set of application

development methodologies in which models are used as the

basis of the entire software development process. It involves

creating a model that describes the complete system, or a

fragment thereof, which is then used as a base for generating

source code (source model -> source code).

In MDD, models are typically created using formal notation,

such as unified modelling language (UML), business process

model and notation (BPMN), or domain-specific language

(DSL). These models are then used in automated code gener-

ation. The advantages of MDD include the capability to use

domain-specific concepts during the design stage, automated

software production, increased effectiveness, higher quality,

and streamlined change management. The weaknesses include

the high cost of implementation and mandatory specialist

knowledge of formal languages.

DSM is a variant of MDD. In DSM, models are created to

describe specific domains. We use languages that are specific

for the given domain and serve as the basis for the generation

of the code and other project artefacts. DSM’s chief strength

lies in domain-specific languages and models typically being

easier to understand than general-purpose ones [1].

The DSM approach comprises three key elements:

• the model

• the code generator

• the framework.

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 43–50

DOI: 10.15439/2023F5691

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 43 Topical area: Software, System and Service Engineering



Template-based code generation (TBCG) is a method of

automated source code generation based on templates or

patterns [14], which are powered by models. In the TBCG

approach, software developers define source code templates

that contain particular variables or parameters; subsequently,

such templates are populated with specific values to create the

source code for the given project.

Despite its obvious advantages, such as exceptionally quick

generation of source code and improvement of the code’s

quality by minimising errors caused by manual typing, TBCG

also entails its own set of flaws. The most notable include:

• the complexity of code template creation and manage-

ment

• the complicated handling of complex design problems

that require a more algorithmically advanced approach

• necessary knowledge of template language and associated

software development libraries.

With these flaws in mind, we examined whether the TBCG

method could be replaced with the capabilities offered by

LLMs.

B. Codex, Copilot, GPT-3

Rapid progress in the creation and use of LLMs has created

new opportunities for automation of the software development

process. The current approach, domain-level modelling and

automated transformation into source code [5], [6], [7], [8], has

been supplemented with methodologies that utilise machine

learning and LLMs [9], [10], [11]. New codes are created

in response to commands formed in natural language, or as

attempts to supplement or complete existing code.

Both approaches have their flaws. Due to their nature,

DSL languages match specific domains, and will never be-

come general-purpose tools; generative LLMs have difficulty

extracting complex coding patterns from code corpora, and

often generate codes riddled with syntax or semantic errors

[12], [13]. The results returned by either model are seldom

predictable or replicable.

The experiment described in this article attempted to com-

bine both approaches. We wanted the code generated to

correspond to the specified pattern, and to be predictable

and replicable. With consideration for the complex and time-

consuming nature of template creation, we attempted to sub-

stitute it by providing an LLM with an example or a set of

examples to be used as a pattern, which could then be modified

after the provision of a new, different set of parameters.

Our experiment is different from the typical use of ChatGPT

as a developer helper. Usually, ChatGPT is supposed to

generate the source code in a given programming language

based on the given natural language prompt.

C. Code generation vs. security

While analysing the methods of automated code generation,

we must not omit one crucial aspect: security. Language

models and tools that are based on them, such as GitHub

Copilot, have been trained on tremendous quantities of open

source code. This code contains errors, so the concern that

the code suggested by Copilot may potentially contain errors

that affect application security is a valid one. The experiment

described in [4] demonstrated that in a trial that covered

eighty-nine scenarios in which Copilot was used to generate

1,689 applications, as many as 40% of them contained security

vulnerabilities.

We believe that a template- or pattern-based method is a

significantly safer solution. When creating a template, we can

verify its safety; the code generated on the basis of a safe

template will also be safe, in most cases.

III. METHODS

A. The simplified domain-specific modelling (SDSM) method

At OPI PIB (National Information Processing Institute -

National Research Institute), we have developed our own, in-

house application development method. It is based on the

DSM approach, but is simplified. We call it simplified domain-

specific modelling (SDSM). As with DSM, this method is also

based on three key elements:

• the model

• the code generator

• the organisation- and domain-specific environment

(framework).

The perception of the first component, the model, differs

from that of the classic DSM. We treat the model as input

data for the code generator. We neither require nor define any

formal language that describes the solution at a higher degree

of abstraction. We do not define any rules or syntaxes. We do

not use DSL at all; instead:

• we create simple models that are understood as embedded

at the level of the data structure domain

• we search for existing models. We often discover that raw

or processed data, which can act as a model (input data)

for the code generator, already exists.

In the SDSM method, application generation comprises four

stages:

Fig. 1. SDSM stages and input and output artifacts.

Stage one, configuration, is an auxiliary step which enables

all operations that prepare the development process to be con-

ducted properly. This might involve specifying the place from

which the data that serves a model will be read, establishing

44 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



a link to a database, or specifying where documentation is

stored. This step is optional. During stage two, the model

extraction stage, we read information from an external source

that has been configured in the previous step and use it to build

the model. Stage three is model edition: the model obtained

during stage two may require modifications or additions. Stage

three may also be used to create a new model from scratch if

there is no source from which the model can be obtained. The

data structure used to generate the code is created and edited

during this stage. Stage four involves source code generation

based on the model prepared during the previous stages. Stages

(and their input/output artifacts) are shown in Fig. 1.

B. The Osfald tool

OPI PIB’s SDSM method is implemented by the Osfald tool,

an application that acts as a framework, and offers ready-to-

use, universal components and functions that are required to

create code generators. Osfald is also a set of interfaces that

are a recipe for an SDSM-type generator. Here, a generator

is understood as an implementation (a set of classes that

implement created interfaces) that enables us to progress

through all stages of application development; in other words,

it extracts and edits the model, and generates new code based

on the model. Generators may pertain to different application

elements and offer various degrees of complexity. Defining a

new generator chiefly involves implementing such previously-

developed interfaces.

C. TBCG-type DAO generator vs. LLM

One of the best and most complete examples that demon-

strates the SDSM concept in action is the generation of the

data access layer for a typical business application written

in Java. Although implementation details differ depending on

the libraries used, this layer typically handles two basic class

types: entity classes and repository classes. On the application

side, the entity class represents one row in a database table.

Its primary component is a field list. The repository class is a

set of methods that includes basic methods that correspond

to the create, read, update, and delete (CRUD) functions,

complemented with additional functions used to search for

entities in accordance with specific criteria.

The generator fulfils the following tasks (by SDSM stage):

1) Configuration: in this case, establishing a connection to

the database

2) Model extraction: by using standard JDBC mechanisms

in Java, we read the structure details of selected database

tables (field names, their types, lengths, and require-

ments)

3) Model edition: for each table field, a corresponding

entity field is generated that bears a default (albeit

editable) name and type. During stages two and three,

a data model, which acts as input for the generator, is

created

4) Code generation: based on previously-defined templates

and the model prepared during stages two and three,

Example 3.1: EnGptUser as an example of an entity class.

public class EnGptUser {

private long idAuto;

private String idUid;

private String firstName;

private String surname;

private Integer age;

}

Example 3.2: RepoGptUser as an example of a repository

class.

public class RepoGptUser extends BaseRepo

{↪→

public RepoGptUser(Trx trx)

public void create(EnGptUser en)

public void update(EnGptUser en)

public List<EnGptUser> findAll()

public EnGptUser findByKey(String key)

private void entity2Stmt(EnGptUser en,

PreparedStatement stmt, boolean

update)

↪→

↪→

protected void rs2Entity(ResultSet rs,

EnGptUser en)↪→

}

entity source code and a repository (and, optionally,

a test class) are generated in the specific part of the

application. The existing TBCG-based generator uses

the Apache Velocity engine and templates to produce

code.

The entity class consists of fields that correspond to database

table fields for which a specific entity has been created. The

EnGptUser class is an example of an entity class (Example

3.1).

The repository class RepoGptUser (Example 3.2) is more

complex, as it requires a base class that it expands (e.g. a

repository that is based on a specific library).

D. Template table, entity, and repository

The experiment described in this article involved attempting

to replace the existing template-based entity and repository

class generator (the TBCG method) for a specific database

table with an LLM-based solution. ChatGPT (Mar 14 version)

was the LLM tool used in this test. In place of templates,

we prepared a template database table with corresponding

template entity and repository class. The table contained all

field type variants, and the entity class contained all possible

mappings of those variants to Java types. The term ‘variants

of mapping’ refers to the principle according to which table

fields that allow null values are mapped to Java object types,

while table fields that do not allow null values are mapped

to Java primitive types. We apply this principle in the TBCG

templates, and we expected the LLM model to detect and apply

the principle similarly.

ADAM BOCHENEK: CAN CHATGPT REPLACE A TEMPLATE-BASED CODE GENERATOR? 45



Example 3.3: The template_table_01 template table.

CREATE TABLE template_table_01

(

id_auto bigint NOT NULL,

id_uid character varying(32) NOT NULL,

string_field_a character varying(255)

NOT NULL,↪→

string_field_b character varying(10000),

text_field_a text NOT NULL,

text_field_b text,

bool_field_a boolean NOT NULL,

bool_field_b boolean,

...

...

CONSTRAINT template_table_01_pkey

PRIMARY KEY (id_uid),↪→

CONSTRAINT template_table_01_id_auto_key

UNIQUE (id_auto)↪→

)

Example 3.4: The EnTemplateTable01 template entity class.

public class EnTemplateTable01 {

private long idAuto;

private String idUid;

private String stringFieldA;

private String stringFieldB;

private String textFieldA;

private String textFieldB;

private boolean boolFieldA;

private Boolean boolFieldB;

...

...

}

The template database table template_table_01 (Example

3.3) contained all field type variants that we wanted our

generator to handle.

Class EnTemplateTable01 (Example 3.4) corresponds to

the template table. Each field in this class correspond to a table

field. Note that the NOT NULL fields in the table correspond

to primitive Java types (e.g. int, long, double), while the places

where the database permits NULL values correspond to object

types (Integer, Long, Double). We expected ChatGPT to detect

and recognise this rule.

The repository class is the most complex. Below, we present

one of its key methods, which include mapping the result of

SQL query to entity: rs2Entity (Example 3.5).

In the rs2Entity (and entity2Stmt) methods, the most

important thing is to match the types correctly (for example:

getInt, getIntNull, setInt, setIntNull).

The methods responsible for calling the SQL queries are

used to add or modify new rows, and to run searches based

on criteria entered are the basic repository methods: create

(Example 3.6), update, findAll, and findByKey.

IV. EXPERIMENTS

We tested whether TBCG mechanism can be replaced by

ChatGPT. This task was divided into two stages: generation

of entity classes and generation of repository classes.

A. Stage one: generation of entity classes

Stage one involved attempting to use ChatGPT to generate

an entity (a Java class) based on the provided table structure

(in SQL). The entity class generated in this way was to

correspond to a specific template. First, we provided ChatGPT

with the template_table_01 template table structure and its

corresponding EnTemplateTable01 template entity class. We

then asked ChatGPT to use the template to create a new entity

for a different SQL structure provided.

To this end, we prepared five different database tables; for

each of them, ChatGPT generated an entity. The following cri-

teria were applied to verify the generated entity’s correctness

and consistency with the template:

• correct class syntax in Java, including compilation readi-

ness

• completeness (whether all fields were included and in the

correct order)

• field types (allowing for correct separation into simple

and object types, which depends on whether the database

allows null values)

• result replicability (whether repeated generation of the

entity yields identical source code; three attempts).

When designing the experiment, we ensured that the tables

tested would be sufficiently diverse. Our findings are presented

below (Table I. Stage 1, entity class generation).

The Table column contains the names of the database

tables for which an entity class was generated. The Syntax

column contains information on whether the code generated

was correct syntax-wise. For all tables, we received code that

could be compiled. The values in the Completeness column

inform us whether the generated class contained all database

table fields. The values in the Field order column inform us

whether the fields in the entity appear in the same order as in

the source structure.

The next two columns pertain to entity field types. The

values in the Field types column demonstrate whether all

generated entity class fields had the expected type that resulted

from the template. Inconsistent types appeared during the gen-

eration of the class for the time_and_bool table. The values

in the Field types (null/not null) column tell us whether the

generated code is divided correctly into simple and object Java

types, as defined in the template—which depends on whether

the database allows empty field values. The rightmost column

shows whether repeated entity generation by ChatGPT yielded

identical code. In the last two tables, we observed differences

pertaining to field types.

B. Stage two: generation of repository classes

Stage one was completed with moderate success. Although

most tasks were completed correctly, some errors occurred. In

stage two, the bar was raised higher. Based on the database

46 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Example 3.5: The rs2Entity method of the template repository.

void rs2Entity(ResultSet rs, EnTemplateTable01 en) {

en.setIdAuto(StmtGet.getLong(rs, "id_auto"));

en.setIdUid(StmtGet.getString(rs, "id_uid"));

en.setStringFieldA(StmtGet.getString(rs, "string_field_a"));

en.setStringFieldB(StmtGet.getString(rs, "string_field_b"));

en.setTextFieldA(StmtGet.getString(rs, "text_field_a"));

en.setTextFieldB(StmtGet.getString(rs, "text_field_b"));

en.setBoolFieldA(StmtGet.getBoolean(rs, "bool_field_a"));

en.setBoolFieldB(StmtGet.getBooleanNull(rs, "bool_field_b"));

...

...

}

Example 3.6: The create method of the template repository.

public void create(EnTemplateTable01 en) {

executeWrite(

" insert into public.template_table_01 ( " +

" id_uid, string_field_a, string_field_b, text_field_a, text_field_b, " +

" bool_field_a, bool_field_b, int_field_a, int_field_b, long_field_a, " +

" long_field_b, float_field_a, float_field_b, double_field_a, double_field_b, " +

" numeric_field_10_4_a, numeric_field_10_4_b, numeric_field_8_2_a, " +

" numeric_field_8_2_b, date_field, time_field, timestamp_tz_field, " +

" timestamp_field " +

" ) values ( " +

" ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, " +

" ?, ? " +

" )"

,

(stmt) -> {

entity2Stmt(en, stmt, false);

}

);

}

TABLE I
STAGE 1, ENTITY CLASS GENERATION

Table Syntax Completeness Field order Field types Field types (null / not null) Replicability

the simplest ok ok ok ok ok ok

two ints ok ok ok ok ok ok

lot of numbers ok ok ok ok ok ok

time and bool ok ok ok ERROR ok ERROR

complete reversed ok ok ok ok ERROR ERROR

ADAM BOCHENEK: CAN CHATGPT REPLACE A TEMPLATE-BASED CODE GENERATOR? 47



table structure, we attempted to generate a repository class.

This class’s methods must ensure correct communication with

the database table, and the class itself must also correctly

convert the data stored in and read from the table to the values

stored in the entity object. Unlike in stage one, three elements

must be compatible: the repository class, the entity class, and

the database table. Stage two was completed in two steps.

1) Stage two, step one – verification of task feasibility: The

purposes of step one were to determine whether ChatGPT was

capable of completing this task, and to decide what approach

should be adopted. Several variants of this solution were tested

(each variant was tested three times):

Variant 1. The first attempt involved applying the method

used during stage one to generate entities. In the first prompt

addressed to ChatGPT, we defined the structure of the template

database table; in the second prompt, we defined the template

repository class for the table; in the third prompt, we instructed

ChatGPT to generate a repository class for another table

with defined parameters. In response to the third prompt,

we always received a repository class written in the Python

language—despite the template being written in Java.

Variant 2. In this variant, we specified that we wanted the

class to be generated in Java. Although the class returned

was in Java, ChatGPT ignored the requirement to match

the predefined template. The generated class corresponded to

typical repository templates found in the literature. ChatGPT

ignored the class template that we had provided.

Variant 3. We decided not to ask ChatGPT to generate a

new class, but to modify the existing class in such a manner

that it handled a table of a different structure. Once again, the

class returned was in the Python language and its operation

failed to meet our requirements (Example 4.1).

Variant 4. This variant comprised a single, complete prompt

that contained the template table, entity, and repository class,

as well as the target entity and table. We asked ChatGPT to

generate the target repository. We received a Java repository

class that was correct, but did not correspond to our model in

any way; instead, ChatGPT used a template that utilised the

popular Spring library and the JdbcTemplate class (Example

4.2).

Variant 5. In this variant, we changed our approach and

stopped trying to generate a complete repository class; instead,

we reduced our scope to single methods. We divided the

class into its individual methods and attempted to generate the

repository class, one method at a time. The order of method

generation was important. This variant was the only one

that returned satisfactory results that merited more thorough

examination and description.

Example 4.1: Class RepoTheSimplest in Python.

import psycopg2

class RepoTheSimplest:

def __init__(self, conn):

self.conn = conn

def create_table(self):

cur = self.conn.cursor()

cur.execute("""

CREATE TABLE IF NOT EXISTS

the_simplest (↪→

id_auto BIGINT NOT NULL GENERATED

BY DEFAULT AS IDENTITY (

INCREMENT 1 START 1 MINVALUE 1

MAXVALUE 9223372036854775807

CACHE 1 ),

↪→

↪→

↪→

↪→

id_uid CHARACTER VARYING(32)

COLLATE pg_catalog."default"

NOT NULL,

↪→

↪→

one_single_field INTEGER,

CONSTRAINT the_simplest_pkey

PRIMARY KEY (id_uid),↪→

CONSTRAINT

the_simplest_id_auto_key

UNIQUE (id_auto)

↪→

↪→

);

""")

self.conn.commit()

cur.close()

2) Stage two, step two: generation of successive class meth-

ods: Step two of the stage two was completed by applying

Variant 5 in the following way: the entire task of generating

the repository class was divided into sub-tasks, each of which

corresponded to the generation of one specific method. For

each method, we defined separate correctness criteria. All of

the operations described below were performed three times

(iterations 1, 2, and 3) to study the replicability of the results.

Replicability in our experiments is one of the key features.

When we have a template and the data to fill it, we want to

make sure that the fill operation gives exactly the same result

every time. Without this certainty, the use of templates makes

little sense.

Below is the list of the criteria for the correct generation of

each method:

1) The entity2Stmt method

a) K1.1 Correct method syntax (Java)

b) K1.2 Correct field list (names, order)

c) K1.3 Correct types (including null/not null).

2) The rs2Entity method

48 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Example 4.2: Class RepoTheSimplest using Spring.

@Repository

public class RepoTheSimplest {

private final JdbcTemplate jdbcTemplate;

@Autowired

public RepoTheSimplest(JdbcTemplate

jdbcTemplate) {↪→

this.jdbcTemplate = jdbcTemplate;

}

public void create(EnTheSimplest entity)

{↪→

String sql = "INSERT INTO the_simplest

(id_uid, one_single_field) VALUES

(?, ?)";

↪→

↪→

jdbcTemplate.update(sql,

entity.getIdUid(),

entity.getOneSingleField());

↪→

↪→

}

a) K2.1 Correct method syntax (Java)

b) K2.2 Correct field list (names, order)

c) K2.3 Correct types (including null/not null).

3) The create method

a) K3.1 Correct method syntax (Java)

b) K3.2 Correct query syntax (SQL)

c) K3.3 Correct field list (names, order)

d) K3.4 Correct en parameter type

e) K3.5 Correct use of entity2Stmt.

4) The update method

a) K4.1 Correct method syntax (Java)

b) K4.2 Correct query syntax (SQL)

c) K4.3 Correct field list (names, order)

d) K4.4 Correct en parameter type

e) K4.5 Correct use of entity2Stmt.

5) The findAll method

a) K5.1 Correct method syntax (Java)

b) K5.2 Correct query syntax (SQL)

c) K5.3 Correct type of the entity list returned

d) K5.4 Correct use of rs2Entity.

6) The findByKey method

a) K6.1 Correct method syntax (Java)

b) K6.2 Correct query syntax (SQL)

c) K6.3 Correct type of the entity list returned

d) K6.4 Correct use of rs2Entity.

C. Analysis of the results

The results are in Tables II, III, IV and V. Stage one,

the creation of entity classes, resulted, for all test tables,

in the generation of syntactically correct and complete Java

TABLE II
RESULTS FOR THE THE_SIMPLEST TABLE (ERRORS ONLY)

Criterion Result (iter. 1) Result (iter. 2) Result (iter. 3)

K1.3 ERROR ERROR ERROR

K2.3 ERROR ERROR ERROR

K6.4 ok ERROR ok

TABLE III
REPLICABILITY OF THE CODE GENERATED FOR THE

REPOTHESIMPLEST CLASS METHODS

Method Replicability

entity2Stmt yes

rs2Entity yes

create yes

update yes

findAll yes

findByKey NO

classes that contained all fields expected in the target structure.

Field order was also correct. However, for one of the classes,

ChatGPT selected wrong field types; for another, it misapplied

the type selection rule (primitive vs. object) relative to whether

the database permits null values. The results of the experiment

in stage two were less optimistic. First, multiple attempts were

necessary to formulate the commands in a manner that would

result in ChatGPT generating a new repository based on the

template provided. Eventually, we were forced to compromise:

instead of having ChatGPT generate a complete repository

class, we opted to have it create the individual methods of

the class. This resulted in ChatGPT having to generate these

methods in the correct order, because some of them depended

on methods created previously. When attempting to create a

repository for a very simple structure (the the_simplest table),

we encountered problems with type matching: in one method,

ChatGPT ignored the dependency on the auxiliary method

(this issue did not occur again during repeated attempts). We

encountered a considerably higher number of errors in the case

of the repository for the complete_reversed table. This table

had the most complex structure—although, compared to the

template table, it differed only with respect to field names and

field order. A number of the generated methods had incorrect

syntax due to erroneously generated field types, and could

not be compiled. In the cases of these methods, the generated

code’s replicability was very low. Summary - ChatGPT:

• does not fully learn the patterns given to it

• does not recognize all the rules contained in the patterns

• confuses programming languages

• the size of the standard causes deterioration of the result

• the code generated on the basis of the pattern is not

replicable.

V. CONCLUSION

It seems that at present, LLM-based code generation meth-

ods are unable to replace TBCG. ML- and LLM-based tools,

ADAM BOCHENEK: CAN CHATGPT REPLACE A TEMPLATE-BASED CODE GENERATOR? 49



TABLE IV
RESULTS FOR THE COMPLETE_REVERSED TABLE (ERRORS ONLY)

Criterion Result (iter. 1) Result (iter. 2) Result (iter. 3)

K1.1 ERROR ERROR ERROR

K1.3 ERROR ERROR ERROR

K2.1 ERROR ERROR ERROR

K2.3 ERROR ERROR ERROR

TABLE V
REPLICABILITY OF THE CODE GENERATED FOR THE

REPOCOMPLETEREVERSED CLASS METHODS

Method Replicability

entity2Stmt NO

rs2Entity NO

create yes

update yes

findAll yes

findByKey yes

such as ChatGPT, provide us with tremendous, previously-

unknown capabilities, and are highly likely to change our

current perspective on the software development process. At

this juncture, however, we were unable to obtain results that

would enable us to replace the classic template-based code

generation methods. The primary stumbling blocks are Chat-

GPT’s unpredictability and lack of replicability: successive

attempts at generating code based on the same commands can

yield wildly varying results. Even when the code presented

is correct, successive versions differ with regard to details.

These differences occur at various levels. In some cases, it

is the way in which the code is formatted; in others, it is

differences in how variables and methods are named or in the

libraries used in the code. Another issue lies in how ChatGPT

handles increased complexity, which is demonstrated by our

attempts to generate repository methods. When provided with

a template and a simple data structure, ChatGPT used the rules

defined in the template correctly; with complex structures,

however, the result was flawed. Step one of stage two also

demonstrated that the formulation of effective commands

demands considerable effort. In our case, it took five attempts,

and we had to stop trying to generate complete repository

classes and be satisfied with only the individual methods.

However, taking into account that tools such as ChatGPT

are only at the beginning of their development path, we should

watch them closely and hope that soon, in the next versions,

they will meet our requirements and will be able to work as

a full equivalent of traditional code generators.

And because at OPI PIB we deal with the topic of auto-

matic application generation, we intend to check and test the

possibilities of subsequent LLM tools on an ongoing basis.

REFERENCES

[1] Steven Kelly and Juha-Pekka Tolvanen, “Domain-Specific Modeling:
Enabling Full Code Generation,” John Wiley & Sons, 2008.

[2] Sven Jörges, “Construction and Evolution of Code Generators,”
Springer-Verlag Berlin Heidelberg, 2013.

[3] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman, “Expecta-
tion vs. experience: Evaluating the usability of code generation tools
powered by large language models,” In Extended Abstracts of the 2022
CHI Conference on Human Factors in Computing Systems, CHI EA ’22,
New York, NY, USA, 2022, Association for Computing Machinery. DOI
https://doi.org/10.1145/3491101.3519665

[4] Hammond A. Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri, “Asleep at the keyboard? assessing the
security of github copilot’s code contributions,” 2022 IEEE Sym-
posium on Security and Privacy (SP), pages 754–768, 2021. DOI
https://doi.org/10.48550/arXiv.2108.09293

[5] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa, “Syntax-guided
synthesis,” 2013 Formal Methods in Computer-Aided Design, pages 1–8,
2013. DOI 10.1109/FMCAD.2013.6679385

[6] Allen Cypher, “Eager: programming repetitive tasks by example,” Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 1991. DOI https://dl.acm.org/doi/10.1145/108844.108850

[7] Sumit Gulwani, “Automating string processing in spreadsheets
using input-output examples,” In ACM-SIGACT Symposium
on Principles of Programming Languages, 2011. DOI
https://doi.org/10.1145/1925844.1926423

[8] Vu Le and Sumit Gulwani, “Flashextract: a framework for data ex-
traction by examples,” Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 2014.
https://doi.org/10.1145/2666356.2594333

[9] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow, “Deepcoder: Learning
to write programs,” ArXiv, abs/1611.01989, 2016. DOI
https://doi.org/10.48550/arXiv.1611.01989

[10] Tonglei Guo and Huilin Gao, “Content enhanced bert-based
text-to-sql generation,” ArXiv, abs/1910.07179, 2019. DOI
https://doi.org/10.48550/arXiv.1910.07179

[11] Shirley Anugrah Hayati, Raphaël Olivier, Pravalika Avvaru, Pengcheng
Yin, Anthony Tomasic, and Graham Neubig, “Retrieval-based neural
code generation,” In Conference on Empirical Methods in Natural Lan-
guage Processing, 2018. DOI https://doi.org/10.48550/arXiv.1808.10025

[12] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Denys Poshyvanyk,
Massimiliano Di Penta, and Gabriele Bavota, “An empirical study on
the usage of bert models for code completion,” 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), pages
108–119, 2021. DOI https://doi.org/10.48550/arXiv.2103.07115

[13] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader-
Palacio, Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota,
“Studying the usage of text-to-text transfer transformer to sup-
port code-related tasks,” 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE), pages 336–347, 2021. DOI
https://doi.org/10.48550/arXiv.2102.02017

[14] Eugene Syriani, Lechanceux Luhunu, and Houari A.
Sahraoui, “Systematic mapping study of template-based code
generation,” Comput. Lang. Syst. Struct., 52:43–62, 2017. DOI
https://doi.org/10.48550/arXiv.1703.06353

50 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023


