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Abstract—Transforming multidimensional data into a one-
dimensional sequence using space-filling curves, such as the
Hilbert curve, has been studied extensively in many papers.
This work provides a systematic presentation of the construction
of an arbitrarily accurate multidimensional space-filling curve
approximation which is a generalization of the Sierpiński space-
filling curve. At the same time, according to the space-filling curve
construction, we present a simple algorithm for determining one
of the counter-images on a unit interval of a data point lying in
a multidimensional cube. The computational complexity of the
algorithm depends linearly on the dimension of the cube. The
paper contains numerical algorithms for local generation of the
curve approximation and determination of the quasi-inverse of
a data point used to transform multidimensional data into the
one-dimensional form.

I. INTRODUCTION

THE space-filling curve (SFC) is defined as a continuous

mapping converting a unit interval [0, 1] onto the d-

dimensional unit cube (Id = [0, 1]× . . .× [0, 1], d ≤ ∞) [27],

[2]. This means that the space-filling curve passes at least

once through each point of the Id cube. This allows many

multidimensional computational problems to be considered

as one-dimensional problems without losing the essential

properties of the original problems.

Space-filling curves were first described by G. Peano in

1890 [25], and then by D. Hilbert [12], and W. Sierpiński [30].

In the 1930s, space-filling curves, which are measure

preserving, have been used in the theory of integration in

multidimensional spaces [27], [18].

The applications of space-filling curves are pretty broad,

though in many cases, they are limited to two-dimensional

curves. We can mention as examples: image processing [24],

image compression [22], image encryption [4], image malware

classification [23], MRI image sampling [29], the crypto-

graphic transformation scheme for spatial query processing

[13], encryption technology for data privacy-preserving [16],

raster tool path generation for layered manufacturing [14],

among many others. Nair et al. [21] used the Hilbert space-

filling curve to explore the space of the robot and detect

obstacles.

The Sierpiński space-filling curve was applied to solve

discrete optimization problems [41]. In particular, Bartholdi

and Platzman [3], [26] applied the Sierpiński curve to find an

approximate, near optimal solutions of the planar traveling

salesman problem with Euclidean distances. An important

property of a space-filling curve is the preservation of proxim-

ity by the points from [0, 1]d transposed to [0, 1]. This property

means that points lying close to each other on the curve are

also close in the multidimensional space. Points far apart on a

curve can be close to each other in the multidimensional space.

In order to estimate the actual distance of a pair of points in

[0, 1]d, say (x, y) one should have determined all 2∗2d points

on the unit interval whose images are respectively x and y.

Hence the idea of using space-filling curves to find nearest

neighbors of subsequent point from multi-dimensional space.

Multidimensional space-filling curves are also used in

global optimization algorithms [31],[32], [33] and their ap-

plications, e.g. in experimental design [35]. Lawder et al. [15]

discuss multidimensional indexing for database management

systems based on space-filling curves.

On the other hand, the space-filling-based transformations

retain essential statistical information. For example, it is

proved that the Bayes risk is invariant under these transfor-

mations for every distribution with a bounded support [38].

Sampling of multidimensional space using one-dimensional

equidistributed sequences transformed by a multi-dimensional

space-filling curve was developed in [40], [11]. Data-

dependent space-filling curves for non-uniform grid were

proposed by[34],[43].

The Hilbert space-filling curve was used in parallel codes

for numerical simulations [5], and the Sierpiński curve helped

to streamline finite element calculations [1]. and for load-

balancing in distributed computing [17].

The algorithms in which space-filling curves were used to

reduce the dimension of data and then to analyze them con-

cerned, among others, the determination of the box-counting

fractal dimension [39], the classification of multidimensional

data [38] and the data clustering [19], [42].

It is known, that the continuous mapping Fd : I1 → Id
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can not be one-to-one [27], [3], [26]. The geometric points of

intersection of the curve with itself correspond to many points

of the unit interval. Thus, from the viewpoint of such possible

applications, it is crucial to find t ∈ I1 such that Fd(t) = x
for given x ∈ Id, i.e., to provide a quasi-inverse of Fd(t).

This paper provides a fast and relatively simple algorithm

for computing the approximate quasi-inverse for any dimen-

sion d. Naturally, this is intrinsic to the definition of the space-

filling curve generation. One can transform each element of

the multidimensional data set using quasi-inverse separately

and at any moment. It does not require the construction of

the entire space-filling curve. Such transformation allows us

to have a linear order of data in higher dimensions. Since the

curve is a closed curve, the resulting order is cyclical.

The outline of the paper is as follows. Section 2 introduces

the main ideas of constructing the d-dimensional Sierpiński

space-filling curve generalization. Section 3 contains two algo-

rithms. Algorithm 1. implements the construction of the nodal

point of the d-dimensional Sierpiński curve, i.e., it transforms

the selected data point from the unit interval onto the d-

dimensional unit cube. Algorithm 2 implements the quasi-

inverse mapping connected to the generalized Sierpiński curve,

i.e., it allows us to obtain a one from 2d positions on the

unit interval of a given point from the d-dimensional hyper-

cube. The example of using the algorithm to transform 4-

dimensional Iris data into unit interval is given at the end

of the section. The last section summarizes the contents of the

paper.

II. THE METHOD OF CONSTRUCTING THE D-DIMENSIONAL

SPACE-FILLING CURVE.

The method of constructing the d-dimensional space-filling

curve can be related to the sequential division of the filled

multidimensional space into elementary areas, usually mul-

tidimensional sub-cubes of the same shape and the same

volume [20].

Next, a one-to-one correspondence is established between

the 2dk elementary intervals Uk of the length 2−dk and

between the (2d)k sub-cubes Ck of size 2−k × 2−k . . .× 2−k

(k = 1, 2, 3, · · · ). The correspondence is such that any two

adjacent sub-intervals correspond to two adjacent sub-cubes

and moreover, 2d sub-intervals Uk+1 (of the length 2−d(k+1))

which constitute a sub-interval Uk correspond to the 2d sub-

cubes Ck+1 associated with the corresponding sub-cube Ck.

In this correspondence, adjacent sub-cubes of any level of

division k are related to adjacent subintervals of the same

degree of partition in the unit cube [20], [18], [27]. In this

way, one can define the classical space-filling curves such as

the Peano, Hilbert, and Sierpi´nski.

Define the family W of 2d mappings wi : R
d → Rd, i =

0, . . . , 2d − 1 of the following form:

wi(x1, x2, . . . , xd) =















1
2 − ( 12 − β1,i)x1
1
2 − ( 12 − β2,i)x2

· · ·
1
2 − ( 12 − βd,i)xd

(1)

where βj,i ∈ {0, 1}, j = 1, 2, . . . , d, i = 0, 1, . . . , 2d − 1.

For βj,i = 0 we get the transformation of the form 1
2 −

1
2xj

and for βj,i = 1 we get 1
2 +

1
2xj . Mappings wi are indexed in

such a way that vectors Bd
i = (β1,i, β2,i, . . . , βd,i)

T determine

wi uniquely.

Bd
i forms a list of d–dimensional vectors containing only

0 and 1, where each pair of the adjacent vectors differs at

exactly one position. In geometric terms, such a list of vectors

describes a closed (Hamiltonian) path through all vertices of

d-dimensional unit cube (Id = [0, 1]× [0, 1]× . . .× [0, 1]).
Among the many different possibilities, we limit ourselves

here to the order defined by the classical, reflective (reflected)

binary Gray code (see, e.g., [9]). d + 1–dimensional code is

formed from the d–dimensional one as follows:

Bd+1
0 , . . . , Bd+1

2d−1
= (Bd

0 , 0), . . . , (B
d
2d−1, 0)

and the reverse order added

(Bd
2d−1, 1), . . . , (B

d
0 , 1)

For example, for d = 3 we obtain a closed sequence of the

vertices of the 3 dimensional unit cube in the following form

closely related to the sequence of mappings (w0, w1, . . . , w7)
and w8 = w0:

(000), (001), (011), (010), (110), (111), (101), (100), (000).

Define a number sequence bk, k = 1, . . . such that:

b1 = 1 , bk = 2k−1 − bk−1 + 1, k = 2, 3, . . .
In this way, we obtain a fast-growing sequence of the

positive integers (1, 2, 3, 6, 11, 22, . . .), index sequences that

specify the position of vertex (1, . . . , 1) in the sequence (and

the corresponding mappings) scanning the vertices of Id.

Furthermore, it is easy to verify that:

Property 1: bd →∞ as d→∞, but 2−dbd ranges from 1
2

to 1
3 as d ranges from 2 to infinity.

The number bd is equal to the smallest distance between two

of the most distanced vertices of the cube: vertex (1, 1, . . . , 1)
and vertex (0, 0, . . . , 0) and as a consequence

Bd
2d−bd

= (1, 1, . . . , 1).

w2d−bd maps vertex (1, 1, . . . , 1)T to the same vertex

(1, 1, . . . , 1)T .

The mappings wi show how the unit cube is split onto 2d

smallest sub-cubes (of size 2−1,2−2 . . .) . Successive repe-

tition of such partitions produces a sequence of (2d)k sub-

cubes, which were obtained by consecutive mappings with

indices differing by one, i.e., defined by repeated sequences

of numbers s = (0, 1, 2, . . . 2d − 1, 2d), where 0 and 2d

symbolize two parts of the same sub-cube (associated with the

vertex corresponding to the starting point node (0, . . . , 0) of

the current sub-cube). At each subsequent split, the sequence

(0, 1, 2, . . . , 2d − 1, 2d) is replaced in the following way:

0→ (2d − bd, . . . , 2
d − 1, 2d),

1→ (0, 1, 2, . . . , 2d − 1, 2d),

. . .
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2d − 1→ (0, 1, 2, . . . , 2d − 1, 2d),

2d → (0, 1, . . . , 2d − bd − 1, 2d − bd).

Notably, a space-filling curve is defined as a limit of the uni-

formly convergent space-filling curve approximations formed

by line segments with ending points in adjacent sub-cubes. The

approximations could differ, but the limit curve depends only

on Uk and Ck structures [18], [27]. In our case, the endpoints

lie on the chosen vertices of the subsequent sub-cubes. They

have been chosen, so their positions do not change in subse-

quent iterations (for the next k). The next approximating curve

is created by adding successive points without changing the

location of the previous ones. It is worth emphasizing here that

the refinement of the curve approximation takes place locally,

separately in each sub-interval and the corresponding sub-

cube. Refining the curve approximation in one of its fragments

(a given sub-cube) does not affect refining the curve in its

other fragment. The first partition of the unit interval consists

of 2d + 1 sub-intervals with all intervals of the length 1/2d.

The only exceptions were the first and last intervals, which are

bd/2
2d and (2d − bd)/2

2d (together add up to 1/2d). These

two shorter sub-intervals correspond to the sub-cube with the

vertex (0, . . . , 0), where the conventional beginning and end

of the curve locate. The position of a point inside a particular

sub-cube Ck indicates the sub-interval Uk where its counter-

images find.

Transformations 1 are repeated without changing the scale

of the cube, because the coordinates in subsequent divisions

(in smaller and smaller scales) are each time scaled to the size

of the unit cube by inverse transformations:

xi =

{

1− 2xi, ifxi < 1/2,
2xi − 1, ifxi ≥ 1/2,

i = 1, . . . , d. (2)

Another possibility is to assume that 1 − 2xi is performed

when xi ≤ 1/2 and complementarily, transformation 2xi − 1
is performed for xi > 1/2. Thus, the point with a finite

binary expansion of all its coordinates can be connected

to one of 2d adjacent sub-cubes. Each such combination

of partitions (for every coordinate, we can have partition

[0, 1/2), [1/2, 1] or [0, 1/2], (1/2, 1]) is enough to determine

successive approximations of the quasi-inverse of the space-

curve (see Algorithm 2), because the scaling of the length of

the respective subintervals (by multiplying by 2−di, i ≤ k)

is independent of the orientation of the currently considered

sub-cube of side size 2−i. Let’s note that each point of the

cube Id is within 2−kd/2−1 distance from one of the vertices

of the approximating curve.

Usually, the 2-D Sierpiński curve is defined as a correspon-

dence between intervals and triangles. We will here rely on

the construction of the 2-D Siepiński curve, which basis on a

quadruple partition of a square (see Fig. 1), i.e., squares of side

size 2−k, where k is the number of the subsequent divisions

of the unit square. As in proposed in this paper approach, the

bd/2
2d and (2d − bd)/2

2d intervals correspond to partitioning

the cube onto two triangles in two dimensional space. When d

is larger, the division of the multi-cube is more complicated,

and the ratio of the volumes of the two parts depends on d.

The other version of the Sierpiński space-filling curve

generalization can be obtained by changing the direction of

passing the cube vertices in the sub-cubes obtained as a result

of the wi transformation with the odd index i.

Fig. 1: Approximations of the Sierpiński space-filling curve in

2-D.

Fig. 2: Modification of the Sierpiński space-filling curve in

2-D.

Fig. 3: Approximation of the Hilbert space-filling curve on the

plane.

As a consequence, in the two-dimensional case, we obtain

the agreement with the original Sierpiński curve (Fig. 1 in

contrast to the 2-D space-filling curve roughly visualized in

Fig. 2. Fig. 3 shows an approximation of the Hilbert curve.

The Hilbert curve uses the same vertex order in the elementary

cube as in the case of the Sierpiński curve [6], however, it does

not form a closed cycle as in our case.

A. Properties of the proposed family of the space-filling curves

The previously defined sequence of approximating curves

is uniformly convergent to the space-filling curve [20], [18].

The presented here generalization of the Sierpiński SFC

treated as the map Fd : I1 → Id, has the following properties:

a) Fd(t) is a measure preserving map of I1 onto Id,

b) mapping Fd forms closed curve, i.e. Fd(0) = Fd(1),
c) Fd(t) is a Hölder continuous mapping of order 1/d , in

the following sense

∥ Fd (t1)− Fd (t2) ∥ ≤ 2(d+ 3)1/2 (∆ (t1, t2))
1

d , (3)
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Fig. 4: Approximation of the proposed 3-D Sierpiński space-

filling curve with 512 nodal points.

where ∆(t1, t2) = min {| t1 − t2 |, 1− | t1 − t2 |} for

t1, t2 ∈ [0, 1]is a metric on a circle, while ∥ · ∥ denotes

the Euclidean norm in Rd. The constant 2(d + 3)1/2 (in

property c) is an upperbound. The same bound is valid for the

multidimensional Hilbert curve [37], [11]. Furthermore, it is

known that for the 2-D Sierpiński curve, the smallest possible

constant equals 2 [26] or is close to 61/2 for the 2-D Hilbert

curve [10], [37].

III. THE NUMERICAL ALGORITHMS

The first algorithm (Algorithm 1)approximates the points

of the d-dimensional Sierpiński curve using the entered points

from the unit interval. More precisely, it computes the image

of any point t ∈ [0, 1] in [0, 1]d. The algorithm requires

a number of iterations depending on the level of the curve

approximation k, and the accuracy of the approximation of

each coordinate point is 2−k. The computational complexity

of the algorithm is O(kd). Figure 4 depicts an approximation

of the 3-D Sierpiński space-filling curve.

The second algorithm ( Algorithm 2) transforms a mul-

tivariate data point into a unit interval. The algorithm is

iterative, and gives an approximation of the quasi-inverse of

the d-dimensional Sierpiński curve, depending on the level

of approximation, say k. The accuracy of determining the

position on a unit interval of an image x ∈ [0, 1]d is 2−dk.

The computational complexity of the algorithm is O(kd).
In the case of two dimensions, the algorithms provide the

curve (and its quasi-inverse) depicted on Fig. 1 b). A slight

modification of the algorithms in places marked ⋆ allows us

to obtain approximations of the original Sierpiński curve and

its quasi-inverses.

The Fig. 5 illustrates the application of the transformation

multivariate data on the example of Iris data [8], which

Data: d, k, t, (t ∈ [0, 1])
Result: x ∈ [0, 1]d

x← (1, 1, . . . , 1) ;

bd ← 1;

for i← 1 to d− 1 do

bd ← 2i − bd + 1 ;

end

cd← bd ∗ 2
−d ;

KM ← [ ];
for j ← 1 to k do

km← ⌊t ∗ 2d − 1 + cd⌋+ 1 ;

(⋆)t← t ∗ 2d + cd− km ;

if km == 2d then

km← 0 ;

end

append km to KM ;

end

for j ← 1 to k do

km← KM [k − j + 1] ;

B ← [ ];
while i < d+ 1 do

be← 1;

if km < 2d−i then

be← 0;

end

append be to B ;

km← km− be ∗ 2d−i;

if be == 1 then

km← 2d−i − km− 1 ;

end

i← i+ 1;

end

for i← 1 to d do

xd−i+1 ← 1/2− (1/2−B[i])xd−i+1;

end

end

modification for d = 2:

(⋆)t← (cd+ km− 1 + t)/2d by

if km is odd then

t← (−cd+ km+ 1− t)/2d ;

else

t← (cd+ km− 1 + t)/2d ;

end

Algorithm 1: Mapping of t ∈ [0, 1] into a point x ∈ [0, 1]d

contains 150 measurements (4 dimensional) of three different

species of irises: Iris Setosa , Iris Versicolour, and Iris Vir-

ginica. It is easy to see that the Iris Setosa forms a separate

cluster in the unit interval and only a small fraction of Iris Vir-

ginica is mixed with Iris Versicolor. Computations performed

to generate Fig. 4 and Fig. 5 were made in Matematica 11.3

on the Intel(R) Core(TM) i7-6500U CPU, 2.50GHz.

Calculation of the transformation of a single point from

a space with dimension d = 4 and accuracy 2−k, k = 10
required approx. 0.000625 s. With the same accuracy and d =
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Data: d, k, (x1, x2, . . . , xd), ( x ∈ [0, 1]d)

Result: t ∈ [0, 1]
bd ← 1;

for i← 1 to d− 1 do

bd ← 2i − bd + 1 ;

end

cd← bd ∗ 2
−d, t← 1− cd, KM ← [ ], B ← [ ];

for j ← 1 to k do

for i← 1 to d do

if xi < 0.5 then

be← 0, xi ← 1− 2 ∗ xi, append be to B ;

else

if xi ≥ 0.5 then
be← 1, xi ← 2 ∗ xi − 1, append be to

B ;

end

end

ww ← 0, km← 0 ;

for i← 1 to d do

if be+ ww == 1 then

km← km+ 2d−i ;

end

ww ← |be− ww|;
end

end

if km == 2d then

km← 0 ;

end

append km to KM ;

end

for j ← 1 to k do

km← KM [k − j + 1] ;

(⋆)t← (cd+ km− 1 + t)/2d ;

if t < 0 then

t← 1 + t ;

end

end

modification for d = 2:

(⋆)t← t ∗ 2d + cd− km by

t← t ∗ 2d + cd− km ;

if km is odd then

t← 1− t ;

end

Algorithm 2: Mapping of x ∈ [0, 1]d into t ∈ [0, 1]

2 the execution time was shortened twice.

IV. CONCLUDING COMMENTS

We present a simple algorithm for computing a transfor-

mation of multidimensional data points onto the unit interval

using the proposed a Sierpiński type space-filling curve gen-

eralization. Specific ideas regarding the generalization of the

Sierpiński curve were considered in the author’s monograph

[37], but the algorithms presented in this work are new and

have not been published anywhere.

20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1.0

Fig. 5: Three species of the 4-dimensional Iris data: Iris Setosa

(blue), Iris Versicolour (yellow), and Iris Virginica (green)-

150 data points - after dimensionality reduction.

It is known that there is a close relationship between

topological dimension d of the Id cube and the maximum

value of the Hölder’s exponent of a space-filling curve. The

value of 1/d is the maximum value. There is no d-dimensional

space-filling curve with an exponent greater than 1/d [18].

Hölder’s inequality results in an important property of space-

filling based transformations, which is to ensure the proximity

of data points whose counter-images are closely located on a

unit interval. Multi-dimensional Sierpiński curves are another

tool for analyzing multidimensional data.
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