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Abstract—This paper presents FAS-CT a novel approach to a
distributed low-latency Deep Learning inference system based
on a Field Programmable Gate Array (FPGA). The system
incorporates continuous training capabilities based on Concept
Drift Detection, where each model prediction is compared with
the ground truth to detect a change in the data patterns that
the model requires to adapt to. FAS-CT is formed by two main
execution pipelines. Firstly, the prediction pipeline is powered
with Xilinx® Zynq® UltraScale+™ MPSoC FPGA and where
low latency is the target. Secondly the Retraining pipeline aims
adapting the model the model when Concept Drift is detected. A
complete characterization of FAS-CT is provided in this article
using a neural network model and an experimental setup. The
latency of the Prediction pipeline achieved was 5.79 ms. The total
degradation of the model when continuous training is activated
is 57% in contrast to when is deactivated which is 1609%. These
results demonstrate that FAS-CT is suited for real-time Deep
Learning inference and can be automatically adapted to evolving
data environments.

I. INTRODUCTION

I
N RECENT times, Deep Learning (DL) has rapidly
emerged as a powerful tool, demonstrating unparalleled

potential in domains such as computer vision, natural language
processing, and predictive analytics, surpassing traditional
machine learning techniques [1]. Conventionally, cloud com-
puting has been the favored approach for deploying DL models
for such applications, harnessing the vast processing power
and storage capabilities of data centers [2]. However, the
growth in data traffic coupled with the stringent low-latency
requirements of various DL services has begun to challenge
this centralized computing approach [3].

The Edge Computing (EC) paradigm has gained promi-
nence, offering a solution to these challenges by processing
data closer to its source. EC is a decentralized paradigm that
places computational resources, memory, and services closer
to the data origination point, thereby accelerating response
times and reducing the burden on communication bandwidth.
Despite its potential, EC poses its own challenges, particu-
larly in terms of limited computational power and memory
resources when compared to cloud-based systems [4]. These

EC limitations have a direct impact on DL solutions. Real-
time inference or model adaptation to new data could be
compromised.

Executing DL models on EC devices in order to achieve
real-time inference is a non-trivial task due to the inher-
ent resource constraints. Despite optimization for edge de-
ployment [5], these models continue to demand substantial
computational resources. Model adaptation represents another
significant challenge within the EC paradigm. DL models
necessitate continuous updates to maintain relevance in rapidly
evolving data environments or in the presence of Concept Drift
(CD) [6]. These widely recognized problems of DL models on
EC have been investigated in literature [5] and are typically
addressed through an orchestration system architecture or
continuous training techniques.

Orchestration architecture, a key theme across several ar-
ticles, is primarily used to manage and optimize distributed
resources. The research in [7] uses it for distributing process-
ing between EC devices and the cloud in a real-time image
recognition system. In [8], the authors use an orchestration
architecture for continuous training by integrating new data
into existing models, whereas in [9], it enables continuous
updates to the seizure prediction model. However, it is note-
worthy to mention that these approaches typically focus either
on orchestration or on continuous training, but rarely integrate
both elements effectively. This highlights the novelty of the
current work, which aims to bridge this gap by developing
a mechanism capable of detecting CD and performing con-
tinuous training while managing and optimizing resources
through an orchestration system architecture. These studies
emphasize the importance of orchestration architecture in man-
aging complex distributed systems and enabling continuous
training. This topic is particularly interesting, as highlighted
in [8], [9], and [10]. [8] and [9] demonstrate its importance in
medical applications, where models are continually updated
with new data to improve accuracy. [10] extends this idea
to IoT devices, introducing a loss compensation mechanism
to improve Federated Incremental Learning, highlighting the
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applicability of continuous training across various fields.
On DL there are different types of models each one with a

target application [1]. Those DL architectures have been imple-
mented successfully in different EC devices. Implementations
of Fully Connected Networks (FCN) have been explored in
[11], [12]. Convolutional Neural Networks (CNN) on [7],
[13], [8] and Recurrent Neural Networks (RNN) particularly
Gated Recurrent Units (GRU) and Long Short Term Mem-
ory (LSTM), are used in [14], [15], [16]. Typically used
EC devices for DL implementation have coupled processing
technologies like CPU + GPU [17], [18], CPU + FPGA [13],
[19] or CPU + TPU [18], [20]. CPU’s mean purpose is to
manage data and connections with orchestration architecture,
meanwhile, GPU, FPGA, or TPU are used to accelerate DL
model inference.

The use of FPGA is explicitly discussed in [11], which
presents ZyNet to automate FCN implementation on low-cost
FPGA platforms. This tool facilitates the deployment of FCN
in edge computing devices and is a promising approach for
making FPGA-based DL computing more accessible. In [13]
an FPGA with LeNet-5 is studied. This article implements
an autonomous architecture with continuous training of the
model in a Xilinx® Multi-Processing System on Chip (MP-
SoC) device. The training is performed in MPSoC CPU and
the inference is executed on FPGA. This solution leads to
inference times of 2.2 ms and training times of 286s. Also in
[12], [16] a Xilinx® FPGA is used to implement inferences
of FCN and LSTM, their performance is analyzed. These
implementations have maximum inference times of 1.09ms
for FCN and 2.6ms for LSTM.

In the present work we introduce the FPGA-Based Acceler-
ation System with Continuous Training (FAS-CT). This novel
EC architecture is designed for the orchestration of DL model
inference on FPGA, explicit CD detection, and continuous
training. As is exposed, DL model inference on FPGA can
yield low-latency responses. The CD is explicitly identified to
monitor any degradation in the model’s performance. If CD
is detected, the retraining stage of the DL model is launched.
This process allows continuous training of the model and its
automatic update in FPGA. The main contributions of this
article are listed as follows:

1) We put forth an architecture that efficiently coordi-
nates various technologies best suited for different tasks.
FPGA for DL model inference, GPU for DL model
training, and CPU for preprocessing, postprocessing, CD
detection, and data communication.

2) A complete description and characterization of FAS-CT
is presented. The description of each component and
the interaction between them is detailed. The charac-
terization is examined with real-world data concerning
response time, model performance, and model updates.

3) CD detection is included in the architecture to perform
model retraining only when needed. This stage in the
orchestration scheme allows for saving energy because
a power-hungry GPU is used only when the model
performance is worsening.

The rest of the article is organized as follows. Section II
details a complete description of FAS-CT architecture, focus-
ing on different technologies for each component. Section III
explains CD detection and its implementation in a module
on FAS-CT. Section IV explains the implementation of DL
model inference on FPGA and its communication with FAS-
CT. Section V focuses on the setup and the experiments
performed on FAS-CT to get a complete characterization of the
architecture. Section VI exposes the results of metrics defined
in the previous section. The article finishs in section VII with
conclusions and future research work.

II. CONTINUOUS TRAINING SYSTEM ARCHITECTURE

FAS-CT architecture is designed around a central orches-
tration framework that maximizes the benefits of each tech-
nology it incorporates. It leverages FPGA for real-time neural
network inference, GPU for model training, CPUs for pre and
post-processing of data, CD detection, and management of
data communication. This collaborative design facilitates high
performance and ensures seamless integration of these key pro-
cesses. FAS-CT has been designed to enable easy adaptation to
diverse hardware, software, and data configurations. Each step
can be deployed on separate hardware, thus satisfying most
latency, performance, or throughput requirements with ease.
For instance, feature preprocessing, inference of the neural
network, and result postprocessing can be performed near the
data source or prediction consumer, while feature storage and
model retraining can be executed on more powerful devices
like computer servers with GPU.

FAS-CT is composed of different stages or modules. Each
of the stages shown in Fig.1 is handled by a different service.
Modules are grouped in two pipelines. The first pipeline is
responsible for inference in FPGA. The second pipeline is
responsible for retraining the model when CD is detected.

To facilitate the service deployment, management, and
monitoring, Docker [21] has been used for each module. A
description of the task and purpose for each stage is given
below.

A. Data Propagation

To communicate the different stages in FAS-CT the Mes-
sage Queuing Telemetry Transport (MQTT) [22] protocol has
been used. MQTT is a lightweight messaging protocol based
on the publish-subscribe pattern. The protocol operates on top
of the TCP/IP network stack and has support for multiple
Quality of Service (QoS) levels to ensure reliable message
delivery.

To manage the message queues the open-source Eclipse
Mosquitto [23] MQTT Broker has been used. Mosquitto is
licensed under EPL2, and it is one of the most suitable MQTT
brokers due to its high performance [24], being multi-platform
MQTT 5 compliant and having Transport Layer Security
(TLS) support. The data has been serialized using Google
Protocol Buffers [25].

132 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 1. FAS-CT architecture diagram. There are eight modules grouped in
two pipelines. Modules of the Prediction pipeline are highlighted in red and
the Retraining pipeline in green. The inference module is executed in FPGA,
he Model Retrainer module in GPU and the rest of modules in CPU.

B. Feature Store

A database records each set of model input features with a
unique sequential ID, along with the corresponding ground
truth, model inference result, and drift level of the model
for that prediction. The database can be queried using a set
of remote procedure calls (RPC) [25] to retrieve the various
features required for the model retraining process.

C. Feature Inference Preprocessing

The feature inference preprocessing stage involves a series
of transformations that are applied to the raw data to make
it compatible with the machine learning models. This stage
may include data cleaning, where inconsistencies, errors, and
outliers in the data are identified and corrected or removed.
Another common step is data normalization or standardization,
which is crucial for algorithms that are sensitive to the scale
of the features. This process adjusts the values of numeric
features so that they share a common scale, without distorting
the differences in the ranges of values or losing information.
Feature engineering is another integral part of preprocessing,
creating new features based on existing ones, which can
enhance the predictive power of the machine learning model.

D. FPGA Edge Inference

An FPGA receives a set of tensors from the preprocessing
stage which serves as inputs for the neural network. These
tensors are essentially multi-dimensional arrays of data, pre-
pared and structured to be ingested by the model for making
predictions.

Simultaneously, the device also listens for model updates
from the continuous training pipeline. Upon receiving these
model updates, the FPGA substitutes the current model with
the new model. Essentially the model is evolving its ability to
make accurate predictions in line with the most recent trends
in the data. This process of continuous listening and updating
ensures that the model deployed on the FPGA is always
synchronized with the most recent version and maintains
accuracy even in the face of changing data landscapes.

E. Result Postprocessing

Certain models may need a postprocessing step to enable an
accurate comparison between the ground truth and the predic-
tion. For instance, if the preprocessing stage involved scaling
or standardization of features, an inverse transformation might
be necessary for the postprocessing stage to convert predic-
tions back to the original scale. In this way, the predictions
can be compared with the ground truth. Another common post-
processing step involves the treatment of probability outputs.
Many machine learning models, especially in classification
tasks, output probabilities of each class. A thresholding op-
eration might be necessary to convert these probabilities into
discrete class labels. The choice of threshold can significantly
affect the model’s performance metrics and can be fine-tuned
based on the requirements of the specific task.

F. Drift Detector

This module is continuously monitoring the error that the
neural network is generating. If the error is between some
limits or thresholds, the model is considered to be providing
a correct prediction. If the error increases, CD is detected and
the Retraining pipeline is executed.

There are several Drift Detectors that can be placed at this
stage. For FAS-CT we choose Drift Detector Method. This is
an algorithm developed by J. Gama et al. [26]. It is compu-
tationally lightweight and has low memory requirements, in
line with the two main constraints in EC. A description of
this algorithm is detailed in Section III.

G. Model Retraining, Validation and Registry

Upon a Drift Detector notification, the Model Retraining
stage updates the scalers and the neural network to fit the
newest data. The data has been stored properly in the Feature
Storage module and is served to perform new training on the
model.

The validation process of the updated model entails a
comparison between the Drift Detector error metric of both
old and new models. If the error metric of the new model is
less than the current drifted mean, the updated model is stored
in the model registry and publishes a model update on FAS-
CT. However, if the error metric of the new model is assessed
as an improvement, the model is stored.

The experiments, models, and scalers are tracked by
MLFlow [27]. MLFlow is an open-source platform for ma-
chine learning workflows that includes features such as exper-
iment and model registry, allowing for efficient management
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of models. Furthermore, MLFlow’s experiment tracker stores
and organizes all the models, data, and metrics of a retraining
process.

H. Model Optimization and Update

Upon completion of the model’s retraining and validation
process, the subsequent step involves its conversion and op-
timization into a specific format that can be consumed by
edge devices like FPGA. The new model is serialized in JSON
format and it is sent to the FPGA as detailed above.

The model update could also involve changes in Pre-
processing and Post-processing stages. In this case, some
functions like scalers must be updated. Finally, if the model is
retrained, the Drift Detector is also reset with new parameters.
This process is explained in the following section.

III. CONCEPT DRIFT DETECTION

CD refers to the phenomenon where the statistical properties
of data, on which the model has been trained, change over
time in unforeseen ways, causing the model’s performance
to degrade. This happens because most predictive models
are designed and trained under the assumption that future
patterns will remain consistent with historical ones, which is
often not the case in real-world scenarios. Real-world data is
continually evolving and changing, and so too is the context
in which DL models operate. Changes can occur in various
forms e.g. gradual, abrupt, incremental, or recurring changes
[6]. Different types of CD exist, such as real, virtual, and dual
CD [6], [28]. In this work, only real CD will be considered
and will be referred as CD for the sake of simplicity.

DL models, though powerful and highly accurate, have a
significant weakness when it comes to CD. Detecting CD
and subsequently retraining the models can be a solution to
mitigate this impact. The process typically involves monitoring
the model’s performance metrics over time, and if a significant
decline is detected, it’s an indication that CD might be
occurring. Once identified, the model can be retrained with the
latest data, which reflects the new patterns. By applying this
continuous training approach, DL models can become more
adaptable to the evolving nature of real-world data.

The CD detection method implemented in the Drift Detector
module, shown in Fig. 1, is similar to the Drift Detection
Method (DDM) proposed by [26]. This method is based on the
error signal produced by a binary classifier. The error signal is
the probability of misclassifying an instance plus the standard
deviation. The error signal fits a Bernoulli distribution because
a binary classifier is assumed in [26]. DDM can be extended
to forecasting or regression models by monitoring the error in
prediction. On these models, DDM studies error signal mean
and standard deviation based on a Gaussian distribution:

en = ytruen − ypredn (1)

µn =
n− 1

n
· µn−1 +

1

n
en (2)

σn =

√

n− 1

n
σ2

n−1
+

1

n− 1
(en − µn)

2 (3)

ddm_en = µn + σn (4)

Where µ0(e) = σ0(e) = 0 and n is the number of
monitored predictions. Recurrent formulas for µn and σn are
used to avoid storing previous values of the error and satisfy
the memory requirements of the processing system. These
formulas are derived in detail in Appendix A. The value
ddm_en is known as the DDM error metric and is used to
determine when CD is detected. Notice that for DDM it is
necessary to have the ytrue value. Particularly, this is possible
for a forecasting task on time-series data because ytrue will be
available at a certain time. Two configuration parameters are
needed µmin and σmin. These parameters are the minimum
mean and the minimum standard deviation calculated during
the training process. After that, DDM is configured and starts
monitoring the model. The warning level is triggered if:

ddm_en >= µmin + 2 · σmin (5)

At the warning level, the performance of the DL model is
starting to worsen and the CD may arise. To adapt the model
input and target data are stored to retrain the model. The drift
level is triggered if:

ddm_en >= µmin + 3 · σmin (6)

At the drift level, CD is detected, retrain is performed
with stored data, DL model adaptation is executed and DDM
parameters are restored. In FAS-CT the new model is changed
on FPGA and the inference is executed with the new adapted
model. This is an endless loop of inferring, monitoring,
retraining, and adapting the DL model that could generate an
updated response in an evolving environment.

IV. FPGA INFERENCE

The edge inference module in the prediction pipeline shown
in Fig. 1 is implemented using an FPGA device. These devices
are highly versatile integrated circuits that can be reconfigured
and programmed to perform specific tasks, making them
ideal for application acceleration, including neural network
inference [11]. FPGA devices offer several advantages for such
tasks. First, their parallel processing architecture allows multi-
ple operations to be performed efficiently and simultaneously,
resulting in high throughput and low latency [13], [16]. This
is particularly beneficial for neural network inference, which
involves intensive matrix calculations. In addition, FPGAs
offer the flexibility to customize hardware designs, enabling
the implementation of highly optimized neural network ar-
chitectures tailored to specific application requirements. The
ability to fine-tune hardware resources at the circuit level
enables efficient utilization of FPGA resources, resulting in
improved power efficiency [12]. In addition, FPGAs can be
integrated with existing systems, including CPUs and GPUs,
to leverage their respective strengths in a heterogeneous com-
puting environment. Overall, the programmability, parallelism,
customization, and integration capabilities of FPGAs make
them a compelling choice for accelerating neural network

134 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 2. FPGA inference diagram

inference, offering significant performance gains and energy
efficiency for a wide range of applications.

The inference stage must be able to process various data sent
by the FAST-CT using the MQTT protocol. The transmitted
data are in JSON format. The FPGA processing system must
be in charge of extracting the necessary information to carry
out the inference on the input data and the configuration of
the corresponding neural network parameters. Likewise, the
FPGA device transmits the result of the inference of each
set of data received. The neural network is implemented on
an acceleration kernel in the programmable logic side of the
FPGA. This kernel communicates with the processing system
and accelerates the inference task.

For the management of all these tasks, the architecture
shown in Fig. 2 has been implemented. Four processing
threads are used for data processing, control of the inference
process, and configuration of the acceleration kernel. Three
threads manage the data received and sent by MQTT. The
other one is in charge of the inference execution. As can be
seen in Fig. 2, two buffers are used for the synchronization
between the tasks of reading input data, inference, and writing
output data.

The inference process in the prediction pipeline on FAS-CT
works as follows. The MQTT subscriber thread for input data
writes the inference data to the input buffer. The accelerated
kernel inference thread orders the execution of the acceleration
kernel and stores the result in the output data buffer. Finally,
the MQTT publisher thread for output data sends the results of
the inference to continue the prediction pipeline. The FPGA
device is also integrated into the retraining pipeline. In the
fourth thread, the MQTT subscriber for neural network param-
eters is listening for updates in neural network weights. These
updates are codified in JSON format. This thread manages the
configuration of the acceleration kernel parameters and sets it
for the next execution.

V. MATERIALS AND METHODS

A. Setup

In this study, we employed FAS-CT with an LSTM neural
network for time series forecasting. Due to client confiden-
tiality, the data and results of the experiment have been
anonymized. The purpose of the network is to forecast the
value of a single sensor with a prediction horizon of 10
minutes. The model has been trained with a 32-minute sliding
window of 4 different correlated sensors with a sample rate
of 1 minute. All data is stored in a database so it is available
for any experiment.

The LSTM network is a sequential model with an input
LSTM layer of 32 units followed by a fully connected layer
of 16 neurons with tanh activation function and a single
neuron as output with a linear activation function. The neural
network training uses the mean squared error loss function and
Adam as the optimizer. The training process is limited to 100
epochs, with an early stopping of 10 epochs of patience.

The implementation of all the modules specified in Section
II, with the exception of the inference kernel, are imple-
mented in Python using common libraries like Paho-MQTT,
Scikit Learn, GRPC, SQL Alchemy, and Tensorflow. The Pre-
processing module receives data from 4 different sensors and
appends them into a First-in-First-out queue of size 32 working
as a sliding window. The data is then scaled into the interval
[0, 1] using the MinMaxScaler algorithm. The Post-Processing
module receives the network result and implements the inverse
scale transformation.

The description of the acceleration kernel has been per-
formed using HLS in the Xilinx® Vitis™ HLS development
environment. This acceleration kernel describes the LSTM
neural network with a 32-cell LSTM layer, 4 input features,
and a 32-sample time window. This LSTM network also has
two dense layers, the first of 16 neurons and the second of one
neuron. For the implementation of the MQTT communication
protocol, the MQTT-C [29] library has been used.

All the modules, with the exception of the inference, are
running on a local host PC inside Docker containers on top
of a Linux OS on a CPU Intel Core i7-13700k, a GPU
Nvidia RTX 3060-12GB, and a memory RAM of 32 GB.
The Model Retrainer uses the power of the GPU to accelerate
the training of the neural network. The FPGA is connected
to the local LAN network via Ethernet. The FPGA used for
the LSTM implementation is the Ultra96v2 evaluation board
which contains a Xilinx® Zynq® UltraScale+™ MPSoC device.

B. Experiments and Characterization

To evaluate the performance of the FAS-CT, backtesting
experiments have been executed. Different metrics have been
monitored during experiments. To characterize the prediction
pipeline, the latency of each process, and communications are
measured. To characterize the retraining pipeline, the error of
the model and the number of retrains are monitored. On the
retraining pipeline, the focus is on studying the DDM Drift
Detector because it is the module in charge of executing the
retraining.
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A base model was trained offline with the first 5% of
the available data whereas the rest was used for backtesting
experiments. All the experiments have been performed using a
configuration of 1000 input samples per minute. Three distinct
experiments were conducted. The initial test use static scalers,
which were initially fitted with the feasible range of values that
each sensor can detect to prevent any bias from the training set.
The second test involved employing dynamic scalers, during
the retrain step the scalers are fitted with the updated train
dataset. The final test examined the behavior of the system
without any retraining, serving as a baseline. The three tests
were conducted using the same base model and initial scalers.

VI. RESULTS AND DISCUSSION

A. Latency

The latency of different modules and communications has
been measured in the prediction pipeline. The method was
to calculate the difference between input and output message
timestamps for each module. As a control for communication,
the latency between the FAS-CT host and the FPGA was
measured using a ping command. The ping package yielded
an average latency of 1.253 ± 0.614 milliseconds.

TABLE I
LATENCY OF EACH PROCESS FOR PREDICTION PIPELINE IN FAS-CT

Process Name Process Type Technology Latency (ms)

1 Pre-processing Execution CPU 0.856 ± 0.457
2 Pre-P → Infer Communication CPU 1.442 ± 0.834
3 Inference Execution FPGA 1.894 ± 0.085
4 Infer → Post-P Communication CPU 1.372 ± 0.890
5 Post-processing Execution CPU 0.336 ± 0.150

6 Prediction Orchestration FAS-CT 5.792 ± 1.396

The latency between Pre-processing and inference measures
the time that it takes for a tensor to arrive at the FPGA
(Table I row 2). Similarly, the latency between inference and
Post-processing measures the time required for a prediction
to reach the Post-processing module (Table I row 4). None
of both measurements include the run-time of the involved
stages. The execution latency of Pre-processing, Inference, and
Post-processing modules has also been measured in Table I
rows 1, 3, and 5. Finally, latency measurements have been
conducted to determine the time required for generating a
prediction from the moment the sensors are polled (Table I row
6). This measurement includes communication and execution
of all modules.

B. DDM Backtesting Results

This section focuses on the behavior of the DDM algorithm
on the backtest dataset and the consequent start of the re-
training pipeline. In table II the experiment results are shown.
DDM error metric is calculated in backtests using Eq. 4. The
optimal continuous training configuration involves having the
least mean DDM error and maximizing the number of samples
in the No Drift region.

TABLE II
BACKTESTING RESULTS ON RETRAINING PIPELINE

Retrain No Retrain
Scaler Type Static Dynamic Static

Level No Drift % 65,23% 35,77% 1,11%
Level Warning % 23,50% 21,22% 0,00%

Level Drift % 11,26% 43,01% 98,89%
N Retrains 8 24 0

Initial DDM Error 0,1053
Last DDM Error 0,1653 0,1475 1,8

Mean DDM Error 0,391 ± 1,36 0,464 ± 1,37 1,335 ± 2,03

Fig. 3. Outlier in data that causes a sudden increment on DDM error metric,
plotted in blue. The green area is the no drift region, the yellow area is the
warning region and the red area is the drift region.

Among the three different test configurations, the configura-
tion that yields the best results is the one that retrains the base
model and keeps the scalers static. This configuration labels
66.2% of the predictions as No Drift with an average error
of 0.391 ± 1.36. These statistics have been achieved with 8
retrains during backtesting.

The configuration with dynamic scalers updates them after
each retrain stage. On this configuration, there are 43.01%
predictions labelled as Drift. This is 281% more than the
previous configuration with static scalers. In contrast with
the previous experiment, the final DDM error is lower but
with a higher mean DDM error of 0.464 ± 1.37. This is an
increase of 18.6% in the DDM error metric with also an
increase in the number of retrains. This behaviour is due to
the dynamic scalers altering the data distribution after each
retraining, worsening the model generalization.

Lastly, the no retraining configuration results in 99% of
drifted predictions with an average error of 1.335. Further-
more, in this particular scenario, no prediction was within the
warning region as the model encounters an outlier among the
first 1.1% of the data that, drastically increments the DDM
error metric, as seen in Fig.3. This is the worst configuration
meaning that continuous training is needed for this neural
network to operate with real-world data.
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Fig. 4. Retrain number 5 in Table III where after 23333 predictions reach
drift level, the retrain pipeline is executed and DDM error metric (plotted in
blue) goes again to No Drift region. The green area is the no drift region, the
yellow area is the warning region and the red area is the drift region.

C. Retraining

After establishing that static scalers are the optimal config-
uration for FAS-CT with this data, we will now delve closer.
We will focus on this experiment, studying how retraining
improves the model. The self-retraining process using the
static scalers configuration has been detailed in table III. The
table includes the model DDM error improvements between
each retraining step, as well as the count of predicted samples
by the model prior to it being updated.

A successful retrain of the model greatly improves the
error metric over its predecessor and generalizes enough that
it can make reliable predictions for a substantial portion of
samples without triggering another retrain. An example of a
successful model retrain would be the fourth retrain, which
predicts 23333 samples and presents minimal drift, as seen in
the left part of Fig. 4.

TABLE III
DETAILED IMPROVEMENT ON EACH RETRAIN WITH STATIC SCALERS.

Retrain
Previous

DDM Error
New DDM

Error
Improvement

in DDM Error
New Model
Predictions

1 12,532 12,085 3,57% 876
2 1,5295 0,1783 88,34% 28248
3 0,2421 0,2217 8,43% 1166
4 0,4559 0,2832 37,89% 23333
5 0,3212 0,0883 72,50% 6035
6 0,2032 0,1368 32,66% 1557
7 0,4283 0,4187 2,24% 1335
8 0,9455 0,1491 84,23% 8053

Furthermore, other retrain attempts are not as successful,
such as the first or the third retrain. These retrains happen far
from the drift level Eq. 6. Fig. 5 shows the third retrain that
only has a slight improvement. This model can only predict
1166 samples before being replaced with a more accurate
model.

Lastly, the speed of the retraining process affects the number
of predictions beyond the drift level. By reducing the retraining
time of the model, the number of predictions in the drift region

Fig. 5. Retrain number 3 in Table III where the new model could only make
1166 predictions before being substituted. After the retrain number 3 DDM
error metric (plotted in blue) does not reach immediately the no drift region.
The green area is the no drift region, the yellow area is the warning region
and the red area is the drift region.

can be reduced. A comparison between the training perfor-
mance on the CPU and GPU of the system using Tensorflow
Keras is presented in Table IV. The training time depends
on various factors such as the number of retrain samples or
early stopping configuration. Because of that milliseconds per
training batch of 64 samples has been used as a comparative
metric.

TABLE IV
TRAINING PERFORMANCE COMPARISON IN DIFFERENT DEVICES

RTX 3060 12GB i7 13700k

Batch Mean (ms) Std (ms) Mean (ms) Std (ms)

32 2.81 8.05 3.59 4.40
64 2.86 5.22 3.96 5.07

128 2.94 6.95 4.93 7.55
256 3.07 10.02 10.006 11.04
512 3.46 12.97 14.99 14.04

GPU is faster per training batch than CPU as expected.
Also, training on GPU leverages CPU that can perform better
in other modules like in the prediction pipeline, where low
latency is required.

VII. CONCLUSION AND FUTURE WORK

This article introduces FAS-CT, a distributed DL inference
architecture with FPGA acceleration and continuous train-
ing based on CD detection. This architecture is focused on
enhancing the performance and reliability of deep learning
predictions in changing or difficult-to-predict environments. To
achieve that purpose, FAS-CT is composed of two execution
pipelines. First is the prediction pipeline that orchestrates
model inference in FPGA. Second is the retraining pipeline
which monitors the error metric of the model and manages
the actualization of the model.

One of the components of FAS-CT is the CD Detector, an
algorithm that labels the model predictions with three possible
values, No Drift, Warning, and Drift. Once a prediction is
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labelled as Drift, FAS-CT retraining pipeline is launched using
two possible configurations, static or dynamic scalers.

The reliability of FAS-CT has been backtested using an
LSTM neural network trained for a forecasting task. The
results in table II showed that both retraining configura-
tions outperform the default behaviour of a simple prediction
pipeline without continuous training. In addition, the imple-
mentation with static scalers stands out by labelling 75% fewer
predictions as drift and having a lower mean DDM error metric
than the implementation using dynamic scalers.

Additionally, the article also studies the latency of each
module involved in the prediction pipeline. FPGA has an
inference latency of 1.9ms whereas the complete pipeline has
an average latency of 5.8ms, with communication between
different components accounting for over 2.5ms of the total
latency.

Overall, the article demonstrates that FAS-CT is a reliable
low-latency DL inference system that adapts over time. This
system is suitable for real-time complex tasks that must be
executed on the edge. Also, this article demonstrates that is
completely feasible the coordination between a drift detector
and an FPGA as an accelerator.

A. Future Work

Regression Outlier Resilience: The presence of outliers
can significantly influence the efficacy of CD detection. In
scenarios where a model fails to accurately regress an outlier
value, the DDM update process may erroneously identify CD,
triggering the retraining of a stable model.

Synchronous Model Update: Updating a model while
ensuring consistent distributions across different components
can be a complex task as communication is asynchronous. Up-
dating the model, the DDM parameters or scalers can happen
in different timestamps, resulting in incoherent distributions
until all the models are updated.

Monolithic Scaling and Inference block: The commu-
nication between the Pre-processing, Inference, and Post-
processing modules introduces latency to the inference task,
as highlighted in Table I. It is possible to consolidate the three
blocks into a single monolithic block executed on the FPGA.

Enhancing Dynamic Scalers Configuration: Not all sce-
narios can be deployed using the static scalers configuration, as
the working data interval might be unknown or can drastically
change over time. An algorithm that detects when the scalers
are outdated so they can be dynamically updated could be
developed.

Early CD detection and model adaptation: Since the
DDM error metric reaches the drift level until the model
is updated, the system makes some predictions in the drift
region. These predictions have been minimized using GPU
for training. However, it is necessary to reduce them as much
as possible. To achieve this, the proposal is to use methods
that detect CD early, such as the Early Drift Detector Method
[30]. Further research is needed in this area.
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APPENDIX A: MATHEMATICAL DERIVATION OF MEAN AND

STANDARD DEVIATION RECURRENT FORMULAS

Definitions of mean and standard deviation over a set of
items {ei}i=1,...,n are:

µn =
1

n

n
∑

i=1

ei; σn =

√

√

√

√

1

n

n
∑

i=1

(ei − µn)
2

These definitions imply that all items of ei must be available
in order to calculate µn and σn for any n. This could be a
problem for a limited memory process system if the set is too
big or infinite. Due to this limitation, it is necessary to rewrite
the mean and the standard deviation definitions as recurrent
formulas where only a few values must be stored. Starting
with the mean:

µn =
1

n

n
∑

i=1

ei =
n− 1

n
µn−1 +

1

n
en

For the calculation of the mean, it is only necessary to store
three values: the previous mean µi−1, the number of items n,
and the last item ei. Now deriving the same recurrent formula
for standard deviation:

σ2

n =
1

n

n
∑

i=1

(ei − µn)
2
=

1

n

n−1
∑

i=1

(ei − µn)
2
+

1

n
(en − µn)

2

Notice that the first term is not σ2

n−1
because the mean is the

updated mean µn and not µn−1. It is necessary to substitute
µn with the recurrent formula:

σ2

n =
1

n3

n−1
∑

i=1

[n (ei − µn−1)− (en − µn−1)]
2
+

1

n
(en − µn)

2

Developing the square of the binomial, applying the defini-
tion of µn−1 and σ2

n−1
and arranging all the terms:

σ2

n =
n− 1

n
σ2

n−1
+

n− 1

n3
(en − µn−1)

2
+

1

n
(en − µn)

2

Now it is possible to derive the second or the third term
depending if the final formula is µn or µn−1 dependent.
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Developing the second term by substituting the expression of
µn−1 in terms of µn:

n− 1

n3
(en − µn−1)

2
=

1

n (n− 1)
(en − µn)

2

Now the second term has the same dependence as the third
term. Summing those terms, the recurrent formula for standard
deviation is:

σn =

√

n− 1

n
σ2

n−1
+

1

n− 1
(en − µn)

2

For the calculus of the standard deviation, it is only nec-
essary to store four values: the previous standard deviation
σn−1, the current mean µn, the number of items n, and the
last item en.

These recurrent formulas for mean and standard deviation
can satisfy the memory requirements in a process system
where data is continuously arriving like in FAS-CT or any
other system that deals with data streams.
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