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Abstract—Erdös and Faudree stated that it is an interesting
problem to determine all the graph pairs which are Ramsey-
full. For even cycles, they only showed that the pair (C4, C4) is
Ramsey-full. It turns out that this statement cannot be applied
to longer even cycles. Wu, Sun and Radziszowski obtained that
the pair (Cn, C4) for n > 4 is not Ramsey-full. In this article we
will show that the pairs (Cn, C6) for different values of n are
also not Ramsey-full.

We will also determine the values of some star-critical Ramsey
numbers, in particular r∗(C6, C6) = 6 and r∗(C7, C6) = 7.
In addition, we also show other values and bounds for star-
critical Ramsey numbers for two cycles, one of which is an even
cycle. These results are the beginning of the star-critical Ramsey
number problem for even cycles of length 6 or more, and may
help in obtaining further properties of this type.

I. INTRODUCTION

T
HE theorem, later called Ramsey’s theorem, was proved

by Ramsey and published shortly after his death in

1930. Informally written, this theorem proves that “complete

disorder is impossible”. In other words, any sufficiently large

structure contains a substructure with the desired property.

One of the popular ways looking at Ramsey’s theory is in the

context of graph theory, and more specifically edge coloring of

graphs. To put it quite simply, we want to answer the following

question: If we have a complete graph Kn on n vertices where

every edge is arbitrarily colored either blue or red, what is the

smallest value of n that guarantees the existence of either a

subgraph G1 which is red, or a subgraph G2 which is blue?

This smallest search n is called a 2-color Ramsey number

R(G1, G2). Initially, only the case when subgraphs G1 and G2

are complete subgraphs was considered. Therefore, Ramsey

numbers for subgraphs other than complete and those defined

analogously for more subgraphs and colors became popular

very quickly. Currently, many classes of graphs are considered,

such as paths, stars or cycles considered in this article.

From the informal definition of Ramsey numbers presented

above, it follows that there is a critical graph, i.e. an edge

coloring of a complete graph of order n− 1, which does not

contain a red copy of G1 or a blue copy of G2. Therefore,

each 2-edge coloring of Kn contains either red G1 or blue

G2, and there is a coloring of Kn−1 without red G1 or blue

G2. These facts lead us to an interesting question. For known

Ramsey numbers, R(G1, G2) = n, and a 2-coloring of the

graph Kn−1 + v, if we add colored edges individually from

a new vertex v to vertices of Kn−1, then at what point must

the graph have a red G1 or a blue G2? Alternatively, what

is the largest star that can be removed from Kn so that the

underlying graph is still forced to have either a red G1 or a

blue G2? To study this, Hook and Isaak [6] introduced the

definition of the star-critical Ramsey number r∗(G1, G2).
Numerous other varieties of non-classical Ramsey numbers

have been defined. For example: bipartite, planar, on-line,

induced, local, diagonal, geometric, rainbow, linear and star-

critical that are considered in this work. Many interesting

applications of Ramsey theory arose in the field of mathe-

matics and computer science, these include results in number

theory, algebra, geometry, topology, set theory, logic, infor-

mation theory and theoretical computer science. The theory

is especially useful in building and analyzing communication

nets of various types. Ramsey theory has been applied by Fred-

erickson and Lynch to a problem in distributed computations

[5], and by Snir [12] to search sorted tables in different parallel

computation models. The reader will find more applications in

Rosta’s summary titled “Ramsey Theory Applications” [11].

II. DEFINITIONS AND KNOWN RESULTS

In this paper we consider only finite and simple graphs.

Let G = (V (G), E(G)). The deletion of edges of a copy of a

subgraph H from G will be denoted as G−H and the deletion

of an edge e from G will be denoted as G−e. Let Kn denote

a complete graph on n vertices and Km,n a complete bipartite

graph on m+ n vertices. Denote by Cn a cycle of order n.

Definition 1. The circumference c(G) of a graph G is the

length of its longest cycle.

Definition 2. The girth g(G) of a graph G is the length of its

shortest cycle.

Definition 3. A graph is called weakly pancyclic if it contains

cycles of every length between the girth and the circumference.

The following terminology, definitions and some descrip-

tions are taken from [16].

Definition 4. Given two graphs G1 and G2, we say that a

graph G arrows the pair (G1, G2), denoted by G → (G1, G2),
if in any red/blue coloring of the edges of G, there is a red

copy of G1 or a blue copy of G2.

For two given graphs G1 and G2, the most extensively in-

vestigated concept within Ramsey theory is the graph Ramsey
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number R(G1, G2), which is the smallest integer r such that,

for any graph G of order r, either G contains G1 as a subgraph

or G contains G2 as a subgraph, where G is the complement of

G. For simplicity, we now restate this definition of R(G1, G2)
in the language of arrowing.

Definition 5. r = R(G1, G2) = min{n|Kn → (G1, G2)}.

Let r denote the Ramsey number R(G1, G2) throughout the

paper. A dynamic survey on Ramsey numbers can be found

in [10].

Since Kr → (G1, G2), but Kr−1 ↛ (G1, G2), a natural

problem is to consider G such that Kr−1 ⊆ G ⊆ Kr and

G → (G1, G2). To study this, Hook and Isaak [6] introduced

the definition of the star-critical Ramsey number r∗(G1, G2).

Definition 6 ([6]). r∗(G1, G2) = min{k|Kr−1 ⊔ K1,k →
(G1, G2)}.

The values of many star-critical Ramsey numbers have been

determined. We will only recall the results for two cycles. In

[16], Zhang, Broersma and Chen showed the following results.

Theorem 7 ([16]). r∗(Cn, Cm) ≥ m
2
+ 3 for even m ≥ 4,

odd n ≥ 3m
2

, and for even m ≥ 4, even n ≥ m, n ≥ 6.

Theorem 8 ([16]). For m odd, n ≥ m ≥ 3 and (m,n) ̸=
(3, 3), r∗(Cn, Cm) = n+ 1.

Wu, Sun and Radziszowski [14] obtained that r∗(Cn, C4) =
5 for n ≥ 4. This result indicates that star-critical Ram-

sey number can be constant and much smaller than the

corresponding classical Ramsey number. A fairly extensive

and interesting summary of the all known results for star-

critical Ramsey numbers can be found in the article [9].

One of the open problems appearing in various articles is

the determination of the values of the numbers r∗(Cn, Cm)
for even m and n ≥ m ≥ 6. In this article, we focus on

cycle C6 and present a number of new values and bounds. In

particular, we determine the following results: r∗(C6, C6) = 6
and r∗(C7, C6) = 7.

In the context of G → (G1, G2) and star-critical Ramsey

numbers, some other definition was introduced.

Definition 9 ([16]). A pair of graphs (G1, G2) is called

Ramsey-full if Kr → (G1, G2), but Kr − e ↛ (G1, G2).

Erdös and Faudree [3] stated that it is an interesting problem

to determine all the graph pairs which are Ramsey-full. All the

known graph pairs which are Ramsey-full are summarized in

[16]. In the case of two cycles, we know that the pair (C4, C4)
is Ramsey-full [3]. Wu, Sun and Radziszowski [14] obtained

that the pair (Cn, C4) for n > 4 is not Ramsey-full. The

same is true for larger even cycles, as evidenced by the results

obtained in this article for star-critical Ramsey numbers. In

this article we will show that the pairs (Cn, C6) for different

values of n are also not Ramsey-full.

III. PRELIMINARY RESULTS

The following notation and terminology comes from [2].

For positive integers a and b we define r(a, b) as

r(a, b) = a− b⌊
a

b
⌋ = a mod b.

For integers n ≥ k ≥ 3, we define w(n, k) as

w(n, k) =
1

2
(n− 1)k −

1

2
r(k − r − 1),

where r = r(n− 1, k − 1).

Woodall’s theorem [13] can then be written as follows.

Theorem 10 ([2]). Let G be a graph on n vertices and m
edges with m ≥ n and c(G) = k. Then

m ≤ w(n, k)

and this result is the best possible.

Lemma 11 ([1]). Every nonbipartite graph G of order n with

|E(G)| > (n− 1)2/4+ 1 is weakly pancyclic with g(G) = 3.

For a graph G, define the Turán number ex(n,G) to be the

largest integer m such that there exists a graph on n vertices

with m edges that does not contain G as a subgraph. In other

words, if H has n vertices and more than ex(n,G) edges,

then H must contain G as a subgraph. A graph on n vertices

is said to be extremal with respect to G if it does not contain

a subgraph isomorphic to G and has exactly ex(n,G) edges.

It is easy to see that for odd cycles, the Turán number

ex(n,C2t+1) = ⌊n2

4
⌋ for n > 4t − 1, since no bipartite

graph contains an odd cycle. For smaller values of n, we

also know the value of ex(n,C2t+1). Write n in the form

n = (s−1)(2t−1)+ r where s ≥ 1, 2 ≤ r ≤ 2t are integers.

Then we have the following property.

Theorem 12 ([4]). For any n ≥ 1 and 2t+ 1 ≥ 5,

ex(n,C2t+1) = (s−1)

(

2t

2

)

+

(

r

2

)

, for 2t+1 ≤ n ≤ 4t−1.

However, the problem of determining the Turán numbers for

even cycles is still open. In the case of cycle C6, we know all

values of ex(n,C6) for n < 22 and all exstremal graphs with

respect to C6 for these numbers. These results are included in

the paper [15].

We define the bipartite Turán number ex(m,n,H) of a

graph H to be the maximum number of edges in an H-free

bipartite graph with parts of sizes m and n.

Theorem 13 ([8]). Let t be an integer and G = (X,Y ;E)
be a bipartite graph. Suppose |X| = n, |Y | = m, where

n ≥ m ≥ t ≥ m
2
+ 1. Then

ex(m,n,C2t) = (t− 1)n+m− t+ 1.
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IV. RESULTS

When n ̸= 4 is even, r = R(Cn, Cn) = 3n
2

− 1 . A new

proof of this classic result was given by Károlyi and Rosta [7].

Erdös and Faudree [3] showed that (C4, C4) is Ramsey-full.

It turns out that this is not the case for longer cycles of even

length.

Theorem 14. Kr−e → (C6, C6), where r = R(C6, C6) = 8.

Proof. Let G be a graph K8 − e with |V (G)| = 8 and

|E(G)| =
(

8

2

)

−1. Let us consider an arbitrary coloring all the

edges of the graph G. For any red/blue edge coloring of G,

let GR (GB) be the graph whose vertex set is V (G) and edge

set consists of all red (blue) edges of G, respectively. Suppose

to the contrary that neither GR nor GB contains a C6. Since

|E(G)| =
(

8

2

)

−1 = 27, then without loss of generality we can

assume that |E(GR)| ≥ ⌈
(82)−1

2
⌉ = 14. By Lemma 11, GR is

weakly pancyclic with girth 3. On the other hand, w(8, 4) = 13
and by Theorem 10, GR contains a C5 as a subgraph.

Claim 14.1. If GB contains a monochromatic C7, then GR

contains a monochromatic C6.

Proof. Let C = x1x2...x7x1 be a blue C7 in G. Were some 2-

chord of C blue, G would contain a blue C6, a contradiction.

Whence all 2-chords of C are red. In particular, the 2-chords

of C form a red C7 with at most one edge deleted (we consider

K8 − e). First, if we have a red C7, then by pancyclicity of

Gr we immediately have a red C6. Assume we have a red

C7 − e = x1x3x5x7x2x4x6. In order to avoid a red C6, x1x4

and x3x6 are blue. Thus x1x4x5x6x3x2x1 is a blue C6, a

contradiction.

Let C = v1v2v3v4v5v1 be a cycle of length 5 in GR. Let

C∗ = {w1, w2, w3} denote the set of vertices of G not in C.

To avoid a red C6, every vertex C∗ is red incident to at most

two vertices in C.

Claim 14.2. If there are two red edges connecting v ∈ C∗

and C, say wvi and wvj , then we have |i− j| = 2 or 3.

Proof. If the above condition does not hold, then it is easy to

see that G contains a red C6, a contradiction.

Observe that the possible pairs of vertices in C
that can be joined to vertex wi ∈ C∗ are P =
{v1v3, v1v4, v2v4, v2v5, v3v5}. Let Ai = {v ∈ C|vwi ∈ GR}
where i ∈ {1, 2, 3}.

Claim 14.3. Given two integers i, j ∈ {1, 2, 3}, if |Ai| =
|Aj | = 2 and Ai ∩Aj = ∅, then GR contains a red C6.

Proof. Without los of generality, let us assume that the set

D = {w1v1, w1v3, w2v2, w2v4} is the set of red edges

connecting the vertices w1, w2 with the cycle C. Then we

immediately have a red C7 = w1v3v2w2v4v5v1w1 and by

pancyclicity of GR, we have a red C6.

The rest of the proof contains all possible cases of setting the

maximum number of red edges between C and C∗. Therefore,

we want to consider all possible maximal structures of Ai

and show that we always get a monochromatic cycle C6. We

start from the case where all vertices wi are connected by red

edges to the same vertices from cycle C (Claim 14.4). Later

we consider the case where two of Ai have the same structure

and the third one has a different structure (Claim 14.5). Finally,

we show what other cases remain (Claim 14.6) and consider

them (Claims 14.7 and 14.8). Keep in mind that we are dealing

with K8 − e. This means that it may happen that one of the

red edges connecting C and C∗ may not be there.

Claim 14.4. For each i ∈ {1, 2, 3}, let Ai ⊆ {vm, vn} with

vmvn ∈ P . Then GB contains a monochromatic C6.

Proof. Without los of generality, let us assume that Ai ⊆
{v1, v3} for each i ∈ {1, 2, 3}. Consider now the blue bipartite

subgraph F with parts {v2, v4, v5} and {w1, w2, w3}. Then

|E(F )| ≥ 8 (we consider K8 − e) > ex(3, 3, C6) = 7,

according to Theorem 13.

Without loss of generality, consider the case where Ai ⊆
{v1, v3} for i ∈ {1, 2}. Note that in this situation A3 ⊆
{v2, v4} or A3 ⊆ {v1, v4}. The case A3 ⊆ {v2, v5} is the

same as the first variant, and the case A3 ⊆ {v3, v5} is the

same as the second.

Claim 14.5. Let Ai ⊆ {v1, v3} for i ∈ {1, 2} and A3 ⊆
{v2, v4} or A3 ⊆ {v1, v4}. Then G contains a monochromatic

C6.

Proof. 1) Ai ⊆ {v1, v3} for i ∈ {1, 2} and A3 ⊆ {v2, v4}.

Let us consider all blue edges connecting C and C∗

and all possible edges from Ai that form the set

R = {w1v1, w1v3, w2v1, w2v3, w3v2, w3v4}. Consider

the case where one of the edges in R does not exist in

G = K8−e. Note that every edge in R if it is blue, then

it is part of some blue C6 in the bipartite graph [C,C∗].
Taking into account this fact and the thesis of Claim 3,

without loss of generality, we can consider a situation

where there is no edge w3v2. This means that the edges

w1v1, w1v3, w3v4 are colored red, then in order to avoid

red C6, the edges v2v4, v2v5, w1w3 edges are colored

blue. We then get the blue cycle w2v2v4w1w3v5w2.

It remains to consider a situation in which there is no

edge belonging to the rest (without edges from the set

R) of the bipartite graph [C,C∗]. As a result of the

analysis of the structure of the sets Ai, without loss of

generality, we obtain the following 3 cases.

a) There is no edge w1v2 in graph G.

In order to avoid the following blue 6-cycles:

w1v3w3v5w2v4w1, w1v1w3v5w2v4w1, the edges

w1v3, w1v1 must be colored red. Then the edges

v2v4 and v2v5 must be colored blue. Note that

then the edge w1w2 must be blue. Suppose, on

the contrary, that w1w2 is red. In this case, edges

w2v1 and w2v3 must be blue and we get a blue

7-cycle: w3v1(v3)w2v2v4w1v5w3, and by Claim 1

we get a red cycle C6. To avoid the next two blue
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cycles w3v2v4w1w2v5w3 and w3v4v2w2w1v5w3,

edges w3v2 and w3v4 must be colored red. But

then by Claim 3 we have a red cycle C6.

b) There is no edge w1v5 in graph G.

In order to avoid the following blue 6-

cycles: w2v2w1v4w3v5w2, w3v2w1v4w2v5w3,

w1v1w3v5w2v2w1 and w1v3w3v5w2v2v1, the

edges w3v4, w3v2, w1v1 and w1v3 are colored

red. By Claim 3 we immediately obtain a red

cycle of length 6.

c) There is no edge w3v1 in graph G.

In order to avoid the following blue 6-cycles:

w2v2w1v4w3v5w2, w3v2w1v4w2v5w3 and

v2w2v5w3v3w1v2, the edges w1v3, w3v2 and

w3v4 are red. Then the edges v3v5 and w1w3

must be blue and we have the blue 6-cycle:

v3v5w2v4w1w3v3.

2) Ai ⊆ {v1, v3} for i ∈ {1, 2} and A3 ⊆ {v1, v4}.

Consider the blue bipartite subgraph F with parts

{v2, v4, v5} and {w1, w2, w3}. Then |E(F )| ≥ 8 >
ex(3, 3, C6) = 7, according to Theorem 13. This means

that only some edge of subgraph F may be missing in

G. As a result of the analysis of the structure of the blue

6-cycles in F , without loss of generality, we obtain the

following 2 cases.

a) There is no edge w1v4 in graph G

First, let’s note that to avoid the blue cycle C6,

the edges w1v3, w2v3 and w3v4 must be colored

red. Then consider the edges connecting vertex

v1 with vertices from C∗. At least two of them

must be red. Suppose the edge w1v1 is colored

red. Then the edges v2v4, v2v5, w1w2, w1w3 and

w2w3 must be blue. We obtain the following blue

6-cycle: w1v5v2v4w2w3w1. Finally, let us consider

the case when the edge w1v1 is colored blue. This

leads to the fact that both edges w2v1 and w3v1 are

red, while the edges v2v4, v2v5, v3v5 and w2w3

are blue. Hence we have a blue cycle of length 6:

w2v4v2v5v3w3w2.

b) There is no edge w3v2 in graph G

The proof is identical to that of subcase (a).

Let us now summarize the above cases and indicate which

ones still remain to be considered.

Claim 14.6. Without loss of generality, the maximum possible

structures of Ai can be:

1) A1 ⊆ {v1, v3}, A2 ⊆ {v1, v3} and A3 ⊆ {v1, v3}
2) A1 ⊆ {v1, v3}, A2 ⊆ {v1, v3} and A3 ⊆ {v2, v4}
3) A1 ⊆ {v1, v3}, A2 ⊆ {v1, v3} and A3 ⊆ {v1, v4}
4) A1 ⊆ {v1, v3}, A2 ⊆ {v2, v4} and A3 ⊆ {v1, v4}
5) A1 ⊆ {v1, v3}, A2 ⊆ {v2, v4} and A3 ⊆ {v2, v5}

Proof. Cases 1-3 have already been considered above. It

remains to prove that cases 4-5 exhaust the situation when

all sets Ai can be different. For this problem, let us consider

situations where A1 ⊆ {v1, v3} and A2 ⊆ {v2, v4} or

A2 ⊆ {v1, v4}. Note that the case A2 ⊆ {v2, v5} is the same as

the first variant, and the case A2 ⊆ {v3, v5} is the same as the

second. For both variants let us analyze all possible maximal

structures of A3 and notice that all possible structures fall into

cases 2-5.

1) A1 ⊆ {v1, v3} and A2 ⊆ {v2, v4}

a) A3 ⊆ {v1, v3} - Case 2

b) A3 ⊆ {v1, v4} - Case 4

c) A3 ⊆ {v2, v4} - Case 2

d) A3 ⊆ {v2, v5} - Case 5

e) A3 ⊆ {v3, v5} - Case 5

2) A1 ⊆ {v1, v3} and A2 ⊆ {v1, v4}

a) A3 ⊆ {v1, v3} - Case 3

b) A3 ⊆ {v1, v4} - Case 3

c) A3 ⊆ {v2, v4} - Case 4

d) A3 ⊆ {v2, v5} - Case 5

e) A3 ⊆ {v3, v5} - Case 4

Claim 14.7. Let A1 ⊆ {v1, v3}, A2 ⊆ {v2, v4} and A3 ⊆
{v1, v4}. Then G contains a monochromatic C6.

Proof. Consider the blue bipartite subgraph with parts C and

C∗. Note that this subgraph contains the following cycle of

length 6: v2w1v5w2v3w3v2. This means that only some edge

of this cycle may be missing in graph G. We obtain the

following 6 cases.

1) There is no edge w3v2 in graph G

In order to avoid the following blue 6-cycles:

w1v2w2v3w3v5w1, w1v4w2v3w3v5w1, w1v1w2v3 −
w3v5w1, the edges w2v2, w2v4 and w1v1 must be

colored red. Then the edges v1v3, v3v5 and w1w2 must

be colored blue. If the edge w1v3 is blue, we obtain

the following blue cycle: w3v3v1w2w1v5w3. This means

that the edge w1v3 is red. But then, based on Claim 3,

we have a red cycle C6.

2) There is no edge w1v5 in graph G

In a similar way as in the previous case, in order to

avoid the following blue 6-cycles: w1v2w3v3w2v1w1,

w1v2w3v5w2v3w1, w1v4w2v3w3v2w1, the edges w1v1,

w1v3 and w2v4 must be colored red. Then the edges

v2v4, v2v5 and w1w2 must be colored blue. We have

the blue 7-cycle: w1v4v2v5w3v3w2w1, and by Claim 1

we obtain a red cycle C6.

3) There is no edge w1v2 in graph G

As before, to avoid the following blue 6-cycles:

w1v1w2v3w3v5w1, w2v4w1v5w3v3w2, the edges w1v1
and w2v4 must be colored red. If edge w1v3 is colored

red then similarly to case 2 we have the blue 7-cycle:

w1v4v2v5w3v3w2w1, and by Claim 1 we obtain a red

cycle C6. If the edge w2v2 is red, then, as in case 1,

we obtain the following blue cycle: w3v3v1w2w1v5w3.

If both edges w1v3 and w2v2 are blue, we have the blue

6-cycle: w2v2w3v3w1v5w2. This means that these two

edges are red. But then, based on Claim 3, we have a

red 6-cycle.

4) There is no edge w3v3 in graph G
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The proof of this case is analogous to the proof

of previous cases. We start by noting that because

of the cycles w1v4w2v5w3v2w1, w1v1w2v5w3v2w1,

w1v3w2v5w3v2w1, the edges w2v4, w1v1 and w1v3 are

red. The rest of the reasoning is as in the above cases.

5) There is no edge w2v5 in graph G

The proof of this case is almost identical to the proof

of case 3, so we leave it to the reader.

6) There is no edge w2v3 in graph G

Avoiding the corresponding blue cycles of length 6, we

get that the edges w1v1 and w2v4 must be colored red.

Then consider the possible colors of edges w1v3 and

w2v2. If both of these edges are red, then by Lemma

3, we immediately have a red 6-cycle. If both are blue,

we have the following blue cycle: w1v3w3v5w2v2w1.

The situation remains when both of these edges have

different colors. It is similar to the situations considered

in cases 1-3, so we omit it.

Claim 14.8. Let A1 ⊆ {v1, v3}, A2 ⊆ {v2, v4} and A3 ⊆
{v2, v5}. Then G contains a monochromatic C6.

Proof. First, note that the blue bipartite graph with par-

titions C and C∗ contains the following two 6-cycles:

v4w1v5w2v1w3v4 and v3w2v5w1v4w3v3. This means that only

an edge occurring in both of these cycles can be missing in

G. Due to this fact, we are given the following 4 cases to

consider.

1) There is no edge w1v4 in graph G

To avoid the following blue cycles w1v5w2v3w3v1w1

and w1v3w3v1w2v5w1, the edges w1v1 and w1v3
must be colored red. Then the edges v2v5 and

v2v4 are blue. We have the following blue 7-cycle:

w1v2v4w3v1w2v5w1. Taking into account the thesis of

Claim 1, we obtain a red cycle of length 6.

2) There is no edge w3v4 in graph G

Again considering the same cycles as at the beginning

of the proof of case 1, we have that edges w1v1
and w1v3 are red. In order to avoid the blue 6-cycle

v2w3v3w2v5w1v2, the edge w3v2 will also be red.

This forces edges v2v4, v2v5 and w1w3 to be colored

blue. This all leads us to the blue cycle of length 6:

w1w3v1w2v5v2w1.

3) There is no edge w1v5 in graph G

As in the previous two cases, we get that the edges w1v1,

w1v3 and w2v2 are red, while the edges v2v4, v2v5 and

w1w2 are blue. Taking this into account, we immediately

obtain the blue cycle of length 6: w2v5v2v4w3v3w2.

4) There is no edge w2v5 in graph G

In this case we obtain the same red and blue edges

as at the beginning of the proof of case 3. This

time we have the following blue cycle of length 7:

w1v5v2v4w3v3w2w1. From Claim 1 we also have a red

cycle of length 6.

We have already considered all possible cases and in each

of them we have obtained a monochromatic C6, so the proof

of the theorem is complete.

Corollary 15. The pair of graphs (C6, C6) is not Ramsey-full.

Corollary 16.

r∗(C6, C6) = 6.

Proof. We know that R(C6, C6) = 8 [7]. The lower bound

follows easily from Theorem 7 in the special case n = m = 6.

The upper bound follows directly from the conclusion of above

Theorem 14.

Theorem 17. For even m ≥ 6, odd k ≥ 1 and k ≤ m
2

,

r∗(Cm+k, Cm) ≥ m+ 1.

Proof. Since m+k is odd, then r = R(Cm+k, Cm) = 2m−1
[7]. Let P1, P2 be a partition of V (Kr−1) with |P1| = |P2| =
m − 1. Assign colors to the edges of the Kr−1 as follows:

color the edges of P1 and P2 blue and all the other edges red.

Let p0 be an additional vertex, which is adjacent to P1 with

m − 1 red edges and adjacent to P2 with one blue edge. It

is easy to check that there is neither a red Cm+k nor a blue

Cm.

By Kp1 ∗ Kp2 ∗ ... ∗ Kpi we denote a blockgraph, which

consists of i complete blocks Kp1, ...,Kpi such that exactly

one vertex is contained in any of these complete subgraphs.

Using this notation, for three graphs G, H and I , the graph

G ∗ (H ∗ I) consists of two graphs G and H ∗ I , which have

exactly one common vertex which is contained in G and H .

Theorem 18.

r∗(C7, C6) = 7.

Proof. From [7] we know that R(C7, C6) = 11. In oder

to determine the value of r∗(C7, C6), it is enough to prove

that F = K11 − K1,3 → (C7, C6) because the lower bound

follows from Theorem 17. Let us consider an arbitrary red/blue

coloring all the edges of the graph F . For this coloring of F ,

let FR (FB) be the graph whose vertex set is V (F ) and edge

set consists of all red (blue) edges of F , respectively. Suppose

to the contrary that FR does not contain a C7 and FB does

not contain a C6. The following results are taken from papers

[15] and [4], respectively.

Claim 18.1 ([15]). ex(11, C6) = 23 and there are exactly

three extremal graphs with respect to C6 for this number,

namely K5 ∗K3 ∗K5, K5 ∗ (K3 ∗K5) and K5 ∗ (K5 ∗K3).

Claim 18.2 ([4]). ex(11, C7) = 30 and there are exactly two

extremal graphs with respect to C7 for this number, namely

K6 ∗K6 and K5,6.

Since |E(F )| = 52, then |E(FB)| ≥ 23 or |E(FR)| ≥ 30.

Note that in the complement of each of the extremal graphs

with respect to C6 or C7 for these numbers, we obtain a red

C7 or a blue C6, respectively. We have a contradiction, which

completes the proof of the theorem.

Again, using the results of [15] and [4], we can easily obtain

the following theorem.
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Theorem 19. Kr − e → (Ck, C6), where r = R(Ck, C6) and

k ∈ {17, 19}.

Proof. Based on the works [7], [15] and [4] we have

R(C17, C6) = 19, R(C19, C6) = 21, ex(19, C17) = 126,

ex(19, C6) = 44, ex(21, C19) = 159 and ex(21, C6) =
50. Note that for k ∈ {17, 19} the property ex(r, Ck) +
ex(r, C6) = |E(Kr)| − 1 holds. With a simple analysis the

complements of critical graphs with respect to Ck described

in [15], we have the proof.

For graphs G1, G2 a coloring f is a (G1, G2;n)−coloring
if f is a red/blue edge coloring all the edges of Kn and

f contains neither a red G1 nor a blue G2. A coloring

(G1, G2;n) is said to be critical if n = R(G1, G2)− 1.

Two more results can be obtained by simple computer

methods.

Theorem 20.

r∗(C8, C6) = 6,

r∗(C9, C6) = 7.

Proof. On the website https://users.cecs.anu.edu.au/∼bdm/data

/graphs.html we can find a database of all non-isomorphic

graphs of order up to 11. They can be easily filtered

out, yielding 24 critical colorings (C8, C6; 9) for

r1 = R(C8, C6) = 10 and 26 critical colorings (C9, C6; 10)
for r2 = R(C9, C6) = 11. Then we take all these critical

colorings and consider all possible colorings of type

Kr1−1 ⊔K1,k and Kr2−1 ⊔K1,k for increasing values of k,

starting from k = 1. We are looking for the largest value of

k that there is a coloring without forbidden subgraphs.

Let’s end the article with two interesting questions.

Question 1. Let us note that r∗(C6, C6) = r∗(C8, C6) =
6 and r∗(C7, C6) = r∗(C9, C6) = 7. Will it turn out that

r∗(Cn, C6) = 6 or 7 depending on the parity of n?

Question 2. Do similar relationships hold for even cycles

longer than 6?
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