Star-critical Ramsey numbers for hexagon

Tomasz Dzido
0000-0001-6712-8541
Department of Information Systems
Gdynia Maritime University
ul. Morska 81/87, 81-225 Gdynia, Poland
Email: t.dzido@wznj.umg.edu.pl

Abstract

Erdös and Faudree stated that it is an interesting problem to determine all the graph pairs which are Ramseyfull. For even cycles, they only showed that the pair $\left(C_{4}, C_{4}\right)$ is Ramsey-full. It turns out that this statement cannot be applied to longer even cycles. Wu, Sun and Radziszowski obtained that the pair $\left(C_{n}, C_{4}\right)$ for $n>4$ is not Ramsey-full. In this article we will show that the pairs $\left(C_{n}, C_{6}\right)$ for different values of n are also not Ramsey-full.

We will also determine the values of some star-critical Ramsey numbers, in particular $r_{*}\left(C_{6}, C_{6}\right)=6$ and $r_{*}\left(C_{7}, C_{6}\right)=7$. In addition, we also show other values and bounds for starcritical Ramsey numbers for two cycles, one of which is an even cycle. These results are the beginning of the star-critical Ramsey number problem for even cycles of length 6 or more, and may help in obtaining further properties of this type.

I. Introduction

THE theorem, later called Ramsey's theorem, was proved by Ramsey and published shortly after his death in 1930. Informally written, this theorem proves that "complete disorder is impossible". In other words, any sufficiently large structure contains a substructure with the desired property. One of the popular ways looking at Ramsey's theory is in the context of graph theory, and more specifically edge coloring of graphs. To put it quite simply, we want to answer the following question: If we have a complete graph K_{n} on n vertices where every edge is arbitrarily colored either blue or red, what is the smallest value of n that guarantees the existence of either a subgraph G_{1} which is red, or a subgraph G_{2} which is blue? This smallest search n is called a 2 -color Ramsey number $R\left(G_{1}, G_{2}\right)$. Initially, only the case when subgraphs G_{1} and G_{2} are complete subgraphs was considered. Therefore, Ramsey numbers for subgraphs other than complete and those defined analogously for more subgraphs and colors became popular very quickly. Currently, many classes of graphs are considered, such as paths, stars or cycles considered in this article.
From the informal definition of Ramsey numbers presented above, it follows that there is a critical graph, i.e. an edge coloring of a complete graph of order $n-1$, which does not contain a red copy of G_{1} or a blue copy of G_{2}. Therefore, each 2-edge coloring of K_{n} contains either red G_{1} or blue G_{2}, and there is a coloring of K_{n-1} without red G_{1} or blue G_{2}. These facts lead us to an interesting question. For known Ramsey numbers, $R\left(G_{1}, G_{2}\right)=\mathrm{n}$, and a 2 -coloring of the graph $K_{n-1}+v$, if we add colored edges individually from a new vertex v to vertices of K_{n-1}, then at what point must
the graph have a red G_{1} or a blue G_{2} ? Alternatively, what is the largest star that can be removed from K_{n} so that the underlying graph is still forced to have either a red G_{1} or a blue G_{2} ? To study this, Hook and Isaak [6] introduced the definition of the star-critical Ramsey number $r_{*}\left(G_{1}, G_{2}\right)$.
Numerous other varieties of non-classical Ramsey numbers have been defined. For example: bipartite, planar, on-line, induced, local, diagonal, geometric, rainbow, linear and starcritical that are considered in this work. Many interesting applications of Ramsey theory arose in the field of mathematics and computer science, these include results in number theory, algebra, geometry, topology, set theory, logic, information theory and theoretical computer science. The theory is especially useful in building and analyzing communication nets of various types. Ramsey theory has been applied by Frederickson and Lynch to a problem in distributed computations [5], and by Snir [12] to search sorted tables in different parallel computation models. The reader will find more applications in Rosta's summary titled "Ramsey Theory Applications" [11].

II. Definitions and known results

In this paper we consider only finite and simple graphs. Let $G=(V(G), E(G))$. The deletion of edges of a copy of a subgraph H from G will be denoted as $G-H$ and the deletion of an edge e from G will be denoted as $G-e$. Let K_{n} denote a complete graph on n vertices and $K_{m, n}$ a complete bipartite graph on $m+n$ vertices. Denote by C_{n} a cycle of order n.
Definition 1. The circumference $c(G)$ of a graph G is the length of its longest cycle.
Definition 2. The girth $g(G)$ of a graph G is the length of its shortest cycle.
Definition 3. A graph is called weakly pancyclic if it contains cycles of every length between the girth and the circumference.

The following terminology, definitions and some descriptions are taken from [16].
Definition 4. Given two graphs G_{1} and G_{2}, we say that a graph G arrows the pair $\left(G_{1}, G_{2}\right)$, denoted by $G \rightarrow\left(G_{1}, G_{2}\right)$, if in any red/blue coloring of the edges of G, there is a red copy of G_{1} or a blue copy of G_{2}.

For two given graphs G_{1} and G_{2}, the most extensively investigated concept within Ramsey theory is the graph Ramsey
number $R\left(G_{1}, G_{2}\right)$, which is the smallest integer r such that, for any graph G of order r, either G contains G_{1} as a subgraph or G contains G_{2} as a subgraph, where \bar{G} is the complement of G. For simplicity, we now restate this definition of $R\left(G_{1}, G_{2}\right)$ in the language of arrowing.
Definition 5. $r=R\left(G_{1}, G_{2}\right)=\min \left\{n \mid K_{n} \rightarrow\left(G_{1}, G_{2}\right)\right\}$.
Let r denote the Ramsey number $R\left(G_{1}, G_{2}\right)$ throughout the paper. A dynamic survey on Ramsey numbers can be found in [10].

Since $K_{r} \rightarrow\left(G_{1}, G_{2}\right)$, but $K_{r-1} \nrightarrow\left(G_{1}, G_{2}\right)$, a natural problem is to consider G such that $K_{r-1} \subseteq G \subseteq K_{r}$ and $G \rightarrow\left(G_{1}, G_{2}\right)$. To study this, Hook and Isaak [6] introduced the definition of the star-critical Ramsey number $r_{*}\left(G_{1}, G_{2}\right)$.

Definition 6 ([6]). $r_{*}\left(G_{1}, G_{2}\right)=\min \left\{k \mid K_{r-1} \sqcup K_{1, k} \rightarrow\right.$ $\left.\left(G_{1}, G_{2}\right)\right\}$.

The values of many star-critical Ramsey numbers have been determined. We will only recall the results for two cycles. In [16], Zhang, Broersma and Chen showed the following results.
Theorem 7 ([16]). $r_{*}\left(C_{n}, C_{m}\right) \geq \frac{m}{2}+3$ for even $m \geq 4$, odd $n \geq \frac{3 m}{2}$, and for even $m \geq 4$, even $n \geq m, n \geq 6$.
Theorem 8 ([16]). For m odd, $n \geq m \geq 3$ and $(m, n) \neq$ $(3,3), r_{*}\left(C_{n}, C_{m}\right)=n+1$.
Wu, Sun and Radziszowski [14] obtained that $r_{*}\left(C_{n}, C_{4}\right)=$ 5 for $n \geq 4$. This result indicates that star-critical Ramsey number can be constant and much smaller than the corresponding classical Ramsey number. A fairly extensive and interesting summary of the all known results for starcritical Ramsey numbers can be found in the article [9]. One of the open problems appearing in various articles is the determination of the values of the numbers $r_{*}\left(C_{n}, C_{m}\right)$ for even m and $n \geq m \geq 6$. In this article, we focus on cycle C_{6} and present a number of new values and bounds. In particular, we determine the following results: $r_{*}\left(C_{6}, C_{6}\right)=6$ and $r_{*}\left(C_{7}, C_{6}\right)=7$.

In the context of $G \rightarrow\left(G_{1}, G_{2}\right)$ and star-critical Ramsey numbers, some other definition was introduced.

Definition 9 ([16]). A pair of graphs $\left(G_{1}, G_{2}\right)$ is called Ramsey-full if $K_{r} \rightarrow\left(G_{1}, G_{2}\right)$, but $K_{r}-e \nrightarrow\left(G_{1}, G_{2}\right)$.

Erdös and Faudree [3] stated that it is an interesting problem to determine all the graph pairs which are Ramsey-full. All the known graph pairs which are Ramsey-full are summarized in [16]. In the case of two cycles, we know that the pair $\left(C_{4}, C_{4}\right)$ is Ramsey-full [3]. Wu, Sun and Radziszowski [14] obtained that the pair $\left(C_{n}, C_{4}\right)$ for $n>4$ is not Ramsey-full. The same is true for larger even cycles, as evidenced by the results obtained in this article for star-critical Ramsey numbers. In this article we will show that the pairs $\left(C_{n}, C_{6}\right)$ for different values of n are also not Ramsey-full.

III. Preliminary results

The following notation and terminology comes from [2].

For positive integers a and b we define $r(a, b)$ as

$$
r(a, b)=a-b\left\lfloor\frac{a}{b}\right\rfloor=a \bmod b
$$

For integers $n \geq k \geq 3$, we define $w(n, k)$ as

$$
w(n, k)=\frac{1}{2}(n-1) k-\frac{1}{2} r(k-r-1),
$$

where $r=r(n-1, k-1)$.
Woodall's theorem [13] can then be written as follows.
Theorem 10 ([2]). Let G be a graph on n vertices and m edges with $m \geq n$ and $c(G)=k$. Then

$$
m \leq w(n, k)
$$

and this result is the best possible.
Lemma 11 ([1]). Every nonbipartite graph G of order n with $|E(G)|>(n-1)^{2} / 4+1$ is weakly pancyclic with $g(G)=3$.

For a graph G, define the Turán number $e x(n, G)$ to be the largest integer m such that there exists a graph on n vertices with m edges that does not contain G as a subgraph. In other words, if H has n vertices and more than $\operatorname{ex}(n, G)$ edges, then H must contain G as a subgraph. A graph on n vertices is said to be extremal with respect to G if it does not contain a subgraph isomorphic to G and has exactly $e x(n, G)$ edges.
It is easy to see that for odd cycles, the Turán number $e x\left(n, C_{2 t+1}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ for $n>4 t-1$, since no bipartite graph contains an odd cycle. For smaller values of n, we also know the value of $e x\left(n, C_{2 t+1}\right)$. Write n in the form $n=(s-1)(2 t-1)+r$ where $s \geq 1,2 \leq r \leq 2 t$ are integers. Then we have the following property.

Theorem 12 ([4]). For any $n \geq 1$ and $2 t+1 \geq 5$,
$e x\left(n, C_{2 t+1}\right)=(s-1)\binom{2 t}{2}+\binom{r}{2}$, for $2 t+1 \leq n \leq 4 t-1$.
However, the problem of determining the Turán numbers for even cycles is still open. In the case of cycle C_{6}, we know all values of $e x\left(n, C_{6}\right)$ for $n<22$ and all exstremal graphs with respect to C_{6} for these numbers. These results are included in the paper [15].

We define the bipartite Turán number $e x(m, n, H)$ of a graph H to be the maximum number of edges in an H-free bipartite graph with parts of sizes m and n.

Theorem 13 ([8]). Let t be an integer and $G=(X, Y ; E)$ be a bipartite graph. Suppose $|X|=n,|Y|=m$, where $n \geq m \geq t \geq \frac{m}{2}+1$. Then

$$
e x\left(m, n, C_{2 t}\right)=(t-1) n+m-t+1
$$

IV. Results

When $n \neq 4$ is even, $r=R\left(C_{n}, C_{n}\right)=\frac{3 n}{2}-1$. A new proof of this classic result was given by Károlyi and Rosta [7]. Erdös and Faudree [3] showed that $\left(C_{4}, C_{4}\right)$ is Ramsey-full. It turns out that this is not the case for longer cycles of even length.

Theorem 14. $K_{r}-e \rightarrow\left(C_{6}, C_{6}\right)$, where $r=R\left(C_{6}, C_{6}\right)=8$.

Proof. Let G be a graph $K_{8}-e$ with $|V(G)|=8$ and $|E(G)|=\binom{8}{2}-1$. Let us consider an arbitrary coloring all the edges of the graph G. For any red/blue edge coloring of G, let $G^{R}\left(G^{B}\right)$ be the graph whose vertex set is $V(G)$ and edge set consists of all red (blue) edges of G, respectively. Suppose to the contrary that neither G^{R} nor G^{B} contains a C_{6}. Since $|E(G)|=\binom{8}{2}-1=27$, then without loss of generality we can assume that $\left|E\left(G^{R}\right)\right| \geq\left\lceil\frac{\binom{8}{2}-1}{2}\right\rceil=14$. By Lemma $11, G^{R}$ is weakly pancyclic with girth 3 . On the other hand, $w(8,4)=13$ and by Theorem 10, G^{R} contains a C_{5} as a subgraph.
Claim 14.1. If G^{B} contains a monochromatic C_{7}, then G^{R} contains a monochromatic C_{6}.

Proof. Let $C=x_{1} x_{2} \ldots x_{7} x_{1}$ be a blue C_{7} in G. Were some 2chord of C blue, G would contain a blue C_{6}, a contradiction. Whence all 2 -chords of C are red. In particular, the 2 -chords of C form a red C_{7} with at most one edge deleted (we consider $K_{8}-e$). First, if we have a red C_{7}, then by pancyclicity of G^{r} we immediately have a red C_{6}. Assume we have a red $C_{7}-e=x_{1} x_{3} x_{5} x_{7} x_{2} x_{4} x_{6}$. In order to avoid a red $C_{6}, x_{1} x_{4}$ and $x_{3} x_{6}$ are blue. Thus $x_{1} x_{4} x_{5} x_{6} x_{3} x_{2} x_{1}$ is a blue C_{6}, a contradiction.
Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be a cycle of length 5 in G^{R}. Let $C^{*}=\left\{w_{1}, w_{2}, w_{3}\right\}$ denote the set of vertices of G not in C. To avoid a red C_{6}, every vertex C^{*} is red incident to at most two vertices in C.

Claim 14.2. If there are two red edges connecting $v \in C^{*}$ and C, say $w v_{i}$ and $w v_{j}$, then we have $|i-j|=2$ or 3 .

Proof. If the above condition does not hold, then it is easy to see that G contains a red C_{6}, a contradiction.

Observe that the possible pairs of vertices in C that can be joined to vertex $w_{i} \in C^{*}$ are $P=$ $\left\{v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{4}, v_{2} v_{5}, v_{3} v_{5}\right\}$. Let $A_{i}=\left\{v \in C \mid v w_{i} \in G^{R}\right\}$ where $i \in\{1,2,3\}$.
Claim 14.3. Given two integers $i, j \in\{1,2,3\}$, if $\left|A_{i}\right|=$ $\left|A_{j}\right|=2$ and $A_{i} \cap A_{j}=\emptyset$, then G^{R} contains a red C_{6}.

Proof. Without los of generality, let us assume that the set $D=\left\{w_{1} v_{1}, w_{1} v_{3}, w_{2} v_{2}, w_{2} v_{4}\right\}$ is the set of red edges connecting the vertices w_{1}, w_{2} with the cycle C. Then we immediately have a red $C_{7}=w_{1} v_{3} v_{2} w_{2} v_{4} v_{5} v_{1} w_{1}$ and by pancyclicity of G^{R}, we have a red C_{6}.
The rest of the proof contains all possible cases of setting the maximum number of red edges between C and C^{*}. Therefore,
we want to consider all possible maximal structures of A_{i} and show that we always get a monochromatic cycle C_{6}. We start from the case where all vertices w_{i} are connected by red edges to the same vertices from cycle C (Claim 14.4). Later we consider the case where two of A_{i} have the same structure and the third one has a different structure (Claim 14.5). Finally, we show what other cases remain (Claim 14.6) and consider them (Claims 14.7 and 14.8). Keep in mind that we are dealing with $K_{8}-e$. This means that it may happen that one of the red edges connecting C and C^{*} may not be there.
Claim 14.4. For each $i \in\{1,2,3\}$, let $A_{i} \subseteq\left\{v_{m}, v_{n}\right\}$ with $v_{m} v_{n} \in P$. Then G^{B} contains a monochromatic C_{6}.

Proof. Without los of generality, let us assume that $A_{i} \subseteq$ $\left\{v_{1}, v_{3}\right\}$ for each $i \in\{1,2,3\}$. Consider now the blue bipartite subgraph F with parts $\left\{v_{2}, v_{4}, v_{5}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$. Then $|E(F)| \geq 8$ (we consider $\left.K_{8}-e\right)>e x\left(3,3, C_{6}\right)=7$, according to Theorem 13.

Without loss of generality, consider the case where $A_{i} \subseteq$ $\left\{v_{1}, v_{3}\right\}$ for $i \in\{1,2\}$. Note that in this situation $A_{3} \subseteq$ $\left\{v_{2}, v_{4}\right\}$ or $A_{3} \subseteq\left\{v_{1}, v_{4}\right\}$. The case $A_{3} \subseteq\left\{v_{2}, v_{5}\right\}$ is the same as the first variant, and the case $A_{3} \subseteq\left\{v_{3}, v_{5}\right\}$ is the same as the second.

Claim 14.5. Let $A_{i} \subseteq\left\{v_{1}, v_{3}\right\}$ for $i \in\{1,2\}$ and $A_{3} \subseteq$ $\left\{v_{2}, v_{4}\right\}$ or $A_{3} \subseteq\left\{v_{1}, v_{4}\right\}$. Then G contains a monochromatic C_{6}.

Proof. 1) $A_{i} \subseteq\left\{v_{1}, v_{3}\right\}$ for $i \in\{1,2\}$ and $A_{3} \subseteq\left\{v_{2}, v_{4}\right\}$. Let us consider all blue edges connecting C and C^{*} and all possible edges from A_{i} that form the set $R=\left\{w_{1} v_{1}, w_{1} v_{3}, w_{2} v_{1}, w_{2} v_{3}, w_{3} v_{2}, w_{3} v_{4}\right\}$. Consider the case where one of the edges in R does not exist in $G=K_{8}-e$. Note that every edge in R if it is blue, then it is part of some blue C_{6} in the bipartite graph $\left[C, C^{*}\right]$. Taking into account this fact and the thesis of Claim 3, without loss of generality, we can consider a situation where there is no edge $w_{3} v_{2}$. This means that the edges $w_{1} v_{1}, w_{1} v_{3}, w_{3} v_{4}$ are colored red, then in order to avoid red C_{6}, the edges $v_{2} v_{4}, v_{2} v_{5}, w_{1} w_{3}$ edges are colored blue. We then get the blue cycle $w_{2} v_{2} v_{4} w_{1} w_{3} v_{5} w_{2}$. It remains to consider a situation in which there is no edge belonging to the rest (without edges from the set R) of the bipartite graph $\left[C, C^{*}\right]$. As a result of the analysis of the structure of the sets A_{i}, without loss of generality, we obtain the following 3 cases.
a) There is no edge $w_{1} v_{2}$ in graph G.

In order to avoid the following blue 6 -cycles: $w_{1} v_{3} w_{3} v_{5} w_{2} v_{4} w_{1}, w_{1} v_{1} w_{3} v_{5} w_{2} v_{4} w_{1}$, the edges $w_{1} v_{3}, w_{1} v_{1}$ must be colored red. Then the edges $v_{2} v_{4}$ and $v_{2} v_{5}$ must be colored blue. Note that then the edge $w_{1} w_{2}$ must be blue. Suppose, on the contrary, that $w_{1} w_{2}$ is red. In this case, edges $w_{2} v_{1}$ and $w_{2} v_{3}$ must be blue and we get a blue 7 -cycle: $w_{3} v_{1}\left(v_{3}\right) w_{2} v_{2} v_{4} w_{1} v_{5} w_{3}$, and by Claim 1 we get a red cycle C_{6}. To avoid the next two blue
cycles $w_{3} v_{2} v_{4} w_{1} w_{2} v_{5} w_{3}$ and $w_{3} v_{4} v_{2} w_{2} w_{1} v_{5} w_{3}$, edges $w_{3} v_{2}$ and $w_{3} v_{4}$ must be colored red. But then by Claim 3 we have a red cycle C_{6}.
b) There is no edge $w_{1} v_{5}$ in graph G.

In order to avoid the following blue 6cycles: $\quad w_{2} v_{2} w_{1} v_{4} w_{3} v_{5} w_{2}, \quad w_{3} v_{2} w_{1} v_{4} w_{2} v_{5} w_{3}$, $w_{1} v_{1} w_{3} v_{5} w_{2} v_{2} w_{1}$ and $w_{1} v_{3} w_{3} v_{5} w_{2} v_{2} v_{1}$, the edges $w_{3} v_{4}, w_{3} v_{2}, w_{1} v_{1}$ and $w_{1} v_{3}$ are colored red. By Claim 3 we immediately obtain a red cycle of length 6 .
c) There is no edge $w_{3} v_{1}$ in graph G.

In order to avoid the following blue 6 -cycles: $w_{2} v_{2} w_{1} v_{4} w_{3} v_{5} w_{2}, \quad w_{3} v_{2} w_{1} v_{4} w_{2} v_{5} w_{3} \quad$ and $v_{2} w_{2} v_{5} w_{3} v_{3} w_{1} v_{2}$, the edges $w_{1} v_{3}, w_{3} v_{2}$ and $w_{3} v_{4}$ are red. Then the edges $v_{3} v_{5}$ and $w_{1} w_{3}$ must be blue and we have the blue 6 -cycle: $v_{3} v_{5} w_{2} v_{4} w_{1} w_{3} v_{3}$.
2) $A_{i} \subseteq\left\{v_{1}, v_{3}\right\}$ for $i \in\{1,2\}$ and $A_{3} \subseteq\left\{v_{1}, v_{4}\right\}$.

Consider the blue bipartite subgraph F with parts $\left\{v_{2}, v_{4}, v_{5}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$. Then $|E(F)| \geq 8>$ $e x\left(3,3, C_{6}\right)=7$, according to Theorem 13. This means that only some edge of subgraph F may be missing in G. As a result of the analysis of the structure of the blue 6 -cycles in F, without loss of generality, we obtain the following 2 cases.
a) There is no edge $w_{1} v_{4}$ in graph G

First, let's note that to avoid the blue cycle C_{6}, the edges $w_{1} v_{3}, w_{2} v_{3}$ and $w_{3} v_{4}$ must be colored red. Then consider the edges connecting vertex v_{1} with vertices from C^{*}. At least two of them must be red. Suppose the edge $w_{1} v_{1}$ is colored red. Then the edges $v_{2} v_{4}, v_{2} v_{5}, w_{1} w_{2}, w_{1} w_{3}$ and $w_{2} w_{3}$ must be blue. We obtain the following blue 6 -cycle: $w_{1} v_{5} v_{2} v_{4} w_{2} w_{3} w_{1}$. Finally, let us consider the case when the edge $w_{1} v_{1}$ is colored blue. This leads to the fact that both edges $w_{2} v_{1}$ and $w_{3} v_{1}$ are red, while the edges $v_{2} v_{4}, v_{2} v_{5}, v_{3} v_{5}$ and $w_{2} w_{3}$ are blue. Hence we have a blue cycle of length 6 : $w_{2} v_{4} v_{2} v_{5} v_{3} w_{3} w_{2}$.
b) There is no edge $w_{3} v_{2}$ in graph G The proof is identical to that of subcase (a).

Let us now summarize the above cases and indicate which ones still remain to be considered.

Claim 14.6. Without loss of generality, the maximum possible structures of A_{i} can be:

1) $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}, A_{2} \subseteq\left\{v_{1}, v_{3}\right\}$ and $A_{3} \subseteq\left\{v_{1}, v_{3}\right\}$
2) $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}, A_{2} \subseteq\left\{v_{1}, v_{3}\right\}$ and $A_{3} \subseteq\left\{v_{2}, v_{4}\right\}$
3) $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}, A_{2} \subseteq\left\{v_{1}, v_{3}\right\}$ and $A_{3} \subseteq\left\{v_{1}, v_{4}\right\}$
4) $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}, A_{2} \subseteq\left\{v_{2}, v_{4}\right\}$ and $A_{3} \subseteq\left\{v_{1}, v_{4}\right\}$
5) $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}, A_{2} \subseteq\left\{v_{2}, v_{4}\right\}$ and $A_{3} \subseteq\left\{v_{2}, v_{5}\right\}$

Proof. Cases 1-3 have already been considered above. It remains to prove that cases $4-5$ exhaust the situation when all sets A_{i} can be different. For this problem, let us consider situations where $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}$ and $A_{2} \subseteq\left\{v_{2}, v_{4}\right\}$ or
$A_{2} \subseteq\left\{v_{1}, v_{4}\right\}$. Note that the case $A_{2} \subseteq\left\{v_{2}, v_{5}\right\}$ is the same as the first variant, and the case $A_{2} \subseteq\left\{v_{3}, v_{5}\right\}$ is the same as the second. For both variants let us analyze all possible maximal structures of A_{3} and notice that all possible structures fall into cases 2-5.

1) $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}$ and $A_{2} \subseteq\left\{v_{2}, v_{4}\right\}$
a) $A_{3} \subseteq\left\{v_{1}, v_{3}\right\}$ - Case 2
b) $A_{3} \subseteq\left\{v_{1}, v_{4}\right\}$ - Case 4
c) $A_{3} \subseteq\left\{v_{2}, v_{4}\right\}$ - Case 2
d) $A_{3} \subseteq\left\{v_{2}, v_{5}\right\}$ - Case 5
e) $A_{3} \subseteq\left\{v_{3}, v_{5}\right\}$ - Case 5
2) $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}$ and $A_{2} \subseteq\left\{v_{1}, v_{4}\right\}$
a) $A_{3} \subseteq\left\{v_{1}, v_{3}\right\}$ - Case 3
b) $A_{3} \subseteq\left\{v_{1}, v_{4}\right\}$ - Case 3
c) $A_{3} \subseteq\left\{v_{2}, v_{4}\right\}$ - Case 4
d) $A_{3} \subseteq\left\{v_{2}, v_{5}\right\}$ - Case 5
e) $A_{3} \subseteq\left\{v_{3}, v_{5}\right\}$ - Case 4

Claim 14.7. Let $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}, A_{2} \subseteq\left\{v_{2}, v_{4}\right\}$ and $A_{3} \subseteq$ $\left\{v_{1}, v_{4}\right\}$. Then G contains a monochromatic C_{6}.
Proof. Consider the blue bipartite subgraph with parts C and C^{*}. Note that this subgraph contains the following cycle of length 6: $v_{2} w_{1} v_{5} w_{2} v_{3} w_{3} v_{2}$. This means that only some edge of this cycle may be missing in graph G. We obtain the following 6 cases.

1) There is no edge $w_{3} v_{2}$ in graph G

In order to avoid the following blue 6-cycles: $w_{1} v_{2} w_{2} v_{3} w_{3} v_{5} w_{1}, \quad w_{1} v_{4} w_{2} v_{3} w_{3} v_{5} w_{1}, \quad w_{1} v_{1} w_{2} v_{3}-$ $w_{3} v_{5} w_{1}$, the edges $w_{2} v_{2}, w_{2} v_{4}$ and $w_{1} v_{1}$ must be colored red. Then the edges $v_{1} v_{3}, v_{3} v_{5}$ and $w_{1} w_{2}$ must be colored blue. If the edge $w_{1} v_{3}$ is blue, we obtain the following blue cycle: $w_{3} v_{3} v_{1} w_{2} w_{1} v_{5} w_{3}$. This means that the edge $w_{1} v_{3}$ is red. But then, based on Claim 3, we have a red cycle C_{6}.
2) There is no edge $w_{1} v_{5}$ in graph G

In a similar way as in the previous case, in order to avoid the following blue 6 -cycles: $w_{1} v_{2} w_{3} v_{3} w_{2} v_{1} w_{1}$, $w_{1} v_{2} w_{3} v_{5} w_{2} v_{3} w_{1}, w_{1} v_{4} w_{2} v_{3} w_{3} v_{2} w_{1}$, the edges $w_{1} v_{1}$, $w_{1} v_{3}$ and $w_{2} v_{4}$ must be colored red. Then the edges $v_{2} v_{4}, v_{2} v_{5}$ and $w_{1} w_{2}$ must be colored blue. We have the blue 7 -cycle: $w_{1} v_{4} v_{2} v_{5} w_{3} v_{3} w_{2} w_{1}$, and by Claim 1 we obtain a red cycle C_{6}.
3) There is no edge $w_{1} v_{2}$ in graph G

As before, to avoid the following blue 6-cycles: $w_{1} v_{1} w_{2} v_{3} w_{3} v_{5} w_{1}, w_{2} v_{4} w_{1} v_{5} w_{3} v_{3} w_{2}$, the edges $w_{1} v_{1}$ and $w_{2} v_{4}$ must be colored red. If edge $w_{1} v_{3}$ is colored red then similarly to case 2 we have the blue 7 -cycle: $w_{1} v_{4} v_{2} v_{5} w_{3} v_{3} w_{2} w_{1}$, and by Claim 1 we obtain a red cycle C_{6}. If the edge $w_{2} v_{2}$ is red, then, as in case 1 , we obtain the following blue cycle: $w_{3} v_{3} v_{1} w_{2} w_{1} v_{5} w_{3}$. If both edges $w_{1} v_{3}$ and $w_{2} v_{2}$ are blue, we have the blue 6 -cycle: $w_{2} v_{2} w_{3} v_{3} w_{1} v_{5} w_{2}$. This means that these two edges are red. But then, based on Claim 3, we have a red 6-cycle.
4) There is no edge $w_{3} v_{3}$ in graph G

The proof of this case is analogous to the proof of previous cases. We start by noting that because of the cycles $w_{1} v_{4} w_{2} v_{5} w_{3} v_{2} w_{1}, w_{1} v_{1} w_{2} v_{5} w_{3} v_{2} w_{1}$, $w_{1} v_{3} w_{2} v_{5} w_{3} v_{2} w_{1}$, the edges $w_{2} v_{4}, w_{1} v_{1}$ and $w_{1} v_{3}$ are red. The rest of the reasoning is as in the above cases.
5) There is no edge $w_{2} v_{5}$ in graph G

The proof of this case is almost identical to the proof of case 3 , so we leave it to the reader.
6) There is no edge $w_{2} v_{3}$ in graph G

Avoiding the corresponding blue cycles of length 6 , we get that the edges $w_{1} v_{1}$ and $w_{2} v_{4}$ must be colored red. Then consider the possible colors of edges $w_{1} v_{3}$ and $w_{2} v_{2}$. If both of these edges are red, then by Lemma 3 , we immediately have a red 6 -cycle. If both are blue, we have the following blue cycle: $w_{1} v_{3} w_{3} v_{5} w_{2} v_{2} w_{1}$. The situation remains when both of these edges have different colors. It is similar to the situations considered in cases $1-3$, so we omit it.

Claim 14.8. Let $A_{1} \subseteq\left\{v_{1}, v_{3}\right\}, A_{2} \subseteq\left\{v_{2}, v_{4}\right\}$ and $A_{3} \subseteq$ $\left\{v_{2}, v_{5}\right\}$. Then G contains a monochromatic C_{6}.
Proof. First, note that the blue bipartite graph with partitions C and C^{*} contains the following two 6 -cycles: $v_{4} w_{1} v_{5} w_{2} v_{1} w_{3} v_{4}$ and $v_{3} w_{2} v_{5} w_{1} v_{4} w_{3} v_{3}$. This means that only an edge occurring in both of these cycles can be missing in G. Due to this fact, we are given the following 4 cases to consider.

1) There is no edge $w_{1} v_{4}$ in graph G

To avoid the following blue cycles $w_{1} v_{5} w_{2} v_{3} w_{3} v_{1} w_{1}$ and $w_{1} v_{3} w_{3} v_{1} w_{2} v_{5} w_{1}$, the edges $w_{1} v_{1}$ and $w_{1} v_{3}$ must be colored red. Then the edges $v_{2} v_{5}$ and $v_{2} v_{4}$ are blue. We have the following blue 7 -cycle: $w_{1} v_{2} v_{4} w_{3} v_{1} w_{2} v_{5} w_{1}$. Taking into account the thesis of Claim 1, we obtain a red cycle of length 6.
2) There is no edge $w_{3} v_{4}$ in graph G

Again considering the same cycles as at the beginning of the proof of case 1 , we have that edges $w_{1} v_{1}$ and $w_{1} v_{3}$ are red. In order to avoid the blue 6 -cycle $v_{2} w_{3} v_{3} w_{2} v_{5} w_{1} v_{2}$, the edge $w_{3} v_{2}$ will also be red. This forces edges $v_{2} v_{4}, v_{2} v_{5}$ and $w_{1} w_{3}$ to be colored blue. This all leads us to the blue cycle of length 6 : $w_{1} w_{3} v_{1} w_{2} v_{5} v_{2} w_{1}$.
3) There is no edge $w_{1} v_{5}$ in graph G

As in the previous two cases, we get that the edges $w_{1} v_{1}$, $w_{1} v_{3}$ and $w_{2} v_{2}$ are red, while the edges $v_{2} v_{4}, v_{2} v_{5}$ and $w_{1} w_{2}$ are blue. Taking this into account, we immediately obtain the blue cycle of length 6: $w_{2} v_{5} v_{2} v_{4} w_{3} v_{3} w_{2}$.
4) There is no edge $w_{2} v_{5}$ in graph G

In this case we obtain the same red and blue edges as at the beginning of the proof of case 3. This time we have the following blue cycle of length 7 : $w_{1} v_{5} v_{2} v_{4} w_{3} v_{3} w_{2} w_{1}$. From Claim 1 we also have a red cycle of length 6 .

We have already considered all possible cases and in each of them we have obtained a monochromatic C_{6}, so the proof
of the theorem is complete.
Corollary 15. The pair of graphs $\left(C_{6}, C_{6}\right)$ is not Ramsey-full.

Corollary 16.

$$
r_{*}\left(C_{6}, C_{6}\right)=6 .
$$

Proof. We know that $R\left(C_{6}, C_{6}\right)=8$ [7]. The lower bound follows easily from Theorem 7 in the special case $n=m=6$. The upper bound follows directly from the conclusion of above Theorem 14.

Theorem 17. For even $m \geq 6$, odd $k \geq 1$ and $k \leq \frac{m}{2}$, $r_{*}\left(C_{m+k}, C_{m}\right) \geq m+1$.
Proof. Since $m+k$ is odd, then $r=R\left(C_{m+k}, C_{m}\right)=2 m-1$ [7]. Let P_{1}, P_{2} be a partition of $V\left(K_{r-1}\right)$ with $\left|P_{1}\right|=\left|P_{2}\right|=$ $m-1$. Assign colors to the edges of the K_{r-1} as follows: color the edges of P_{1} and P_{2} blue and all the other edges red. Let p_{0} be an additional vertex, which is adjacent to P_{1} with $m-1$ red edges and adjacent to P_{2} with one blue edge. It is easy to check that there is neither a red C_{m+k} nor a blue C_{m}.

By $K_{p 1} * K_{p 2} * \ldots * K_{p i}$ we denote a blockgraph, which consists of i complete blocks $K_{p 1}, \ldots, K_{p i}$ such that exactly one vertex is contained in any of these complete subgraphs. Using this notation, for three graphs G, H and I, the graph $G *(H * I)$ consists of two graphs G and $H * I$, which have exactly one common vertex which is contained in G and H.

Theorem 18.

$$
r_{*}\left(C_{7}, C_{6}\right)=7
$$

Proof. From [7] we know that $R\left(C_{7}, C_{6}\right)=11$. In oder to determine the value of $r_{*}\left(C_{7}, C_{6}\right)$, it is enough to prove that $F=K_{11}-K_{1,3} \rightarrow\left(C_{7}, C_{6}\right)$ because the lower bound follows from Theorem 17. Let us consider an arbitrary red/blue coloring all the edges of the graph F. For this coloring of F, let $F^{R}\left(F^{B}\right)$ be the graph whose vertex set is $V(F)$ and edge set consists of all red (blue) edges of F, respectively. Suppose to the contrary that F^{R} does not contain a C_{7} and F^{B} does not contain a C_{6}. The following results are taken from papers [15] and [4], respectively.
Claim 18.1 ([15]). $e x\left(11, C_{6}\right)=23$ and there are exactly three extremal graphs with respect to C_{6} for this number, namely $K_{5} * K_{3} * K_{5}, K_{5} *\left(K_{3} * K_{5}\right)$ and $K_{5} *\left(K_{5} * K_{3}\right)$.

Claim 18.2 ([4]). $e x\left(11, C_{7}\right)=30$ and there are exactly two extremal graphs with respect to C_{7} for this number, namely $K_{6} * K_{6}$ and $K_{5,6}$.

Since $|E(F)|=52$, then $\left|E\left(F^{B}\right)\right| \geq 23$ or $\left|E\left(F^{R}\right)\right| \geq 30$. Note that in the complement of each of the extremal graphs with respect to C_{6} or C_{7} for these numbers, we obtain a red C_{7} or a blue C_{6}, respectively. We have a contradiction, which completes the proof of the theorem.

Again, using the results of [15] and [4], we can easily obtain the following theorem.

Theorem 19. $K_{r}-e \rightarrow\left(C_{k}, C_{6}\right)$, where $r=R\left(C_{k}, C_{6}\right)$ and $k \in\{17,19\}$.

Proof. Based on the works [7], [15] and [4] we have $R\left(C_{17}, C_{6}\right)=19, R\left(C_{19}, C_{6}\right)=21, e x\left(19, C_{17}\right)=126$, $e x\left(19, C_{6}\right)=44, e x\left(21, C_{19}\right)=159$ and $e x\left(21, C_{6}\right)=$ 50 . Note that for $k \in\{17,19\}$ the property $e x\left(r, C_{k}\right)+$ $e x\left(r, C_{6}\right)=\left|E\left(K_{r}\right)\right|-1$ holds. With a simple analysis the complements of critical graphs with respect to C_{k} described in [15], we have the proof.

For graphs G_{1}, G_{2} a coloring f is a $\left(G_{1}, G_{2} ; n\right)-$ coloring if f is a red/blue edge coloring all the edges of K_{n} and f contains neither a red G_{1} nor a blue G_{2}. A coloring $\left(G_{1}, G_{2} ; n\right)$ is said to be critical if $n=R\left(G_{1}, G_{2}\right)-1$.
Two more results can be obtained by simple computer methods.

Theorem 20.

$$
\begin{aligned}
& r_{*}\left(C_{8}, C_{6}\right)=6, \\
& r_{*}\left(C_{9}, C_{6}\right)=7 .
\end{aligned}
$$

Proof. On the website https://users.cecs.anu.edu.au/~bdm/data 1 graphs.html we can find a database of all non-isomorphic graphs of order up to 11. They can be easily filtered out, yielding 24 critical colorings $\left(C_{8}, C_{6} ; 9\right)$ for $r_{1}=R\left(C_{8}, C_{6}\right)=10$ and 26 critical colorings $\left(C_{9}, C_{6} ; 10\right)$ for $r_{2}=R\left(C_{9}, C_{6}\right)=11$. Then we take all these critical colorings and consider all possible colorings of type $K_{r_{1}-1} \sqcup K_{1, k}$ and $K_{r_{2}-1} \sqcup K_{1, k}$ for increasing values of k, starting from $k=1$. We are looking for the largest value of k that there is a coloring without forbidden subgraphs.
Let's end the article with two interesting questions.
Question 1. Let us note that $r_{*}\left(C_{6}, C_{6}\right)=r_{*}\left(C_{8}, C_{6}\right)=$ 6 and $r_{*}\left(C_{7}, C_{6}\right)=r_{*}\left(C_{9}, C_{6}\right)=7$. Will it turn out that $r_{*}\left(C_{n}, C_{6}\right)=6$ or 7 depending on the parity of n ?

Question 2. Do similar relationships hold for even cycles longer than 6 ?

References

[1] S. Brandt, "A sufficient condition for all short cycles," Discrete Appl. Math., vol. 79, 1997, pp. 63-66.
[2] L. Caccetta, K. Vijayan, "Maximal cycles in graphs," Disc. Math., vol. 98, 1991, pp. 1-7.
[3] P. Erdös, R. J. Faudree, "Size Ramsey functions," Sets, Graphs and Numbers, 1991, pp. 219-238.
[4] Z. Füredi, D. S. Gunderson, "Extremal Numbers for Odd Cycles," Combinatorics, Probability and Computing, vol. 24(4), 2014, pp. 641645.
[5] G. Frederickson, N. Lynch, "Electing a leader in a synchronous ring," Journal of Association for Computing Machinery, vol. 34, 1987, pp. 98115.
[6] J. Hook, G. Isaak, "Star-critical Ramsey numbers," Discrete Appl. Math., vol. 159, 2011, pp. 328-334.
[7] G. Károlyi and V. Rosta, "Generalized and geometric Ramsey numbers for cycles," Theoret. Comput. Sci., vol. 263, 2001, pp. 87-98.
[8] B. Li, B. Ning, "Exact bipartite Turán numbers of large even cycles," Journal of Graph Theory, vol. 97(4), 2021, pp. 642-656.
[9] Y. Liu, Y. Chen, "Star-critical Ramsey Numbers of Wheels Versus Odd Cycles," Acta Mathematicae Applicatae Sinica, English Series, vol. 38(4), 2022, pp. 916-924.
[10] S. P. Radziszowski, "Small Ramsey numbers," Electron. J. Combin., 2021, DS1.16.
[11] V. Rosta, "Ramsey Theory Applications," Electronic Journal of Combinatorics, 2004, Dynamic Survey 13.
[12] M. Snir, "On parallel searching," SIAM Journal Computing, vol. 14, 1985, pp. 688-708.
[13] D. R. Woodall, "Maximal circuits of graphs I," Acta Math. Acad. Sci. Hungar., vol. 28, 1976, pp. 77-80.
[14] Y.L. Wu, Y.Q. Sun, S. Radziszowski, "Wheel and star-critical Ramsey numbers for quadrilateral," Discrete Appl. Math., vol. 186, 2015, pp. 260271.
[15] Y. Yuansheng, P. Rowlison, "On graphs without 6-cycles and related Ramsey numbers," Utilitas Mathematica, vol. 44, 1993, pp. 192-196.
[16] Y. Zhang, H. Broersma, Y. Chen, "On star-critical and upper size Ramsey numbers," Discrete Appl. Math., vol. 202, 2016, pp. 174-180.

