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Abstract—The paper comments on two main issues. First,
on a model for estimating the carbon price using multi-year
market data. And second, on the consideration of two approaches
to feature set exploitation. On the one hand, two ensemble
machine-learning models with randomly selected feature sets are
employed. On the other hand, a hybrid feature selection strategy
follows domain expertise on which features should be explored.
This minimizes the number of feature set combinations to be
tested. The additional information for the predictions was the
data from other commodity contracts, which could be easily
introduced into the collection, as too many of them do not
necessarily improve the estimates. The results of the experiments
are promising: for the model based on SVR, the MAPE obtained
was 2.09% and 5.6% for the following day and week price
forecasts, respectively.

I. INTRODUCTION

T
HE European Union Emissions Trading Scheme

(EU ETS) was established in 2005 to promote the cost-

effective and economically efficient reduction of greenhouse

gas emissions. According to the International Energy Agency,

global CO2 emissions reached record highs in 2021 (over

EUR 60 per ton) and the price is still volatile. The costs of

European Union Allowance (EUA) is increasing, not only

for the environment but also for the European economy.

For this reason, understanding the problem of carbon price

volatility and being able to predict it has become essential for

profitable business decisions in companies that emit CO2 and

are obliged to buy carbon credits, as well as in companies

that are considering switching to renewable energy sources.

The literature analysis shows the breadth of the scope of the

topic and the potential correlation of EUA price volatility

with many factors [1], [11]. Therefore, there is a need to

identify a carbon price prediction model using determinants

that have a particular impact on the EUA price forecasting in

a dynamically changing environment.

The article is a continuation of the recent research presented

by the authors in [16]. This paper describes the day-ahead

carbon price prediction based on a wide range of fuel and

energy indicators traded on the Intercontinental Exchange

market. In the proposed approach, by combining the Principal

Component Analysis (PCA) method and various methods of

supervised machine learning, the possibilities of prediction in

the period of rapid price increases are shown. The PCA method
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reduced the number of variables from 37 to 4, which were

inputs for predictive models, so it reduced the complexity of

models but did not improve the prediction errors [16].

Following these considerations, in this paper we propose

a hybrid approach for feature selection and identification

of the carbon price prediction model. In this approach, we

combine a wrapper and an embedded method using differ-

ent supervised machine learning methods and different time

horizons of EUA price forecasting. We attempted to employ

the wrapper methods, which would potentially increase the

predictive power of the model, and alternatively tested the

embedded approach, which allows for automatic reduction of

the feature space. However, after some initial testing for the

described forecasting case, we combined both approaches and

supplemented them with domain expertise on which features

are valuable, thus helping to reduce the number of feature set

combinations.

II. LITERATURE REVIEW

For the purpose of testing the considered feature selection

approaches, we decided to run some real data experiments.

This has been performed for the field of European Carbon

Emission Allowance Futures (EUA) price forecasting, and

machine learning methodology has been exploited for the

required estimation generation.

Different approaches to EUA price forecasting can be found

in the literature. According to [27], carbon price forecasting

models can be divided into the following types of models:

econometric prediction model, artificial intelligence algorithms

and combined prediction model.

An approach proposed in [3] employed a non-parametric

method to estimate carbon prices and found that the method

could reduce the prediction error by about 15% compared

to linear autoregression models. In [10] a hybrid model

combining the Generalized Autoregressive Conditional Het-

eroskedasticity (GARCH) model and a long-term memory

network was presented, while in [1] the authors proposed the

GARCH models and the k-nearest neighbor models. There

are many approaches to EUA price prediction using machine

learning methods. In [28], the authors proposed a novel

paradigm of multiscale nonlinear ensemble learning, involving

empirical mode decomposition and a least squares support

vector machine with a kernel function prototype. An extreme

learning machine optimized by the Kidney algorithm with
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a coefficient of proportionality and cooperation is proposed

in [9].

Due to the non-linearity and non-stationarity of EUA prices,

the authors in [22] developed a system consisting of an ana-

lytical module and a forecasting module. There are relatively

few publications that use determinant analysis in EUA price

prediction models. In [11], a theoretical model was developed

and presented that combines the energy sector (crude oil,

natural gas, coal, electricity prices, and the share of fossil fuels

in electricity generation), economic activity, and the market

for CO2 emission allowances. In [1], the authors suggested

that Brent oil, coal, and electricity can be used to forecast

the volatility of coal futures. In this paper, our research fills

the gap in the related literature, where we take into account

a wider range of data from the fuel and energy sector in

order to perform feature selection and identify the EUA price

prediction model in the short term. The short term prediction is

especially important for traders and other market participants

who, when buying EUA prices on a regular basis, follow price

trends to buy EUAs at the cheapest price [15]. Prediction over

a longer period of time can be useful in making strategic

decisions for market participants and carbon-based companies.

However, due to the nonstationary, nonlinear, and irregular

EUA price, it is a particularly difficult issue that requires a

more sophisticated approach to analysis. It seems that the

solution in this respect could be models using the enoising

procedure [5] and deep learning [4]. This will be the subject

of further research.

III. METHODOLOGY

Fig. 1 presents a general overview of the applied research

methodology that has been followed in this paper. We initially

collected and prepared the data, which is discussed in section

IV. As a result, we obtained time series for the EUA price

and 16 factors related to the contracts for fuel and energy

products (current values and values of the last change), which

gives a total of 33 market-driven features. Since the data

acquisition for the analyzed case could be costly, we tested

several ways of feature selection that could lead to finding

those that are really necessary and contribute to the final model

performance. On the one hand, we used ensemble machine

learning models with randomly selected feature sets. Providing

the model with many features at the beginning, hoping that for

some models this would be beneficial for the final result [14],

[24]. Such a process was automated using so-called ensemble

learning models, such as random forests or extra trees, which

are reported by many to work well for datasets with many

features [18]. These models could return even better estimates,

outperforming Support Vector Machine based prediction [8].

And on the other hand, we used selected machine learning

models and iteratively added successive model features, which

were selected by an expert. For this part of the experiments

aimed at investigating the importance of the features, as

it has been advised [7], we applied linear models, support

vector machines with linear kernel and simple linear regression

models with additional regularization.

Fig. 1. The experiment evaluation procedure.

All the planned experiments were conducted under a rec-

ommended cross-validation regime [26], which allows for

credible performance analysis. To evaluate the tested models,

we employed several widely adopted metrics in the following

experiments: the coefficient of determination (denoted as R2),

which is commonly used to compare the performance of dif-

ferent models [19], [21], the mean square error (MSE) or its’

square root [20], the mean absolute percentage error (MAPE)

[21] which should provide a good intuition on the relative

scale average model’s prediction error. For each tested model

and each generated price prediction pi,pred and the actual

reference prices pi,ref we checked the statistics according to

the formulas:

MAPE =
1

n

∑

i

∣

∣

pi,ref − pi,pred

pi,ref

∣

∣ (1)

R2 = 1−

∑

i (pi,ref − pi,pred)
2

∑

i (pi,ref − pi)2
(2)

Finally, it is worth mentioning the software packages we

used. We used the Scikit-learn framework [13] to de-

velop the necessary machine learning models and to perform

all the planned experiments. For the visualization of the

results and the representation of the features, we used the

Matplotlib library [2] and the Seaborn package [25],

all in the Python 3.10 environment.

IV. MARKET DATA COLLECTION AND TRANSFORMATION

The research was carried out upon data collection that

gathers daily carbon futures of the EU ETS from the Inter-

continental Exchange market over a long period of time. The

analyzed delivery date is December of the same year (for trade

dates from January to October) and December of the next year

(for trade dates from November to December). The data set

comes from the Fixed Income Trading Analytics web portal [6]

(accessed on 8 August 2022). To be specific it spans from

2013-10-22 to 2020-12-16. For all working days on which

transactions were quoted during this period, we put a total

number of 1842 rows into our data set in a standardized format.

Missing data were replaced with the average factor prices for

the last three days.

For the purpose of the EUA price modeling, we supple-

mented the collection with more than a dozen of additional
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factors. We acquired data reflecting other fuel and energy

factors from the Intercontinental Exchange, for the same time

period as the target that could potentially provide useful

information. Finally, the main series - f1: “EUA Future” that

shows the previous value of the modeled EUA prices, has been

concatenated with the following series [6]:

• f2: “AFR-Richards Bay Coal Future”,

• f3: “ATW-Rotterdam Coal Future”,

• f4: “M-UK Natural Gas NBP Future”,

• f5: “N-New York Harbor Unleaded Gasoline Future”,

• f6: “NCF-Newcastle Coal Future”,

• f7: “O-New York Harbor Heating Oil Future”,

• f8: “T-West Texas Intermediate Light Sweet Crude F.”,

• f9: “UBL-UK Power Baseload Future (Gregorian)”,

• f10: “G-Gasoil Future (Low Sulphur Gasoil Futures from

February 2015 contract month)”,

• f11: “DPB-Dutch Power Base Load Futures”,

• f12: “TFM-Dutch TTF Natural Gas Base Load Futures”,

• f13: “B-Brent Crude Future”,

• f14: “CRF-CFR South China Coal Futures”,

• f15: “BPB-Belgian Power Base Load Futures”,

• f16: “GER-German GASPOOL Futures”,

• f17: “GNM-German NCG Futures”.

The above factors are related to the contracts for fuel and

energy products such as natural gas (f4, f12, f16, f17), coal

(f2, f3, f6, f14), power (f9, f11, f15), crude (f8, f13), heating

oil (f7), unleaded gasoline (f5) and gasoil (f10).

Besides the above-mentioned basic values of all commodi-

ties (f1 ... f17), the collection has been supplemented with the

values of the last change of all these indices. These derivative

values denote as follows: f18 for the last change in f1, f19 for

f2, ..., and f34 reflects the last change in f17.

V. EXPERIMENTS

In order to provide reliable and low error forecasts, we con-

ducted several experiments, starting with ensemble machine

learning models and ending with linear models, operating on

narrowed sets of covariates.

When modeling the prices of such commodities, in addition

to the required highest possible performance, the narrowed

data set in the sense of a smaller number of necessary

collection features would be an advantage, and thus these

experiments were focused on reducing the model inputs.

A. Experiments with ensemble models

Since the ensemble machine learning models are often

reported to handle complex datasets successively [23], we

tested their performance against investigated price collection.

To estimate EUA prices using 34 market-driven features, we

first utilized the random forest and extra trees algorithms.

We have trained models for various forecast horizons, for

the next day’s price, over the next several days’ data, and up to

ten days in advance each time. We expected lower performance

for a longer forecast perspective but wanted to check the exact

increase in the estimation error to get at least an approximation

TABLE I
THE STATISTICS FOR RANDOM FOREST (RF) AND EXTRA TREES (ET)
ALGORITHMS FOR 10 FORECAST PERSPECTIVES. WE INDICATE IF THE

METRIC SHOULD BE MINIMIZED(↓) OR MAXIMIZED(↑).

Model MAPE (↓) for various forecast perspectives
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

ET 10.64 10.94 11.54 11.49 12.83 13.24 13.93 14.65 14.36 13.78
RF 3.920 5.595 6.889 9.852 10.83 11.77 12.33 13.09 13.31 13.91

R2 (↑) for various forecast perspectives
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

ET -0.049 -0.033 -0.160 -0.090 -0.393 -0.533 -0.456 -0.800 -0.567 -0.453
RF 0.928 0.854 0.782 0.567 0.475 0.372 0.324 0.250 0.232 0.164

of how the model would perform for such several days-long

predictions.

It is worth noting, that during the cross-validation training

runs, we allowed both models to select the best-performing

configuration for the number of estimators used. The models

of lowest errors in this experiment were most often configured

for the maximum number of 25 estimators (although they may

have used as many as 500).

The results for this investigation are provided in Table I.

We have denoted the resulting metrics (MAPE and R2) for

the forecasts for the following 10 days (d1, d2, ..., d10).

We tested two various ensemble algorithms because they

approach feature selection differently, hoping that one of them

would manage to find a profitable subset of columns and return

good forecasts. It is clear from Table I that random forest

performed better in this round of experiments. However, the

measured errors for these forecasts were not impressive. The

mean absolute percentage error for the next day’s forecast was

3.9%, and it was lower than 10% only up to the fourth day

in advance. The coefficient of determination was less than 0.5

for the random forest models from the fifth day on. And for

the extra trees based algorithms, all models have negative R2

indicating very poor performance. The better results of the

random forest were probably related to the applied sample

bootstrapping applied, but still, both of those architectures left

room for improvement for other models.

B. Expert assisted feature selection experiment

Since the experiment with the automated approach to feature

selection resulted in a rather disappointing forecasting perfor-

mance we decided to test another one. For this experiment

instead of testing models against all feature combinations, we

trained models on the feature subsets that were recommended

by another research. We tested 5 different setups.

The first one was based on prices only, and the second one

utilized mainly price derivatives. And other subsequent subsets

(S3, S4, and S5) that used specifically indicated features. The

sets S1 and S2 could be rephrased as simply working on all

prices or working on all price derivatives. The latter three sets

reflect the top-ranked features reported in the study [16], but

to provide a deeper understanding of which features are really

beneficial for final estimation, we tested the top five, top ten,

and best fifteen features from that ranking to build S3, S4,
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Fig. 2. A comparison of the results: (a) MAPE for two model architectures and (b) R2 for various feature subsets.

and S5 respectively. The detailed configuration of these subsets

was as follows:

• Set 1, utilized all current prices, so the set denotes: S1 ∈
{f1, f2, ..., f17},

• Set 2, consisted of the current EUA price value (f1) and

all features reflecting changes in the investigated prices,

thus: S2 ∈ {f1, f18, f19, ..., f34},

• Set 3 was built on the top 5 recommended features, thus:

S3 ∈ {f1, f11, f15, f14, f9, f6},

• Set 4 was built on the top 10 recommended features, thus:

S4 ∈ {f1, f11, f15, f14, f9, f6, f3, f2, f4, f5, f16},

• and lastly Set 5, which gathers the top 10

recommended features, with another 5, totaling

the following 15 features: S5 ∈ {f1, f11, f15, f14,
f9, f6, f3, f2, f4, f5, f16, f17, f12, f10, f8, f7},

In Fig. 2 we have plotted the results of the models trained on

these 5 feature subsets. We used two various model architec-

tures. The linear model was supported with L2 regularization

(known also as ridge regression), and the Support Vector

Machine for regression with a linear kernel-based model

(SVR) was also has been regularized. The comparison of

the results is shown in the upper part of Fig. 2(a), and both

approaches are also compared in detail in Table II. As can be

seen, the models using the SVR architecture produced slightly

lower errors for all subsets tested and for almost all forecast

perspectives.

But the main reason for this experiment was related to the

feature subsets. As we found out, in most cases the second and

third subsets returned the lowest errors. This is clearly visible

in the right part of Fig. 2, where the blue and green boxes

represent the better coefficient of determination for all of the

tested forecasting perspectives. The difference in performance

for models based on S2 and S3 is so small that it requires

another look at the results Table II. When using the R2 as the

decision criterion, the better choice would be the third subset,

which has the best R2 for 9 out of 10 forecast perspectives.

C. Features close-up

The interesting fact regarding the best-performing variant

of the tested models is that it is based on the smallest subset

of features. The subset S3 consists of only 6 features. We

took a closer look at the contribution of these features to

the final prediction. We compared two tested variants of the

linear models we trained and depicted the feature importance

TABLE II
THE RESULTS FOR VARIOUS FEATURE SUBSETS AND FOR THE FOLLOWING

DAYS’ FORECASTS. THE BEST RESULTS ARE BOLDFACED AND WE

INDICATE IF THE METRIC SHOULD BE MINIMIZED (↓) OR MAXIMIZED (↑).

Model Set MAPE (↓) for various forecast horizons
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Linear S1 2.329 3.489 4.577 5.415 6.323 7.101 7.774 8.365 9.010 9.656
S2 2.227 3.080 3.785 4.424 4.935 5.414 5.924 6.417 6.883 7.224
S3 2.142 3.067 3.874 4.522 5.213 5.777 6.313 6.828 7.394 7.960
S4 2.203 3.246 4.229 5.080 6.032 6.853 7.536 8.123 8.790 9.475
S5 2.373 3.466 4.476 5.343 6.288 7.111 7.763 8.375 9.079 9.817

SVR S1 2.166 3.320 3.988 4.560 5.459 5.890 6.216 6.849 7.442 8.092
S2 2.085 2.937 3.642 4.211 4.768 5.236 5.668 6.189 6.580 6.919

S3 2.086 2.974 3.650 4.187 4.709 5.300 5.787 6.182 6.573 7.047
S4 2.132 3.226 3.853 4.419 5.269 5.783 6.116 7.054 7.457 8.047
S5 2.192 3.197 3.962 4.567 5.513 5.834 6.407 7.068 7.529 7.774

R2 (↑) for various forecast perspectives

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Linear S1 0.968 0.933 0.888 0.847 0.792 0.741 0.697 0.664 0.627 0.586
S2 0.968 0.944 0.915 0.887 0.862 0.837 0.814 0.790 0.762 0.740
S3 0.972 0.947 0.919 0.892 0.861 0.833 0.809 0.783 0.753 0.721
S4 0.971 0.942 0.906 0.869 0.817 0.766 0.727 0.692 0.653 0.608
S5 0.967 0.935 0.897 0.857 0.805 0.755 0.716 0.679 0.639 0.592

SVR S1 0.971 0.939 0.913 0.887 0.845 0.822 0.802 0.767 0.743 0.702
S2 0.973 0.949 0.921 0.896 0.870 0.847 0.825 0.796 0.777 0.757

S3 0.973 0.949 0.923 0.899 0.872 0.847 0.825 0.807 0.783 0.755
S4 0.972 0.941 0.917 0.890 0.852 0.822 0.796 0.758 0.705 0.694
S5 0.971 0.943 0.913 0.885 0.834 0.816 0.791 0.748 0.720 0.709

Fig. 3. The feature importance comparison for different forecast perspectives:
(a) for SVR, and (b) for the linear model with L2 regularization.

for both approaches (see Fig. 3). For the slightly better

SVR models, the features appear to be dynamic over time

dimension. Besides the most important first feature (the last

denoted EUA price), other SVR features (Fig. 3a) radically

change their values for the next day’s forecasts. The linear

model utilizes the features in a more stable manner, and only
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Fig. 4. The feature importance for linear SVR models and: (a) subset S2,
and (b) subset S3. The first feature was omitted to improve chart readability.

for the last one (f6) does the feature importance change by

more than a few percent.

A closer look at the feature importance of the other feature

set reveals an even more dynamic character for the set S2 (see

Fig. 4). The first feature for both sets was omitted because its

importance is very dominant and would reduce the readability

of the graph. The comparison of the two best-performing

models using set S2 and set S3 which is presented there shows

that the SVR-based model differs from variant to variant (when

comparing variants for d1, d2, and the following).

The above analysis indicate that the most important are fac-

tors from two groups of individual products: power and coal.

In particular, when using the SVR-based model, the current

prices of the following futures have the greatest influence on

the short-term forecast: “NCF-Newcastle Coal Future”, "DPB-

Dutch Power Base Load Futures", "CRF-CFR South China

Coal Future". It can also be seen that as the forecast horizon

increases (from d1 to d10), the importance of these factors also

increases. This proves that EUA price is the most sensitive to

changes caused by energy markets. EUA price will largely

reflect the demand for a given type of fuel in this sector. If

all factors are used in the SVR-based model in the form of

their last change, it is difficult to clearly rank the importance

of individual factors. Their importance depends on the horizon

of the forecast. In the case of the day-ahead forecast d1, the

importance of the "B-Brent Crude Future" price change is

emphasized, for d7 - "GNM-German NCG Futures", and for

d9 - "CRF-CFR South China Coal Futures". However, it is

noticeable that in the case of a forecast 9 days in advance, the

significance of most of the analyzed factors increases.

VI. CONCLUSION

As reported for the presented experiments, expertise-based

feature selection could lead to better model results in some

situations. For the analyzed case of EUA prices, it resulted

in a lower prediction error than a more automated approach

that was based on ensemble machine learning models. Such

a piece of expert advice on which features to focus on could

save a lot of time that would otherwise be spent experimenting

with a potentially large number of different feature sets.

The apparent limitation of such an approach might be a

lack of information about which covariates to focus on during

modeling. This should not usually be a real concern when

training a price prediction model for a relatively popular asset.

Further work should hit the time series based forecasting

techniques, which would possibly lead to the ultimate perfor-

mance improvement. These could be, reported to be effective

for price modeling NBEATSx [12] or Temporal Convolutional

Networks [17]. However, as these methods can be more time

consuming, the precisely selected feature set as commented

by this paper should be considered a strong asset.
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