
Developing an interval method for training

denoising autoencoders by bounding the noise

Bartłomiej Jacek Kubica

0000-0002-5547-3759

Institute of Information Technology,

Warsaw University of Life Sciences – SGGW,

ul. Nowoursynowska 159, 02-776 Warsaw, Poland

E-mail: bartlomiej_kubica@sggw.edu.pl

Abstract—This paper discusses prospects of using interval
methods to training denoising autoencoders. Advantages and
disadvantages of using the interval approach are discussed. It is
proposed to formulate the problem of training the proper neural
network as a constraint-satisfaction, and not optimization, prob-
lem. Pros and cons of this approach are considered. Preliminary
numerical experiments are also presented.

I. INTRODUCTION

A
UTOENCODERS (AE) are commonly used, nowadays,

and they found applications in various branches related

to machine learning (ML). They can be used, i.a., for feature

extraction, dimensionality reduction, denoising, and even as

some kind of generative models (so-called variational autoen-

coders).

Interval methods, while used by several authors for neural

network training (see, e.g., [1], [2], [3], [4], [5], [6], [7]),

have rarely been used in conjunction with AE, so far. The

only known exception is the paper [8]. This is surprising,

because interval methods have – as we shall see – several

natural advantages, when applied to training AEs. This paper

intends to fill this gap, at least to some extent.

The paper is organized as follows. Section II introduces the

idea of autoencoders. It (briefly) discusses various types of the

AEs, their features, and applications. Section III introduces the

interval calculus, and basics of the algorithms that use it. In

Section IV, we discuss the interval approach to training AEs,

and discuss the possible solutions.

II. AUTOENCODERS AND THEIR TYPES

Autoencoders (also called autoassociotors, at least in the

early papers) are a specific kind of unsupervised (or semi-

supervised) feed-forward neural networks [9], [10]. Their use

dates back to the eighties; cf. [11], [12], [13].

The AE consists of at least three layers: the input layer

(x), the hidden layer (h), and the output layer (y). Its essence

is to reproduce the input on the output, but not in a trivial

manner: y = x, but approximately. Depending on the structure

and dimensionality of the hidden layer, the input can be

reconstructed more or less precisely, and – as we shall see

– the reconstruction process will capture various features of

the data.

An AE can be logically decomposed into two parts:

• the encoder, transforming the input x to the representa-

tion of data, in the hidden layer: h = f(x),
• the decoder, transforming the representation to the data

from the original space: y = f∗(h).

The f∗ function in the above description is some sort of an

‘approximate inverse’ of f .

We train the AE to have:

y = f∗(f(x)) ≈ x , (1)

but how close y can get to x depends on the restrictions on

the representation h: what is its dimensionality, etc.

Training is usually performed by minimizing some loss

function (least-squares or the Kullback-Leibler divergence

[14]), possibly plus some regularization term(s) forcing the

satisfaction of some additional conditions, e.g., the presence

of some features.

The general structure of the AE is presented in Fig. 1.

Fig. 1. General structure of an AE

This figure suggests that there are fewer neurons in the

hidden layer than there are in the input and output layers.

This is often the case: such an AE is called undercomplete,

and the limitation of the representation in the hidden layer

forces the network to learn the most important features only.

Communication Papers of the 18th Conference on Computer

Science and Intelligence Systems pp. 173–180

DOI: 10.15439/2023F865

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 173 Topical area: Advanced Artificial

Intelligence in Applications

Yet, another type of an AE is used as well: an overcomplete

autoencoder, that has more neurons in the hidden layer than

in the input or output ones (Fig. 2).

Fig. 2. An overcomplete autoencoder

How does such an AE work? Will it simply learn to

approximate the identity function y = x, or will it find a useful

representation? As it has already been mentioned, the essence

is to provide the proper regularization in the learning process:

the minimized loss function should contain a regularization

term, being the ‘penalty’ for using too many neurons.

An example of such a regularization is used in the so-called

sparse autoencoder (SAE). In this case, it is penalized to

activate too many neurons in the hidden layer. This can be

obtained, in particular, by using as the regularization term the

Kullback-Leibler divergence of the hidden layer – see, e.g.,

[15].

Overcomplete AEs are usually considered to be more dif-

ficult to train than undercomplete ones, but more powerful.

The source of their power is the ability to omit local optima,

during the learning process.

Another kind of the AE, particularly important in this paper

is a denoising autoencoder (DAE). In this case, the training

process is subtly modified to obtain a representation that is

robust in the presence of noise. Hence, instead of feeding the

input layer with training vectors x, we use perturbed training

data (let us denote it by x+ ε), yet expecting the output layer

to return y ≈ x, and not y ≈ x+ ε. How can it be achieved?

Firstly, we have to assume some specific distribution of

the noise; usually Gaussian distribution is used, but it it

not the only possibility. Secondly, the training set has to be

increased, as for each input vector x, we must now have

a few its perturbed counterparts. Thirdly, reconstructing the

values is usually done basing on the interdependency of

various components of x, but this is not the only possibility.

Sometimes, the values of x belong to a discrete set, and small

perturbations can easilly be corrected.

One of the drawbacks of the traditional approach to training

DAEs is the enlargement of the training set. Actually, later in

the paper we propose an approach to mittigate it, by using

some interval methods for training the DAE. Please compare

also the latter discussion in Section VI.

In general, the autoencoder does not have to be limited

to three layers. The number of intermediate layers can be

increased; such an AE is called a deep autoencoder (or a

stacked autoencoder). An example structure of a deep AE is

presented in Fig. 3.

Fig. 3. A deep autoencoder

The virtue of a deep AE is that it can be trained iteratively:

first we find the weights for a single hidden layer, such that

g = f1(x), and y = f∗

1 (g) ≈ x, then h = f2(g), and t =
f∗

2 (h) ≈ g, thus obtaining:

h = f2(f1(x)) ,

y = f∗

1 (f
∗

2 (h)) .

Yet another kind of an AE is a contracting autoencoder (CAE).

The essence is to train the AE so that we had h = f(x),
and the derivative of f was close to zero at the training

points. Usually, it is obtained by adding the the loss function

a regularization term, penalizing a norm of the Jacobi matrix

of f . An analog for a deep CAE is straightforward.

But why would an AE satisfy such a condition? What do

derivatives close to zero imply?

Actually, the idea is pretty similar (but not mathematically

equivalent!) to a DAE: when the derivative of f is close to

zero, adding a noise to x does not change its representation

significantly. There are two key differences between DAE and

CAE:

• DAE enforces some conditions on the output layer, i.e.,

on y = f∗(f(x)), while CAE enforces some conditions

on the hidden layer, i.e., h = f(x),
• CAE does not make any assumptions about the distribu-

tion of the noise, while DAE uses the noise generated

using a specific distribution.

There are some approaches to combine DAE and CAE, e.e.,

the marginalized DAE (mDAE), proposed in [16].

Let us conclude this survey with a variational autoencoder

(VAE). This kind of an AE tends to learn rather a probabilistic

distribution of the data than a representation of a single

174 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

element of the training set. The idea has been proposed by

[17].

Usually, it is assumed that the distribution is Gaussian, and

we have to fit its mean value and standard deviation, but other

distributions can be used as well [10]. To find the optimal

values of the parameters, the Kullback-Leibler divergence is

minimized, so that the distribution was as close to the given

one, as possible.

A VAE is a neural network very different from the ones

described up to now. In all previous architectures, the most

important part of the network was the encoder; the role of the

decoder was reduced to validating the encoder. For a VAE, the

decoder is the most important part. It is worth noting that the

role of such a network is to generate the data resembling (but

not identical to) the input ones. We shall not use VAEs in this

paper, but the topic is worth further consideration.

Activation functions

Let us mention one more detail: what activation functions

are used in AEs? Several such functions happen to be used in

artificial neural networks [9], [10], but for AEs two of them

are the most common. We shall stick to using them, as well.

Two such activation functions – ReLU (Rectified Linear

Unit):

ReLU(t) = max(t, 0) . (2)

and the sigmoid function:

σ(t) =
1

1 + exp(−β · t)
, (3)

III. INTERVAL METHODS

The interval calculus is the tool of choice for us, in this

paper. What is it?

It can be defined a branch of numerical analysis and

mathematics that operates on intervals rather than precise

numbers. A good introduction can be found in many classical

textbooks, including, i.a., [18], [19], [20], [21], [22], [23], or

a most recent one [24].

Arithmetic operations (as well as other operations and

functions) on intervals are designed, so that the following

condition was fulfilled:

⊙ ∈ {+,−, ·, /}, a ∈ a, b ∈ b implies a⊙b ∈ a⊙b . (4)

In other words, the result of an operation on numbers will

should contained in the result of an analogous operation on

intervals, containing these numbers.

This results in the following formulae for arithmetic opera-

tions (cf., e.g., the aforementioned textbooks):

[a, a] + [b, b] = [a+ b, a+ b] ,

[a, a]− [b, b] = [a− b, a− b] , (5)

[a, a] · [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] ,

[a, a] / [b, b] = [a, a] ·
[

1 / b, 1 / b
]

, 0 /∈ [b, b] .

It is worth noting that the above formulae are not the only

possible ones. Alternative (and even more general) formu-

lations are possible as well. Details can be found, i.a., in

Chapter 2 of [24]. Also, let us mention that the division by an

interval containing zero is also possible. This is done in the so-

called extended Kahan-Novoa-Ratz arithmetic; cf., e.g., [20]

for details.

Similarly to the arithmetic operations, we can define the

power of an interval:

[a, a]n =

[an, an] for odd n
[min{an, an},max{an, an}] for

even n and 0 /∈ [a, a]
[0,max{an, an}] for even n and

0 ∈ [a, a]

, (6)

and other transcendental functions, like:

exp
(

[a, a]
)

= [exp(a), exp(a)],

log
(

[a, a]
)

= [log(a), log(a)], for a > 0.

· · ·

For details, please consult, e.g., Section 2.3 of [24].

A. The problem under solution for interval algorithms

The approach described in the preamble of this section finds

several applications. Not to repeat the whole discussion from

Chapter 4 of [24], let us state that they can be used to seek

the solutions of problems of the following form:

Find all x ∈ X such that P (x) is fulfilled. (7)

Here, P (x) is a formula with a free variable x and X ⊆
R

n. In particular, constraint satisfaction problems (CSP), and

optimization problems (unconstrained and constrained ones)

are specific instances of Problem (7).

It should be noted that Formula P can contain, in addition

to the variable x, also some parameters; let us denote them by

a ∈ R
k. We have two main possibilities here:

Find all x ∈ X such that (∀a ∈ a) P (x, a) is fulfilled.

or:

Find all x ∈ X such that (∃a ∈ a) P (x, a) is fulfilled.

Other variants use various quantifiers for various components

of the vector a, e.g., (∀a1 ∈ a1)(∃a2 ∈ a2)(∀a3 ∈ a3), etc.

In the above manner, the intervals give us a natural tool

to bound several kinds of uncertainty. While, in the opinion

of the author, interval calculus should not be understood

as a tool of uncertainty description, but rather as a general

approach to seek points satisfying a certain logical condition,

the uncertainty description remains an important family of its

applications.

B. Interval branch-and-bound type methods

How to solve problems of type (7)? The generic algorithm

proposed in [24] is called the branch-and-bound type method

(B&BT). Instances of the B&BT algorithm are, among others,

these popular ones:

• the branch-and-bound methods for optimization prob-

lems,

BARTŁOMIEJ JACEK KUBICA: DEVELOPING AN INTERVAL METHOD FOR TRAINING DENOISING AUTOENCODERS BY BOUNDING THE NOISE 175

• the branch-and-prune method for CSPs.

The essence in both cases is to subdivide the boxes subse-

quently (starting from the initial box or the list of initial

boxes), discarding the boxes that do not contain solutions,

and possibly verifying some boxes to contain the solution(s).

Details can be found in [24].

It is a specific instance of the so-called divide-and-conquer

strategy (but the author himself dislikes this term).

Let us focus on the problem of solving a CSP, i.e., trying

to compute the set:

S = {x ∈ X | gi(x) ≤ 0, i = 1, . . . ,m} ,

or succinctly: S = {x ∈ X | g(x) ≤ 0}, where g =
(g1, . . . , gm).

Using interval methods, we compute two lists of boxes:

verified and possible solutions.

In case of a system of inequalities, the interior of the

solution set S is nonempty and the verified solutions are

boxes contained in this interior (boxes that contain solutions

only). Possible boxes lie usually on the boundaries of S, and

they contain some points both from the set S and from its

complement Rn\S. Typically there are several possible boxes,

unless S is a box itself (which would be highly unlikely).

The branch-and-prune algorithm for a CSP can be formu-

lated as follows:

The ‘rejection/reduction tests’, mentioned in the algorithm

have been described in the author’s previous papers; specifi-

cally, please consult [25], [26], [27], [28] and the references

therein.

In our version of the solver, the most important tool is hull-

consistency (HC).

Definition 3.1: A box x = (x1, . . . ,xn)
T is hull-consistent

with respect to a constraint c(x1, . . . , xn), iff:

∀i xi = □{s ∈ xi | ∃x1 ∈ x1, · · · ∃xi−1 ∈ xi−1,

∃xi+1 ∈ xi+1 · · · ∃xn ∈ xn

c(x1, . . . , xi−1, s, xi+1, . . . , xn)} .

A popular algorithm to enforce HC is called HC4. Details can

be found, i.a., in [28] or Subsect. 5.5. of [24].

IV. INTERVAL ALGORITHMS FOR TRAINING AES

A. Interval methods and neural networks

As it has already been mentioned, interval algorithms have

been extensively used for training various kinds of neural

networks. Two approaches have been formulated; in [3], they

are simply called ‘type 1’ and ‘type 2’ interval neural network

problems. ‘Type 1’ problems can be solved, by obtaining the

solution of an equations system:

f(xi, w) = yi, for i = 1, . . . , N , (8)

while ‘type 2’ problems require solving an optimization prob-

lem:

min
w

(

||f(xi, w)− yi||
)

. (9)

Algorithm 1 Interval branch-and-prune algorithm for a system

of inequalities

Require: x(0), g, ε
1: {x(0) is the initial box, g(·) is the interval extension of

the function g : Rn → R
m}

2: {Lver – verified solution boxes, Lpos – possible solution

boxes}

3: Lver = ∅
4: Lpos = ∅
5: x = x(0)

6: loop

7: compute y = g(x)
8: optionally, process the box x, using additional rejec-

tion/reduction tests

9: if (y > 0) then

10: discard x

11: else if (y ≤ 0]) then

12: push (Lver, x)

13: else if (widx < ε) then

14: push (Lpos, x) {The box x is too small for bisection}

15: end if

16: if (x was discarded or x was stored) then

17: if (L == ∅) then

18: return Lver, Lpos {All boxes have been consid-

ered}

19: end if

20: x = pop (L)

21: else

22: bisect (x), obtaining x(1) and x(2)

23: x = x(1)

24: push (L, x(2))

25: end if

26: end loop

In the above formulae, by f we denoted the function, repre-

sented by the neural network, (xi, yi) were the pairs from the

training set, and w – the vector of weights.

It is worth noting that virtually all non-interval methods, use

the approach (9) for training neural networks. The objective

function from (9) can be modified to contain some regulariza-

tion terms, e.g., to obtain the sparsity or other features of the

solution.

Only the interval calculus allows replacing optimization

with the direct search of points satisfying certain constraints.

In (8) they are equations, but inequality constraints are even

more natural in the interval formulation:

f(xi,w) ⊆ yi, for i = 1, . . . , N . (8’)

Also, instead of using the regularization terms, we can directly

check (non)satisfiability of various constraints on subsequent

boxes. This is the virtue of the interval calculus, that is a

natural approach to seeking points satisfying certain logical

conditions. Details can be found in [24].

176 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

B. The case of an autoencoder

As it has already been stated, interval methods have many

natural advantages, when applied to training AEs.

Firstly, we can use CSP solving approach (8’), instead of

the optimization problem (9), which is a more straightforward

approach.

Secondly, handling all uncertainties, including the noise in a

denoising AE is natural, by the virtues of the interval calculus.

Also, when using interval branch-and-bound type methods,

we can restrict ourselves to using undercomplete AEs. The

additional information, that would be processed for overcom-

plete AEs, will still be available for various parameterizations

of the network, represented by various boxes in the B&BT

procedure.

What is more, as stacked AEs can be trained subsequently,

the problem under consideration is of lower dimensionality

than for some other neural networks.

V. THE SOLVER AND OTHER SOFTWARE USED

In a series of earlier papers, including [25], [26], [27], [28],

the author has introduced his solver HIBA_USNE (Heuristical

Interval Branch-and-prune Algorithm for Underdetermined

and well-determined Systems of Nonlinear Equations) [29]. It

was also used in [4] to analyze a Hopfield-like neural network.

HIBA_USNE in its original form could also be used to

train a DAE, but it would not be the optimal tool for this

purpose. Please note that now the CSP under consideration

has a specific form. It contains both equations and inequalities,

but:

• the equations refer to hidden layer(s), and they always

have the form: hi = σ
(

∑n

j=1 w
1
ijxj

)

,

• the inequalities refer to the output layer; they

come from Formula (8’), and they have the form:

σ
(

∑n

j=1 w
2
ijhj

)

⊆ [y
i
, yi].

Obviously, if we had more hidden layers, there would be

analogous equations for each of them.

What is important is to note that the role of equations is

mostly to establish the relations between the input x and the

output y. The specific, ‘explicit’ form of these equations:

hi = σ

n
∑

j=1

w1
ijxj

 ,

makes the use of the Newton operator on them almost useless.

The most important tool is the hull-consistency (HC) enforc-

ing operator, which propagates the information forward and

backward through the layers of the neural network.

There are also other tools that might improve the perfor-

mance of computing the weights of the neural network, but

they have not been implemented yet. They will be briefly

mentioned in Section VII.

Nevertheless, due to the specific structure of the problem

under consideration, the HIBA_USNE solver has been forked

by the author. In this paper, the fork, called HIBA_TANN [30]

is used. The name stands for HIBA_USNE applied to Training

Artificial Neural Networks. It has been adapted for this specific

applications. All irrelevant tools have been removed from it

(precisely: all but the interval Newton operator and the HC

enforcing procedure).

Also, the following additions and amendments have been

made to it:

• Only variables representing the weights of the network,

and not values propagated by the neurons, get bisected.

• A (primitive) procedure to construct a feasible box (i.e.,

satisfying all constraints) has been implemented.

• Irrelevant examples have been removed, and new ones

have been added.

VI. EXPERIMENTS

A. Environment

All experiments have been performed on the author’s laptop

computer, with AMD Ryzen 5-4600H CPU (6 cores, 12

hardware threads; 3GHz). The machine ran under control of a

64-bit Manjaro GNU/Linux operating system with glibc 2.37-

2 and the Linux kernel 5.15.93-1-MANJARO (with SMP and

PREEMPT options).

The software was written in C++ and compiled using the

GCC compiler (GCC 12.2.1). The parallelization (8 threads)

was done with TBB 2021.5.0-2 [31]. OpenBLAS 0.3.17 [32]

was linked for BLAS operations.

As for the the author’s libraries, the following versions have

been used:

• ADHC 2.2.1,

• survive-CXSC 2.6.1,

• HIBA_TANN 0.9.1, the fork of HIBA_USNE.

B. The test data set

The experiments have been performed using one of the

classical datasets used to test ML tools: the Iris dataset [33].

This popular dataset contains descriptions of 150 individuals

of some Iris plants, belonging to three species: Iris-setosa,

Iris-versicolor, and Iris-virginica. Each of the individuals is de-

scribed by four numerical attributes: sepal length, sepal width,

petal length, and petal width – all of them in centimeters.

Usually, this dataset is used for verifying classification

tools; in our experiments, we shall attempt to train an AE

to reproduce the attribute values. Adhesion to a specific class

will be ignored.

C. Uncertainty

The Iris dataset in its original form contains no uncertainty.

In the experiments, the author has induced it by adding to all

attributes a random noise. It had a normal distribution with the

mean-value zero, and a few values of the standard deviation

σ.

Two versions of the uncertainty representation have been

considered:

• Probabilistic uncertainty: the random

values are generated, using the C++11

std::normal_distribution class. The size

of the dataset is increased four times, to have four

BARTŁOMIEJ JACEK KUBICA: DEVELOPING AN INTERVAL METHOD FOR TRAINING DENOISING AUTOENCODERS BY BOUNDING THE NOISE 177

instances of each individual, with various noise values

added to its attributes.

• Interval uncertainty: the noise value is bounded by the

interval [−3σ,+3σ].

The first version results in significant increasing of the size

of the problem under consideration. Instead of 150× 4 = 600
(150 individuals times 4 attributes), we now have 150×4×4 =
2400 inequality constraints plus the related equations.

The second version does not require increasing the problem

dimension. Thanks to the virtues of the interval calculus, all

possible values are bound by a single interval.

Remark 6.1: It is worth noting that formally, the interval

[−3σ,+3σ] does not bound the whole support set of the nor-

mal distribution N(0, σ). Indeed, theoretically, this support is

the whole set R. Nevertheless, virtually all practical generators

of the normally distributed points generate the points from this

range, only.

D. The structure of the neural network

The AE we are training in the presented experiments has

the structure precisely described by Fig. 1: there is a single

hidden layer, and the numbers of neurons in the input, hidden,

and output layers are: 4, 2, 4, respectively.

Each layer is dense, i.e., each neuron of the hidden layer is

connected to all neurons of both the input and output layers.

E. Numerical results

We consider the following versions of the problem:

• The ReLU activation function for the neurons, and the

noise with σ = 1.0.

• The ReLU activation function, and the noise with σ =
0.1.

• The sigmoid activation function, and the noise with σ =
1.0.

• The sigmoid activation function, and the noise with σ =
0.1.

All four problems are solved by two versions of the program

– using the interval or probabilistic uncertainty description.

The following notation is used in all of the tables:

• eq.evals, grad.eq.evals – numbers of equations evalu-

ations, and their functions’ gradients (in the interval

algorithmic differentiation arithmetic),

• ineq.evals, grad.ineq.evals – numbers of inequalities eval-

uations, and their functions’ gradients (in the interval

algorithmic differentiation arithmetic),

• bisecs – the number of boxes bisections,

• HC evals – numbers of times hull-consistency has been

enforced on a box,

• pos.boxes, verif.boxes – number of elements in the

computed lists of boxes containing possible and verified

solutions,

• Leb.pos., Leb.verif. – total Lebesgue measures of both

sets,

• time – computation time in seconds.

F. Analysis of the results

For the sigmoid function, it is not possible to obtain the

result satisfying all constraints. Both versions of the program

are able to determine it immediately (without any bisections,

in a single HC enforcing step!). And it is worth noting that a

non-interval algorithm would not be able to tell it for sure –

even after a longer search.

For the ReLU function, the version bounding all uncertainty

with a single interval, finds a solution quickly, yet it is not able

to verify it. The version using a probabilistic representation

of the uncertainty was not able to solve the problem in a

reasonable time. This fact was surprising to the author – even

provided the severely increased number of constraints.

Further studies should improve this version of the algorithm,

as well.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes an attempt to use interval-based

constraint-satisfaction algorithms for training denoising au-

toencoders. The results are interesting, yet only partially

successful.

Even for the relatively simple and small problem, considered

in the paper, only one version of the algorithm was able to

deliver the solution in a reasonable time, and the solution has

not been verified with certainty.

Still the results show several important prospects of the

proposed approach, in particular the possibility of determining

the non-existence of the AE with the given structure that would

represent the given data with the assumed precision.

There are several tools that can be used to enhance the

considered algorithms. In particular:

• Zonotopes [34] or the Taylor arithmetic [7] could be used

to reduce the dependency problem in interval formulae.

• Also, they can be used to represent the covariance matrix

of the noise; in the current implementation all attributes

are assumed to have independent perturbances.

• A more sophisticated procedure for constructing feasi-

ble boxes should be delivered; in particular, it could

use Kaucher arithmetic and related theorems, proven by

Shary [23], [35].

• For the probabilistic representation, it might be worth-

while to consider only a random subset of the constraints.

It is a technique analogous to using the stochastic gradient

in optimization problems.

• Finally, processing various equations and inequalities can

be parallelized. In the current version of the solver,

processing different boxes is done in parallel, but the HC4

algorithm is serial. Cf. the discussion in Sect. 9 of [24].

Also, a similar study is planned for a CAE.

REFERENCES

[1] S. P. Adam, D. A. Karras, G. D. Magoulas, and M. N. Vrahatis, “Solving
the linear interval tolerance problem for weight initialization of neural
networks,” Neural Networks, vol. 54, pp. 17–37, 2014.

[2] S. Huang, Z. Ma, S. Yu, and Y. Han, “New discrete-time zeroing neural
network for solving time-variant underdetermined nonlinear systems
under bound constraint,” Neurocomputing, vol. 487, pp. 214–227, 2022.

178 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE I
COMPUTATIONAL RESULTS FOR INTERVAL UNCERTAINTY)

ReLU, σ = 1 ReLU, σ = 0.1 sigmoid, σ = 1 sigmoid, σ = 0.1

eq. evals 0 0 0 0
grad.eq.evals 300 300 300 300
ineq. evals 325,283 2,006,727 0 0
grad.ineq.evals 0 0 0 0
bisections 268 1,731 0 0
HC evals 340 3,194 0 0
pos. boxes 1 1 0 0
verif. boxes 0 0 0 0
Leb. pos. 3e-249 3e-249 0.0 0.0
Leb. verif. 0.0 0.0 0.0 0.0
time (sec.) 1 3 <1 <1

TABLE II
COMPUTATIONAL RESULTS FOR PROBABILISTIC UNCERTAINTY)

ReLU, σ = 1 ReLU, σ = 0.1 sigmoid, σ = 1 sigmoid, σ = 0.1

eq. evals n/a n/a 0 0
grad.eq.evals n/a n/a 300 300
ineq. evals n/a n/a 0 0
grad.ineq.evals n/a n/a 0 0
bisections n/a n/a 0 0
HC evals n/a n/a 0 0
pos. boxes n/a n/a 0 0
verif. boxes n/a n/a 0 0
Leb. pos. n/a n/a 0.0 0.0
Leb. verif. n/a n/a 0.0 0.0
time (sec.) >3600 >3600 <1 <1

[3] M. Beheshti, A. Berrached, A. de Korvin, C. Hu, and O. Sirisaengtaksin,
“On interval weighted three-layer neural networks,” in Simulation Sym-

posium, 1998. Proceedings. 31st Annual. IEEE, 1998, pp. 188–194.

[4] B. J. Kubica, P. Hoser, and A. Wiliński, “Interval methods for seeking
fixed points of recurrent neural networks,” in International Conference

on Computational Science. Springer, 2020. doi: 10.1007/978-3-030-
50420-5_30 pp. 414–423.

[5] A. Rauh and E. Auer, “Interval extension of neural network models for
the electrochemical behavior of high-temperature fuel cells,” Frontiers

in Control Engineering, vol. 3, 2022. doi: 10.3389/fcteg.2022.785123

[6] P. V. Saraev, “Numerical methods of interval analysis in learning neural
network,” Automation and Remote Control, vol. 73, no. 11, pp. 1865–
1876, 2012.

[7] E. de Weerdt, Q. Chu, and J. Mulder, “Neural network output optimiza-
tion using interval analysis,” IEEE Transactions on Neural Networks,
vol. 20, no. 4, pp. 638–653, 2009.

[8] L. V. Utkin, A. V. Podolskaja, and V. S. Zaborovsky, “A robust interval
autoencoder,” in 2017 International Conference on Control, Artificial

Intelligence, Robotics & Optimization (ICCAIRO). IEEE, 2017, pp.
115–120.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[10] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, tools, and techniques to build intelligent systems.
O’Reilly Media, 2019.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Institute for Cognitive Science,
University of California, San Diego, Tech. Rep. 8506, 1985.

[12] ——, “Learning representations by back-propagating errors,” Nature,
vol. 323, no. 6088, pp. 533–536, 1986.

[13] G. E. Hinton, “Connectionist learning procedures,” in Machine learning,
1990, pp. 555–610.

[14] O. Kosheleva and V. Kreinovich, “Why deep learning methods use KL
divergence instead of least squares: A possible pedagogical explanation,”
University of Texas at El Paso, Tech. Rep. UTEP-CS-17-95, 2017.

[15] X. Li, S. Feng, N. Hou, R. Wang, H. Li, M. ZGao, and S. Li, “Surface
microseismic data denoising based on sparse autoencoder and Kalman
filter,” Systems Science & Control Engineering, vol. 10, no. 1, pp. 616–
628, 2022.

[16] M. Chen, K. Weinberger, F. Sha, and YoshuaBengio, “Marginalized
denoising auto-encoders for nonlinear representations,” in International

conference on machine learning. PMLR, 2014, pp. 1476–1484.

[17] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[18] E. Hansen and W. Walster, Global Optimization Using Interval Analysis.
Marcel Dekker, New York, 2004.

[19] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis.
Springer, London, 2001.

[20] R. B. Kearfott, Rigorous Global Search: Continuous Problems. Kluwer,
Dordrecht, 1996.

[21] U. Kulisch, Computer Arithmetic and Validity – Theory, Implementation

and Applications. De Gruyter, Berlin, New York, 2008.

[22] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval

Analysis. SIAM, Philadelphia, 2009.

[23] S. P. Shary, Finite-dimensional Interval Analysis. Institute of Compu-
tational Technologies, Sibirian Branch of Russian Academy of Science,
Novosibirsk, 2013.

[24] B. J. Kubica, Interval methods for solving nonlinear constraint satisfac-

tion, optimization and similar problems: From inequalities systems to

game solutions, ser. Studies in Computational Intelligence. Springer,
2019, vol. 805.

[25] ——, “Interval methods for solving underdetermined nonlinear equa-
tions systems,” Reliable Computing, vol. 15, pp. 207–217, 2011, pro-
ceedings of SCAN 2008.

[26] ——, “Presentation of a highly tuned multithreaded interval solver for
underdetermined and well-determined nonlinear systems,” Numerical

Algorithms, vol. 70, no. 4, pp. 929–963, 2015. doi: 10.1007/s11075-
015-9980-y

[27] ——, “Parallelization of a bound-consistency enforcing procedure
and its application in solving nonlinear systems,” Journal of Par-

allel and Distributed Computing, vol. 107, pp. 57–66, 2017. doi:
10.1016/j.jpdc.2017.03.009

[28] ——, “Role of hull-consistency in the HIBA_USNE multithreaded
solver for nonlinear systems,” Lecture Notes in Computer Science,
vol. 10778, pp. 381–390, 2018. doi: 10.1007/978-3-319-78054-2_36
Proceedings of PPAM 2017.

[29] “HIBA_USNE, C++ library,” https://gitlab.com/bkubica/hiba_usne,
2023.

BARTŁOMIEJ JACEK KUBICA: DEVELOPING AN INTERVAL METHOD FOR TRAINING DENOISING AUTOENCODERS BY BOUNDING THE NOISE 179

[30] “HIBA_TANN, C++ library,” https://gitlab.com/bkubica/hiba_tann,
2023.

[31] “Intel TBB,” https://github.com/oneapi-src/oneTBB, 2023.

[32] “OpenBLAS library,” https://www.openblas.net, 2023.

[33] “Iris Species dataset,” https://www.kaggle.com/datasets/uciml/iris?
resource=download, 2023.

[34] B. J. Kubica, “Preliminary experiments with an interval Model-
Predictive-Control solver,” Lecture Notes in Computer Science, vol.

9574, pp. 464–473, 2016, PPAM 2015 Proceedings.
[35] S. P. Shary, “Algebraic approach to the interval linear static identi-

fication, tolerance, and control problems, or one more application of
Kaucher arithmetic,” Reliable Computing, vol. 2, no. 1, pp. 3–33, 1996.

180 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

