
Abstract— Business process model and notation (BPMN) is a

way  of  describing  business  processes  using  convenient

diagrams.  In  the  last  decade,  it  became  a  de-facto  industry

standard,  widely  used  by  software  architects  and  business

analysts  to  describe  business  requirements  and  the  overall

structure  of  a  designed  information  system.  Ensuring  that

diagrams  model  their  intended  behavior  is  of  utmost

importance  for  notation  users.  This  article  deals  with  the

definition of BPMN through the conversion to the Integrated

Model  of  Distributed  Systems  (IMDS)  and  automated

verification of BPMN diagrams. The translation of a subset of

BPMN preserves information about the processes in the formal

model.  This  allows  finding  partial  deadlocks  and  checking

partial  termination  (concerning  a  subset  of  processes),

verification in terms of BPMN processes, and mapping found

errors  onto  source  BPMN  definition.  Moreover,  IMDS  is

tailored to model distributed systems, which is the very nature

of  business  processes.  A  tool  for  automated  translation  of

BPMN  diagrams  to  IMDS,  automated  verification,  and

visualization of results is developed.

I. INTRODUCTION

N EXAMPLE of business processes in everyday life is

ordering  a  product  in  an  online  shop.  Appropriate

steps of such a business process include several steps, like

filling up the online form (ordering the product), preparation

of  money  transfer  form,  payment,  shipping  the  order,

delivery and final confirmation.

A

Business  processes  involve  several  steps  and  should

preserve  logical  relationships,  be  efficient,  reliable,  and

coordinate work between stakeholders.  Business processes

have theoretical foundations in workflow nets [1], a class of

Petri nets [2] used to model business behavior and formally

analyzed mathematically.

Business Process Model and Notation (BPMN  [3]), is a

graphical framework used to model business processes with

around 100 symbols representing various aspects of process

execution,  communication,  and  dataflow.  It  has  found

commercial  use  with  numerous  supporting  tools.  Proper

modeling  is  important  to  save  time  and  money  during

implementation  and  maintenance.  The  verification  using

model checking and temporal logic [4] ensures that a BPMN

diagram follows its intended behavior.

BPMN's rich syntax presents challenges in formalizing its

semantics  [5],  making it  difficult  to verify properties of a

given model.  This  article  presents  a  method for  verifying

BPMN diagrams using the Integrated Model of Distributed

Systems (IMDS  [6]),  which is  a  formalism for describing

and verifying distributed computational  systems.  IMDS is

capable of detecting partial deadlocks, which involve only a

subset of processes. The proposed method maps BPMN into

IMDS, giving the diagrams formal semantics, and allowing

for partial (or total) deadlocks detection. The Dedan tool [7]

is  used  to  automatically  detect  deadlocks  and  check  the

termination of the entire model system or set of processes.

The contributions of this article are:

1. Normalization of BPMN Process and Collaboration dia-

grams to an intermediate representation. It provides ex-

plicit semantics for all elements and helps to avoid ambi-

guity in interpretation.

2. Translation rules of BPMN to IMDS. All implemented 

BPMN elements have been reduced to 9 constructions 

for which implementation in IMDS was given. These 

constructs can be thought of as an "intermediate lan-

guage" defining the semantics of BPMN elements 

through their corresponding IMDS structures.

3. Verification in IMDS for the location of deadlocks (total 

and partial) or checking the termination (total and par-

tial). Checking of partial properties, not present in other 

tools, allows the designer to find errors in diagrams with 

their local cooperation, and even individual diagrams. 

Moreover, our verification tool Dedan uses a fair verifi-

cation algorithm that prevents discovering false dead-

locks [8].

4. Mapping verification traces back to BPMN specification 

to observe errors in the original specification rather than 

in the verification model. The verification methods de-

scribed in the literature give the result of the check in a 

form specific to them, leaving the mapping of the result-

ing trace on the source BPMN diagram for a human. It is 

possible because the semantics of BPMN and its IMDS 

translation is the same.
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5. Animation of counterexamples/witnesses traces on 
BPMN diagrams to observe the behavior of model 
components leading to a deadlock or successful 
termination/lack of termination. 

There are many publications about verifying BPMN using 
different kinds of formalisms. However, few present a 
working solution that can be used to verify real-life use 
cases of BPMN diagrams in an automated way and view the 
verification results on the source BPMN diagram. However, 
the most important is automatic checking of partial 
deadlocks, which is rare in BPMN verification. A partial 
deadlock can occur even in a single process or in two 
communicating processes, while other processes perform 
their work. 

II. RELATED WORK 

Multiple techniques of BPMN formalization have been 
proposed. A common way of doing it is to map BPMN into 
Petri nets. Dijkman et al. [9] propose a mapping into classic 
Petri nets. It deals with a concise subset of BPMN, 
containing BPMN elements with local semantics, including 
Pools, Sub-processes, Exclusive Gateways, Parallel 
Gateways, Event-Based Gateways, Tasks, Events, and 
exception handling, whereas Tasks with only a single 
outgoing or incoming Message Flow are considered. There is 
also presented a tool to transform BPMN diagrams into a 
Petri Net Markup Language specification [10] that Petri net 
verifier can further process. Although the article deals with 
translation only of BPMN 1.x diagrams, it gives a general 
idea of BPMN 2.0.x translation. 

Rachdi [11] proposes mapping into Time Petri Nets 
(TPN). The considered subset is the same as in [9], but the 
mapping introduces time constraints on executing BPMN 
elements. The authors propose an algorithm for the 
reachability analysis of the resulting TPN but do not provide 
an automatic tool. Other approaches to model time in BPMN 
are described in [12]. 

Authors of [13] propose mapping BPMN into Colored 
Petri Nets (CPN). Additionally, they introduce a method to 
divide a given BPMN model into partitions and verify them 
hierarchically, which reduces the complexity of the resulting 
CPN model. Unfortunately, the method works only for 
BPMN model that is well-defined, that is, only for a 
relatively small subset of BPMN, which limits its 
expressiveness. Additionally, the authors have implemented 
a tool that automatically translates BPMN diagrams into the 
corresponding CPN. 

Li and Die [14] propose another method of mapping 
BPMN into classic Petri Nets. The method is rather poorly 
described and can be applied to only a small subset of 
BPMN, but it introduces the concept of preprocessing of 
BPMN diagrams. A similar concept, called normalization, is 
proposed in this article. Other attempts to formalize BPMN 
include for example transformation of BPMN into Pi-
Calculus [15], PROMELA [16], COWS [17], Alvis [18] and 

YAWL [19] with the formalization through Graph 
Transformation Systems [20]. 

Automated BPMN diagrams verification is conducted in 
the BProVe program [21][22]. It verifies the diagrams in 
terms of safeness, proper termination, dead activities, and 
other properties. Its underlying logic is based on translating 
BPMN into MAUDE – a re-writing logic implementation. 
Another automatic tool VBPMN [23], uses a translation of 
BPMN into LOTOS NT process algebra formal notation and 
verification using the CDAP verifier. Its authors also provide 
a set of benchmarks [24] that are used during tests of the 
proposed automatic tool. Work [25] proposes verification 
using process automata that can be compared to our IMDS 
graphical view [26]; however, this technique concerns 
checking a single BPMN pool. In [20], the Bogor LTL 
checker is used to verify the workflows. As in other 
approaches, only total deadlocks are caught automatically; 
partial deadlocks require the specification of temporal 
formulas. 

Some verification techniques concern only a limited set of 
BPMN elements, for example, in [25], communication 
between pools and boundary links are not considered. 

Modeling in rules and processes is proposed in [27], in a 
spreadsheet in [28], Free-Choice Nets [29],  Function-
Behaviour-Structure Diagram [30], and Linked Data [31], 
but without a verification. 

The detailed comparison of verification techniques and 
subsets of BPMN elements served in individual methods 
cannot be presented due to size limitation of the article. 
Some overviews of the verification tools and approaches can 
be found in [32], [33]. 

III. IMDS AND BPMN 

A.  Overview of IMDS 

IMDS formalism is addressed to distributed systems 
modeling. Its main idea is to show interactions between the 
two basic concepts: servers and agents. Servers S={s1,…,sn} 
are distributed computing nodes offering some services. 
Agents A={a1,…,ak} are distributed computations modeled 
as sequences of messages invoking servers’ services. A 
system configuration T is a set of current servers’ 
states=(server, value) – one state per server – and 
messages=(agent, server, service) of all agents – one 
message per agent. An interaction between servers and 
agents takes the form of actions in set F. Action is the 
execution of a service on a server by an agent message. The 
action transforms one configuration into another one, in 
which the server state and the agent message are replaced by 
new ones: ((agent message, server state), (next agent 

message, next server state)). There are also agent-
terminating actions that do not produce a new. The system 
starts with an initial configuration T0 containing initial states 
of all servers Minit and starting messages of all agents Rinit. 
The formal definition of IMDS can be found in [6]. For an 
IMDS system we will use the notation (S, A, Minit, Rinit, F). 
IMDS semantics is defined by a Labeled Transition System 
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(LTS) where the nodes represent system configurations, and 
the arcs represent IMDS actions. The LTS root is the initial 
configuration. 

B. Business Process Model and Notation (BPMN) 

The BPMN standard includes four diagram types: 
Process, Collaboration, Choreography, and Conversation [3]. 
This article focuses on verifying Process and Collaboration 
diagrams, which describe the control. The elements used are 
Pools, Swimlines, Flow Objects, Data Objects, Connecting 
Objects, and Artifacts. Data Objects are not considered, 
because they do not have any semantic meaning when 
verifying the behavior [5]. BPMN lacks a formal definition 
framework, necessitating the need for a formal verification 
method. 

C. BPMN Process Diagram syntax 

BPMN Process Diagram is a graph PD=(𝑁,𝐹), where N 
are nodes: Activities A, Gateways G (Exclusive GX and 
Parallel GP), Events E (Start Es, End Ee and Interrupting 

Boundary Intermediate Ei). F are Flows: Sequence Fs, 
Message Fm and Boundary Links Fb. They are 𝐹⊆𝑁×𝑁, 𝐹𝑠⊆𝑁×𝑁, 𝐹𝑚 ⊆𝐴×𝐴, 𝐹𝑏⊆𝐴×𝐸i. 

In the proposed syntax, nodes correspond to Flow 

Objects. They play the role of building blocks of BPMN 
diagrams. Fig. 1 shows all major subtypes of Flow 

Object that are in the scope of this article and their graphical 
notation. 

Fig. 1. The subset of BPMN elements formalized in this article: a) 

Exclusive Gateway, b) Parallel Gateway, c) Start Event, d) End Event, e) 

Activity f) Activity with attached Interrupting Boundary Intermediate Event 

F is a non-symmetrical relation which means that for a 
given element f=(n1,n2)F, there is a directed connection 
from n1 to n2, source(f)=n1 and target(f)=n2. In addition to 
Sequence Flows and Message Flows, which are explicitly 
defined in the BPMN specification, we allow Boundary 

Links. Additionally, Sequence Flows, Message Flows and 
Boundary Links are subject to the following syntactic rules: 
Message Flows are between different Pools, Sequence Flows 
are inside a Pool, Boundary Links connect an Activity to an 
Interrupting Boundary Intermediate Event. We will also use 
the following notation: in are incoming flows, out – 
outgoing, seq concerns Sequence Flows and mes concerns 
Message Flows. For a given element E we have in(E), 
out(E), inseq(E), outseq(E), ismes(E), outmes(E).  

Each maximal connected component of the underlying 
undirected graph of P=(N,FsFb) is called a BPMN Pool (an 
element for grouping nodes). Every node in N must be 
contained in some Pool. Additionally, we intentionally omit 
BPMN Swimlanes as the authors of the notation left its 
meaning to the modeler, which is ambiguous [5].  

There are additional syntactical constraints that the graph 
(N,F) must fulfil: Sequence Flows cannot have the same 
node as source and target, Start Events must not have 
incoming Sequence Flows, End Events must not have 
outgoing Sequence Flows, and Interrupting Boundary 

Intermediate Events must have exactly one incoming flow: a 
Boundary Link.  

D. BPMN Process Diagram semantics 

The proposed BPMN semantics is based on the labeled 
transition system, called state space. For BPMN nodes we 
use the term  internal state to distinguish it from IMDS 
server state. 

While the general structure of a diagram – its nodes and 
flows – constitutes the static characteristics of a diagram, the 
concept of tokens and their interactions with nodes is 
introduced to describe the semantics of BPMN [3]. In 
contrast to [3], we model BPMN messages using tokens, 
which simplifies the semantics of Message Flows.  

A marking is a pair S = (Dflows, Dnodes), where: Dflows is a 
distribution of tokens on flows of the given diagram, and 
Dnodes is a distribution of symbols {neutral, activated, 1, 2, 

…} on the nodes of the given diagram. The symbol of the 
given node N in Dnodes is the internal state of N. In the Initial 
Marking, the Start Events are in the activated state, all other 
nodes are in neutral, and all Dflows have 0 tokens. The End 

Events play the role of sinks for tokens. 

The lifecycle of a BPMN element, is just an automaton: 
the loop of transitions between the states neutral, activated, 

1, 2,…, and back to neutral. If there exists a Boundary Link, 
then a transition from every state to neutral is triggered by 
an Interrupting Boundary Intermediate Event.  

In order to formalize BPMN execution semantics in a 
concise way, the authors propose to split the dynamics of a 
BPMN element into 3 phases: activation, execution pattern 
and completion. Activation and completion are atomic 
transitions fired at the beginning and at the ending of BPMN 
element execution, respectively. Execution pattern in turn is 
a sub-automaton which simulates the stateful execution 
semantics of a given BPMN element. 

Activation can be fired only if the required number of 
tokens were put on the incoming Sequence Flows or 
Boundary Links of a given BPMN element, and the node has 
been the neutral state. During activation of the BPMN 
element, two things happen atomically: the number of tokens 
from its incoming flows that triggered the activation is 
consumed (i.e. the tokens disappear) and the element’s 
changes its state to activated.  

Activation it is followed by the execution pattern which 
simulates arbitrary stateful interactions that the BPMN 
element may be subject to. Execution pattern is required to 
mark its ending with a completion transition to the neutral 
state of the BPMN element. This article focuses primary on 
BPMN elements that follow an execution pattern involving: 
empty automata, handling of Message Flows in Activities 

(i.e. inter-process communication) and handling of 
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Boundary Events in Activities (i.e. exception handling) 
which will be discussed later in this subsection. 

Completion finalizes the execution of a BPMN element. 
Analogously to activation, the following two things happen 
atomically at the same time during it: a specified number of 
tokens is emitted along a subset of its outgoing Sequence 
Flows and the element changes its state back to neutral. 

1. Activation patterns 

We interpret the behavior of BPMN diagram as a token 
game: the tokens on arrows incoming to an element 
represent preconditions, and the tokens on arrows outgoing 
from an element represent postconditions. Each BPMN 
element follows either of the two activation patterns: XOR 
or AND. If a BPMN element follows the XOR activation 

pattern, a token on any of its incoming Sequence 

Flows or Boundary Links will enable activation of the 
element. In case of the AND activation pattern, a token will 
be put on each of its incoming Sequence Flows to enable its 
activation. If the number of tokens on any incoming 
Sequence Flow exceeds the number of tokens required for its 
activation, only the required number of tokens is consumed. 

2. Execution patterns 

Empty execution pattern. This pattern represents the 
trivial case when the element does not involve a complex 
stateful synchronization logic. That includes elements such 
as Parallel and Exclusive Gateways (control flow elements) 
as well as normalized Activities that do not have incident 
Message Flows or incident Interrupting Boundary 

Intermediate Events. 
Handling of Message Flows. We define handling of 

Message Flows of a given BPMN element E as sequential 
generation of tokens on the outgoing Message Flows, and 
consumption of tokens from the incoming Message Flows 
incident to E, provided that the element was activated. The 
Message Flows are processed sequentially, in a left-to-right 
and then upper-to-lower order implied by graphical 
representation of the BPMN diagram. If the given incoming 
Message Flow does not contain a token, the message 
exchange will be blocked until such a token appears on it. 
Each numeric internal state (1, 2, …) denotes how many 
Message Flows have been processed by the Activity. 

Handling of Boundary Events (Exception handling). By 

exception handling, we mean the ability of BPMN Activities 
with Boundary Events to change their state to neutral at any 
point of their execution and generate a token on their 
incident Boundary Link. This definition effectively treats 
Boundary Events as interrupting exceptions.  

3. Completion patterns 

Analogously to nodes activation, each BPMN element 
follows either of the two completion patterns: XOR and 
AND. If a BPMN element follows the XOR completion 

pattern, a token will be generated along exactly one arbitrary 
outgoing Sequence Flows. If the BPMN element follows the 
AND activation pattern, a token will be generated on each of 
its outgoing Sequence Flows. 

4. Final remarks on execution semantics 

The activation and completion patterns for individual 
BPMN elements are: Parallel Gateway (AND, AND), 
Exclusive Gateway (XOR, XOR), Activity (XOR, AND), 
Event (XOR, AND).  

Additionally, we assume throughout this article that 
BPMN uses interleaving semantics. It means that if many 
transformations are enabled in the diagram, one of them is 
executed, chosen in a non-deterministic manner. Choosing 
other semantics is also possible, but interleaving matches the 
semantics of IMDS used for verification. As shown in [34], 
every coincidence-based system can be transformed into an 
interleaved system. 

The concepts of reachability, initial marking, reachable 
markings, and marking space are introduced to complement 
the semantics of BPMN. 

Consider marking A. Reachable markings are all 
markings that can be reached from A by executing a 
sequence of transformations (nodes activation, message 
exchange, nodes completion, Boundary Event handling). The 
initial marking sets all Start Events to the activated state and 
all others to the neutral. 

The transformation of a BPMN diagram include: 

1. Node completion changes the state of the node to 
neutral and inserts tokens to the output Sequence Flows 
following the appropriate Completion Pattern. 

2. Node activation removes the tokens from input 
Sequence Flows following the appropriate Activation 

Pattern and changes the state of the node from 
activated to the next state according to its Execution 

Pattern. 
3. Message sending changes the state of the node to the 

next state and inserts a token to the Message Flow. 
4. Message receiving removes the token from the Message 

Flow and changes the node state to the next state. 
5. Executing a Boundary Link resets the state of the node 

to neutral and inserts a token into the Sequence Flow 
incident to the link. 

The initial marking of the diagram is implied by its 
structure. Namely, all nodes with no incoming Sequence 

Flows that are not Boundary Events are initially in the 
activated state, i.e., they contain tokens. 

The marking space of the BPMN diagram is the graph G 
= (S0, S, R), where S0 is initial marking (position of tokens 
and internal states of nodes), S is a set of all reachable 
markings and R is a transformation relation moving the 
tokens and changing states of the nodes. 

To sum up, vertices of marking space are markings of the 
given BPMN diagram, that are reachable from its initial 
marking. Initially, the tokens are present in all Sequence 

Flows outgoing from Start Events, as they are activated. 
Every transformation moves activation to the output of the 
Sequence Flows. Some transformations are executed with 
non-deterministic choices, like Exclusive Gateways and 
Activities with Boundary Events. If |inmes(n)|+|outmes(n)|>0, 
the enabled transformations contain sending and receiving 
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messages. Also, Parallel Gateways move the tokens to all 
their outgoing Sequence Flows atomically. All those rules 
are adopted in target IMDS models in a slightly different, 
but equivalent way. The difference lies in breaking atomicity 
with interleaving; see next section. The formal semantics of 
BPMN marking space is given by translation rules to IMDS 
system. 

Apart from the braking atomicity of BPMN, the marking 
space of the BPMN diagram and the LTS of its translation to 
IMDS are the same. So both descriptions share the same 
semantics. 

IV. TRANSLATION OF BPMN INTO IMDS 

A. Normalization 

This is a preliminary step for translation to IMDS. 
Normalization strips the diagram of ambiguity: 

 appending Start Events to all elements e which are not 
Events and for which |inseq(e)|=0, 

 appending End Events to all elements e for which are not 
Events and for which |outseq(e)|=0, 

 refactoring all BPMN elements that are not Exclusive 

Gateways and Parallel Gateways into semantically 

Table I. 

BPMN TO IMDS TRANSLATION RULES 

Group  Element type Graphical symbol Translation rules 

1 𝑃𝑜𝑜𝑙 𝒮 

 
 

set of agents 𝐴𝒮 ⊆ A,  

server pool(𝒮) = (𝒮, 𝑉𝒮, 𝑄𝒮) , 𝑉𝒮 = {ready} 

initial state (pool(𝒮), ready) 

2 Sequence Flow f   service f ∈ 𝑄𝒮 

3 

Message Flow f between 

Activity A in Pool X  

and Activity B in Pool Y,  

 

 

{𝑎𝑔𝑒𝑛𝑡𝑓𝑗  |𝑗 ∈ {1, … , 𝐾|| ⊆  𝐴 

𝑀f = {𝑚𝑓𝑗|(𝑎𝑔𝑒𝑛𝑡𝑓𝑗 , 𝑓)  ∧ 𝑗 ∈ {1, … , 𝐾|| ⊆ 𝑀𝑖𝑛𝑖𝑡 

service f ∈ 𝑄𝑎𝑛𝑑(𝐴), 
service f ∈ 𝑄𝑎𝑛𝑑(𝐵), 

set agents(f) = 

initial messages for agents in agents(f): 

4 
Start Event ℰ, 

 

agent 𝑎ℰ ∈ agents(𝒮), 

initial message (𝑎ℰ , 𝑝𝑜𝑜𝑙(𝒮), 𝑓) ∈ Minit 

5 

End Event ℰ,  
 

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑓), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| 

action  

→ {−, (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| 

(agent-terminating action) 

6 Nodes with 1 incoming & 

1 outgoing Sequence Flows, 

no incident Message Flows,  

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑓1), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| 

action  

→ {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑓2), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|  

7 
XOR activation /  

XOR execution,  

(nondeterministic choice) 
 

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑖𝑛𝑖), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| → {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑜𝑢𝑡𝑗), 𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)} 𝑖 ∈ {1, … , 𝑛|, 𝑗 ∈ {1, … , 𝑚| 

set of actions: 

8 
Interrupting Boundary 

Intermediate Event ℰ bound to 

Activity 𝒯, 

 
 

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑖𝑛), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| 

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑖𝑛), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| → {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑜𝑢𝑡), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| 

2 actions in 𝑃𝑜𝑜𝑙 (𝒮):  
→ {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), ), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|, 

9a 

AND activation /  

AND execution, 

 Tuple 

 

 ) 𝐴𝑁𝐷𝑠𝑒𝑟𝑣𝑒𝑟, 𝑎𝑛𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠,𝑝𝑜𝑜𝑙𝐴𝑐𝑡𝑖𝑜𝑛𝑠, 𝑎𝑔𝑒𝑛𝑡𝑠, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠* 

= createAND(n, 𝒮, 𝐾) 

9b 

Activity with incident Message 

Flows and optional Interrupting 

Boundary Intermediate Event, 
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equivalent constructs in which |outseq(e)|=1 and 

|inseq(e)|=1. 

The first two rules follow directly from the BPMN 
specification of nodes that do not have incoming or 
outgoing Sequence Flows [3]. The third rule guarantees that 
elements that follow mixed XOR activation and AND 
completion semantics are transformed into equivalent groups 
of elements, following either XOR activation and XOR 
completion semantics or AND activation and AND 
completion semantics. 

B. Translation of normalized graph into IMDS 

The model is formally the tuple (S, A, Minit, Rinit, F), The 
actions have the form ((agent, server, service), (server, 

state))/((agent, other server, other service), (server, next 

state)). The proposed BPMN-to-IMDS translation reflects 
the behavior of BPMN elements. Server states mimic the 
BPMN internal states while agent messages are tokens. 
Node activation, execution and completion are all mimicked 
by IMDS actions.  

Elements of a BPMN diagram can be divided into ten 
groups with respect to the way that they are mapped into 
IMDS, as described in Table 1. 

For Group (9) the authors propose a special procedure of 
translation called createAND(n, 𝒫, K), transforming the 
given BPMN element e that is contained within a Pool 𝒮 
into a tuple (ANDserver, andActions, poolActions, agents, 

initialMessages) consisting of: a new ANDserver, its set of 
andActions, a set of poolActions in the corresponding Pool 𝒮, new agents in agents(𝒮), that become agents of the Pool 𝒮, and initialMessages of the new agents. The new server 
mimics the atomic consumption and generation of multiple 
tokens, and to mimic consumption and generation of tokens. 
As proved in [34], coincident actions are equivalent to 
interleaved actions at the cost of adding new states between 
them. 

Because IMDS agents cannot be created dynamically, 
they must be preallocated during the translation of BPMN 
into IMDS. Let us introduce a constant K to define how 
many agents are preallocated on each Message Flow or 
group (9) and used in the function, described in detail in 
[35]. 

C. Limitations of the proposed translation 

The proposed translation method has some major issues 
which should be taken into account. The first is that IMDS 
agents cannot be created dynamically. In order to simulate 
the dynamic creation of tokens, the concept of preallocation 

of agents is introduced. The translation method cannot work 
for diagrams whose execution may generate infinitely many 
tokens (for example in a loop containing a Parallel 

Gateway). We refer to such diagrams as unbounded. The 
translation method proposed in this article can preallocate 
more IMDS agents than are needed. This is because the 
translation parameter, K, can be arbitrarily large. If K is 
allowed to be infinite, then the resulting IMDS system 
would not be static.  

If the translation method is parametrized using K = 1, 
then only a single agent will be created for the Sequence 

Flow f. First execution of the Parallel Gateway G is 
correctly simulated by the translated IMDS model. The 
problem arises when the gateway is executed for the second 
time. In this case, there is no agent whose message can 
mimic the behavior of the token generated for the second 
time on the Sequence Flow f. Using parametrization K=2 

solves the problem, because there is a second preallocated 
agent, whose messages simulate the second execution. Thus, 
K has to be chosen carefully. It stems from the nature of 
IMDS. The choice of K value belong to the designer, it 
depends on how many token can come to a node “splitting” 
the behavior. 

In the future, we plan to extend the plan to enrich IMDS 
to cover dynamic process creation, which will substitute 
agent preallocation. 

The second major problem with the proposed translation 
method concerns BPMN elements with non-local semantics, 
like Inclusive Gateways. They were excluded from the 
proposed syntax, because the authors could not propose 
correct execution semantics for such elements. Thus, they 
are also not considered in the translation method. We don't 
plan to support this feature as non-local behavior is 
incompatible with distributed system. 

V. EXAMPLES 

A.  AND activation and AND execution pattern 

Here we use the graphical view of IMDS [26]. The 
example in Fig. 2 contains a Pool P, Start Event E1, two End 

Events E2 and E3, Parallel Gateway G, and three Sequence 

Flows: s1, s2, s3. Those flows names are included in both 
Pool server and AND server definitions. We add the suffix P 

to Pool server services and G to AND server services, to 
differentiate between the two servers' services. Red dashed 
arrows show the transfers of agents between the servers, the 
arrows point to the states expected by the agents to perform 
their next actions. 

Let K = 2 be the parametrization used in the translation. It 
can be the result of receiving more than one token acquired 
from the subdiagram represented by E1 (for example tokens 
produced by a Parallel Gateway). The translation results in 
the following IMDS system: 
1. (S, A, Minit, Rinit, F) = (  

2. S = {(pool(P), {ready}, {s1P, s2P, s3P}), 

(and(G), {0,1,2}, {s1G, s2G, s3G})},  

3. A = {as1 , as31 , as32 },  

4. Minit = {(pool(P), ready), (and(G), 0)},  

5. Rinit = {(pool(P), as1 , s1P), (and(G), as31 , 
s3G), (and(G), as32 , s3G)},  

6. F = { 

7. ((agents(P),pool(P),s1P),(pool(P),ready))→((age
nts(P),and(G),s1G),(pool(P),ready)),  

8. ((agents(P),and(G),s1G), (and(G),0)) → 
((agents(P),and(G),s2G),(and(G),1)),  

9. ((agents(P),and(G),s3G), (and(G),1)) → 
((agents(P),pool(P),s3P), (and(G),2)),  
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10. ((agents(P),and(G),s2G), (and(G),2)) → 
((agents(P),pool(P),s2P), (and(G),0)),  

11. ((agents(P),pool(P),s2P), (pool(P),ready)) → 
((pool(P),ready)),  

12. ((agents(P),pool(P),s3P), (pool(P),ready)) → 
((pool(P),ready))})  

Individual actions are responsible for: Action 7. starts the 
operation of the AND server by transferring the agent  𝑎𝑠1 
from the Pool server to AND server. Action 8. Transfers the 
incoming agent to the outgoing Sequence Flow 𝑠2. Action 9. 
activates the preallocated agent 𝑎𝑠31 , (or 𝑎𝑠32 ), transfers it to 
the Pool server, and changes the AND server state to 2. 
Action 10. finishes counting the flows, transfers agent 𝑎𝑠1 to 
the Pool server, and changes the state of AND server to 0. 
Actions 11. and 12. terminate both agents as they are 
simulating behavior of the two End Events. 

Note that action 9. can be executed by both agents 𝑎𝑠31  and 𝑎𝑠32 . However, any of those actions changes the state 
of AND server to 2, prohibiting the other agent to execute its 
action. As a result, only one on the agents executes its action 
when the gate G is activated. Actions 7.-10. are created by 
the createAND procedure. 

B. partial deadlock 

Fig. 3 presents an example of a BPMN diagram that 
contains a partial deadlock. It consists of two Pools: X and Y. 
Pool X consists of one Start Event, one  End Event, two 
Exclusive Gateways, and two Activities, one of which is 

connected through a Message Flow to the other Pool. Pool Y 
consists of one Start Event, one End Event, two Parallel 

Gateways connected in a fork manner, and two Activities, 
one of which is connected to an Exclusive Gateway, 

Message Flow, and a Interrupting Boundary Intermediate 

Event of type Timer.  
This BPMN diagram falls into partial deadlock if Pool X 

follows this execution path: f1, f2, f4, f6. In this case, Activity 

R in Pool Y will keep throwing timeout exceptions because 
the Message Flow M will not be fired. The proposed 
translation of BPMN diagrams into IMDS lets the designer 
keep track of such partial deadlocks using the Dedan tool, 
and backward way to bpmn2imds tool for observing the 
deadlock is source diagram. The agent in Pool X is not 
deadlocked since it terminates. The agent of M is technically 
deadlocked (its starting message will never cause an action), 
but we do not treat such situation as a real deadlock 
(however, the designer can draw some conclusions from this 
fact). One of the agents in Pool Y – ag1 is looping (g4, g5, g4, 
g5, …); it does not deadlock but the question of its 
termination gives false. The question of possible termination 
gives true with the witness of the agent X following f1, f3, f5, 
f6, the “upper” agent Y – ag1 following g1, g2, g4, g6, g8, the 
“lower” agent Y - aP1g3 following g3, g7, and the agent aM 
following Message Flow M. 

Let K = 1 be the parametrization used in the translation. 
The translation results in the following IMDS system; we 
omit the upper index in the services of P and Q Activities; 
we add the X, Y, Q and R, P1 and P2 suffixes to IMDS 
services for readability. 

Let K = 1 be the parametrization used in the translation. 
The translation results in the following IMDS system; we 
omit the upper index in the services of P and Q Activities; 
we add the X, Y, Q and R, P1 and P2 suffixes to IMDS 
services for readability: 
1. (S, A, Minit, Rinit, F) = ( 

2. S = { 

3. (pool(X), {ready}, {f1, f2, f3, f4, f5, f6}), 

4. (pool(Y), {ready}, {g1, g2, g3, g4, g5, g6, g7, 

g8}), 

5. (and(P1), {0, 1, 2}, {g1, g2, g3}), 

6. (and(P2), {0, 1, 2}, {g6, g7, g8}), 

7. (and(R), {0, 1, 2}, {g4, M, g6}), 

8. (and(Q), {0, 1, 2}, {f3, M, f5})}, 

9. A = {af1, ag1, aM, aP1g3}, 

10. Minit = {(pool(X), ready), (pool(Y), ready), 
(and(Q), 0), (and(R), 0), (and(P1), 0), 

(and(P2), 0)}, 

11. Rinit = {(pool(X), af1, f1), (pool(Y), ag1, g1), 
(and(Q), aM, M),(and(P1), aP1g3, g3)}, 

12. F = { 
13. ((agents(X),pool(X),f1), 

(pool(X),ready))→((agents(X),pool(X),f2), 
(pool(X),ready)), 

14. ((agents(X),pool(X),f1), 
(pool(X),ready))→((agents(X),pool(X),f3), 
(pool(X),ready)), 

15. ((agents(X),pool(X),f2), 
(pool(X),ready))→((agents(X),pool(X),f4), 
(pool(X),ready)), 

b) 

a) 

P,ready 

(as1,P,s1P)/(as1,G,s1G) 

  
(as2,P,s2P)/- 

  

(a
1

s3,P,s3P)/- 
  

G,0 

G,1 

G,2 

(as1,G,s1G)/(as1,G,s2G)  

  

(a
1

s3,G,s3G)/(a
1

s3,P,s3P) 
  

(as1,G,s2G)/(as1,P,s2P) 
  

(a
2

s3,G,s3G)/(a
2

s3,P,s3P) 
  

Fig. 2. a) Exclusive Gateway b) its translation to the IMDS automaton 
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16. ((agents(X),pool(X),f3), 
(pool(X),ready))→((agents(X),and(Q),f3), 
(pool(X),ready)), 

17. ((agents(X),pool(X),f4), 
(pool(X),ready))→((agents(X),pool(X),f6), 
(pool(X),ready)), 

18. ((agents(X),pool(X),f6), 
(pool(X),ready))→((pool(X),ready)), 

19. ((agents(X),and(Q),f3), (and(Q),0)) → 
((agents(X),and(Q),f5), (and(Q),1)), 

20. ((agents(M),and(Q),M), (and(Q),1)) → 
((agents(M),and(R),M), (and(Q),2)), 

21. ((agents(X),and(Q),f5), (and(Q),2)) → 
((agents(X),pool(X),f5), (and(Q),0)), 

22. ((agents(Y),pool(Y),g1), 

(pool(Y),ready))→((agents(Y),and(P1),g1), 
(pool(Y),ready)), 

23. ((agents(Y),and(P1),g1), (and(P1),0)) → 
((agents(Y),and(P1),g2), (and(P1),1)), 

24. ((agents(Y),and(P1),g2), (and(P1),1)) → 
((agents(Y),pool(Y),g2), (and(P1),2)), 

25. ((agents(Y),and(P1),g3), (and(P1),2)) → 
((agents(Y),pool(Y),g3), (and(P1),0)), 

26. ((agents(Y),pool(Y),g2), 
(pool(Y),ready))→((agents(Y),pool(Y),g4), 
(pool(Y),ready)), 

27. ((agents(Y),pool(Y),g5), 
(pool(Y),ready))→((agents(Y),pool(Y),g4), 
(pool(Y),ready)), 

28. ((agents(Y),pool(Y),g4), 
(pool(Y),ready))→((agents(Y),and(R),g4), 
(pool(Y),ready)), 

29. ((agents(Y),pool(Y),g3), 
(pool(Y),ready))→((agents(Y),pool(Y),g7), 
(pool(Y),ready)), 

30. ((agents(Y),and(R),g4), (and(Q),0)) → 
((agents(Y),and(R),g6), (and (Q),1)), 

31. ((agents(M),and(R),M), (and(Q),1)) → ((and 
(Q),2)), 

32. ((agents(Y),and(R),g6), (and(Q),2)) → 
((agents(Y),pool(Y),g6), (and (Q),0)), 

33. ((agents(Y),pool(Y),g6), 
(pool(Y),ready))→((agents(Y),and(P2),g6), 
(pool(Y),ready)), 
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Fig. 3. Example BPMN (a) to IMDS (b) translation translation  
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34. ((agents(Y),pool(Y),g7), 
(pool(Y),ready))→((agents(Y),and(P2),g7), 
(pool(Y),ready)), 

35. ((agents(Y),and(P2),g6), (and(P1),0)) → 
((agents(Y),and(P2),g8), (and(P1),1)), 

36. ((agents(Y),and(P2),g7), (and(P1),1)) → 
((and(P1),2)), 

37. ((agents(Y),and(P2),g8), (and(P1),2)) → 
((agents(Y),pool(Y),g8), (and(P1),0)), 

38. ((agents(Y),pool(Y),g8), (pool(Y),ready)) → 
((pool(Y),ready))}) 

Another example of a partial deadlock can concern the 
communication itself, when two Activities try to accept 
messages from each other. We would like to supplement the 
examples with more real-life ones, but text size constraints 
do not allow it.  

VI. CONCLUSION AND FUTURE WORK  

The main goal of this article is to propose a translation of 
Business Process Collaboration and Process Diagrams into 
the IMDS, and verification of BPMN diagrams for 
deadlocks and termination. In order to achieve this, 
normalization of BPMN and translation of Process and 
Collaboration Diagrams into IMDS specifications was 
introduced. We identify partial (and total) deadlocks and 
check distributed termination. In IMDS, such checking is 
possible thanks to the preservation of information about 
component processes in the configuration space, and the 
development of temporal formulas independent of the 
structure of the analyzed system, and thus not requiring the 
designer to know temporal logic [6][7]. Compared to other 
tools, such as [9] and [13], our tool enables the visualization 
of diagrams and animation of their dynamics (not possible in 
[36]). Fig. 4 shows the example of deadlock animation. The 
designer is not limited to automatic verification of 
deadlocks/termination. The model can be automatically 
converted to the Uppaal tool [37], where arbitrary temporal 

questions can be asked, even with real-time constraints. 
However, reverse engineering of highlighting erroneous 
situations is impossible in such cases. Nevertheless, the 
simulation of a counterexample over the source BPMN 
diagram is preserved. 

It should be noted that the complexity of every stage of 
work: conversion BPMNIMDS, partial/total deadlock 
checking [38] and conversion IMDSUppaal are performed 
in linear time to size of a system (number of nodes and 
transitions). The example system of nearly 1 million 
configurations was checked in about an hour.F 

What is rare in BPMN diagrams verification, we 
introduce Boundary Links, in order to formalize Interrupting 

Boundary Intermediate Event handling. The proposed 
semantics is characterized by locality – that is, the semantics 
of each of those elements depends only on other elements to 
which they are directly connected. During translation, the 
given BPMN diagrams are refactored into another 
semantically equivalent diagram to achieve consistency of 
activation and execution semantics.  

One of the limitations of the proposed method is that it 
cannot handle diagrams that are unbounded, because it stems 
from the nature of finite state model checking. Another 
limitation is not considering BPMN elements with non-local 
semantics. Additionally, the need to use preallocated agents 
slows down the process of its analysis. Some elements are 
not covered by our translation, particularly Event-based 

Gateways and Inclusive Gateways. Event-based Gateways as 
they cannot be as easily translated into a model checking 
formalism. They need the creation of a set of agents of a 
purely technical nature to reset the gateway if an 
Interrupting Boundary Intermediate Event is bound to it. 
Inclusive Gateways have non-local semantics 

We support the verification process with automatizing the 
verification process and giving run visualization and 
counterexample simulation properties (screenshots would 
take too much space, they can be found in [35]). 

A possible improvement to the proposed translation 
method is to use preallocated agents for the entire diagram 
rather than for individual elements. This problem could be 
solved generally by introducing dynamic agent creation or 
agent reusability.  

It may seem a controversial way of ordering messages 
sent and received by an Activity in the syntactic order of 
their appearance on the edge of the symbol. Other 
communication semantics can be envisioned. For example, 
first sending all outgoing messages and then waiting for all 
incoming. Alternatively, any order of sending and waiting 
for incoming messages. with the cost of exponential number 
of states in implementing server. 
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