
Abstract— Business process model and notation (BPMN) is a

way of describing business processes using convenient

diagrams. In the last decade, it became a de-facto industry

standard, widely used by software architects and business

analysts to describe business requirements and the overall

structure of a designed information system. Ensuring that

diagrams model their intended behavior is of utmost

importance for notation users. This article deals with the

definition of BPMN through the conversion to the Integrated

Model of Distributed Systems (IMDS) and automated

verification of BPMN diagrams. The translation of a subset of

BPMN preserves information about the processes in the formal

model. This allows finding partial deadlocks and checking

partial termination (concerning a subset of processes),

verification in terms of BPMN processes, and mapping found

errors onto source BPMN definition. Moreover, IMDS is

tailored to model distributed systems, which is the very nature

of business processes. A tool for automated translation of

BPMN diagrams to IMDS, automated verification, and

visualization of results is developed.

I. INTRODUCTION

N EXAMPLE of business processes in everyday life is

ordering a product in an online shop. Appropriate

steps of such a business process include several steps, like

filling up the online form (ordering the product), preparation

of money transfer form, payment, shipping the order,

delivery and final confirmation.

A

Business processes involve several steps and should

preserve logical relationships, be efficient, reliable, and

coordinate work between stakeholders. Business processes

have theoretical foundations in workflow nets [1], a class of

Petri nets [2] used to model business behavior and formally

analyzed mathematically.

Business Process Model and Notation (BPMN [3]), is a

graphical framework used to model business processes with

around 100 symbols representing various aspects of process

execution, communication, and dataflow. It has found

commercial use with numerous supporting tools. Proper

modeling is important to save time and money during

implementation and maintenance. The verification using

model checking and temporal logic [4] ensures that a BPMN

diagram follows its intended behavior.

BPMN's rich syntax presents challenges in formalizing its

semantics [5], making it difficult to verify properties of a

given model. This article presents a method for verifying

BPMN diagrams using the Integrated Model of Distributed

Systems (IMDS [6]), which is a formalism for describing

and verifying distributed computational systems. IMDS is

capable of detecting partial deadlocks, which involve only a

subset of processes. The proposed method maps BPMN into

IMDS, giving the diagrams formal semantics, and allowing

for partial (or total) deadlocks detection. The Dedan tool [7]

is used to automatically detect deadlocks and check the

termination of the entire model system or set of processes.

The contributions of this article are:

1. Normalization of BPMN Process and Collaboration dia-

grams to an intermediate representation. It provides ex-

plicit semantics for all elements and helps to avoid ambi-

guity in interpretation.

2. Translation rules of BPMN to IMDS. All implemented

BPMN elements have been reduced to 9 constructions

for which implementation in IMDS was given. These

constructs can be thought of as an "intermediate lan-

guage" defining the semantics of BPMN elements

through their corresponding IMDS structures.

3. Verification in IMDS for the location of deadlocks (total

and partial) or checking the termination (total and par-

tial). Checking of partial properties, not present in other

tools, allows the designer to find errors in diagrams with

their local cooperation, and even individual diagrams.

Moreover, our verification tool Dedan uses a fair verifi-

cation algorithm that prevents discovering false dead-

locks [8].

4. Mapping verification traces back to BPMN specification

to observe errors in the original specification rather than

in the verification model. The verification methods de-

scribed in the literature give the result of the check in a

form specific to them, leaving the mapping of the result-

ing trace on the source BPMN diagram for a human. It is

possible because the semantics of BPMN and its IMDS

translation is the same.

Formal verification of BPMN diagrams

in Integrated Model of Distributed Systems (IMDS)

Jakub Jałowiec
Institute of Computer Science,

Warsaw University of Technology

Nowowiejska Str. 15/19, 00-665 Warsaw, Poland

Email: kuba.jal@gmail.com

Wiktor B. Daszczuk
Institute of Computer Science,

Warsaw University of Technology

Nowowiejska Str. 15/19, 00-665 Warsaw, Poland

Email: wiktor.daszczuk@pw.edu.pl

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 65–74

DOI: 10.15439/2023F8794

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 65 Thematic track: Information Systems Management

5. Animation of counterexamples/witnesses traces on
BPMN diagrams to observe the behavior of model
components leading to a deadlock or successful
termination/lack of termination.

There are many publications about verifying BPMN using
different kinds of formalisms. However, few present a
working solution that can be used to verify real-life use
cases of BPMN diagrams in an automated way and view the
verification results on the source BPMN diagram. However,
the most important is automatic checking of partial
deadlocks, which is rare in BPMN verification. A partial
deadlock can occur even in a single process or in two
communicating processes, while other processes perform
their work.

II. RELATED WORK

Multiple techniques of BPMN formalization have been
proposed. A common way of doing it is to map BPMN into
Petri nets. Dijkman et al. [9] propose a mapping into classic
Petri nets. It deals with a concise subset of BPMN,
containing BPMN elements with local semantics, including
Pools, Sub-processes, Exclusive Gateways, Parallel
Gateways, Event-Based Gateways, Tasks, Events, and
exception handling, whereas Tasks with only a single
outgoing or incoming Message Flow are considered. There is
also presented a tool to transform BPMN diagrams into a
Petri Net Markup Language specification [10] that Petri net
verifier can further process. Although the article deals with
translation only of BPMN 1.x diagrams, it gives a general
idea of BPMN 2.0.x translation.

Rachdi [11] proposes mapping into Time Petri Nets
(TPN). The considered subset is the same as in [9], but the
mapping introduces time constraints on executing BPMN
elements. The authors propose an algorithm for the
reachability analysis of the resulting TPN but do not provide
an automatic tool. Other approaches to model time in BPMN
are described in [12].

Authors of [13] propose mapping BPMN into Colored
Petri Nets (CPN). Additionally, they introduce a method to
divide a given BPMN model into partitions and verify them
hierarchically, which reduces the complexity of the resulting
CPN model. Unfortunately, the method works only for
BPMN model that is well-defined, that is, only for a
relatively small subset of BPMN, which limits its
expressiveness. Additionally, the authors have implemented
a tool that automatically translates BPMN diagrams into the
corresponding CPN.

Li and Die [14] propose another method of mapping
BPMN into classic Petri Nets. The method is rather poorly
described and can be applied to only a small subset of
BPMN, but it introduces the concept of preprocessing of
BPMN diagrams. A similar concept, called normalization, is
proposed in this article. Other attempts to formalize BPMN
include for example transformation of BPMN into Pi-
Calculus [15], PROMELA [16], COWS [17], Alvis [18] and

YAWL [19] with the formalization through Graph
Transformation Systems [20].

Automated BPMN diagrams verification is conducted in
the BProVe program [21][22]. It verifies the diagrams in
terms of safeness, proper termination, dead activities, and
other properties. Its underlying logic is based on translating
BPMN into MAUDE – a re-writing logic implementation.
Another automatic tool VBPMN [23], uses a translation of
BPMN into LOTOS NT process algebra formal notation and
verification using the CDAP verifier. Its authors also provide
a set of benchmarks [24] that are used during tests of the
proposed automatic tool. Work [25] proposes verification
using process automata that can be compared to our IMDS
graphical view [26]; however, this technique concerns
checking a single BPMN pool. In [20], the Bogor LTL
checker is used to verify the workflows. As in other
approaches, only total deadlocks are caught automatically;
partial deadlocks require the specification of temporal
formulas.

Some verification techniques concern only a limited set of
BPMN elements, for example, in [25], communication
between pools and boundary links are not considered.

Modeling in rules and processes is proposed in [27], in a
spreadsheet in [28], Free-Choice Nets [29], Function-
Behaviour-Structure Diagram [30], and Linked Data [31],
but without a verification.

The detailed comparison of verification techniques and
subsets of BPMN elements served in individual methods
cannot be presented due to size limitation of the article.
Some overviews of the verification tools and approaches can
be found in [32], [33].

III. IMDS AND BPMN

A. Overview of IMDS

IMDS formalism is addressed to distributed systems
modeling. Its main idea is to show interactions between the
two basic concepts: servers and agents. Servers S={s1,…,sn}
are distributed computing nodes offering some services.
Agents A={a1,…,ak} are distributed computations modeled
as sequences of messages invoking servers’ services. A
system configuration T is a set of current servers’
states=(server, value) – one state per server – and
messages=(agent, server, service) of all agents – one
message per agent. An interaction between servers and
agents takes the form of actions in set F. Action is the
execution of a service on a server by an agent message. The
action transforms one configuration into another one, in
which the server state and the agent message are replaced by
new ones: ((agent message, server state), (next agent

message, next server state)). There are also agent-
terminating actions that do not produce a new. The system
starts with an initial configuration T0 containing initial states
of all servers Minit and starting messages of all agents Rinit.
The formal definition of IMDS can be found in [6]. For an
IMDS system we will use the notation (S, A, Minit, Rinit, F).
IMDS semantics is defined by a Labeled Transition System

66 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

(LTS) where the nodes represent system configurations, and
the arcs represent IMDS actions. The LTS root is the initial
configuration.

B. Business Process Model and Notation (BPMN)

The BPMN standard includes four diagram types:
Process, Collaboration, Choreography, and Conversation [3].
This article focuses on verifying Process and Collaboration
diagrams, which describe the control. The elements used are
Pools, Swimlines, Flow Objects, Data Objects, Connecting
Objects, and Artifacts. Data Objects are not considered,
because they do not have any semantic meaning when
verifying the behavior [5]. BPMN lacks a formal definition
framework, necessitating the need for a formal verification
method.

C. BPMN Process Diagram syntax

BPMN Process Diagram is a graph PD=(𝑁,𝐹), where N
are nodes: Activities A, Gateways G (Exclusive GX and
Parallel GP), Events E (Start Es, End Ee and Interrupting

Boundary Intermediate Ei). F are Flows: Sequence Fs,
Message Fm and Boundary Links Fb. They are 𝐹⊆𝑁×𝑁, 𝐹𝑠⊆𝑁×𝑁, 𝐹𝑚 ⊆𝐴×𝐴, 𝐹𝑏⊆𝐴×𝐸i.

In the proposed syntax, nodes correspond to Flow

Objects. They play the role of building blocks of BPMN
diagrams. Fig. 1 shows all major subtypes of Flow

Object that are in the scope of this article and their graphical
notation.

Fig. 1. The subset of BPMN elements formalized in this article: a)

Exclusive Gateway, b) Parallel Gateway, c) Start Event, d) End Event, e)

Activity f) Activity with attached Interrupting Boundary Intermediate Event

F is a non-symmetrical relation which means that for a
given element f=(n1,n2)F, there is a directed connection
from n1 to n2, source(f)=n1 and target(f)=n2. In addition to
Sequence Flows and Message Flows, which are explicitly
defined in the BPMN specification, we allow Boundary

Links. Additionally, Sequence Flows, Message Flows and
Boundary Links are subject to the following syntactic rules:
Message Flows are between different Pools, Sequence Flows
are inside a Pool, Boundary Links connect an Activity to an
Interrupting Boundary Intermediate Event. We will also use
the following notation: in are incoming flows, out –
outgoing, seq concerns Sequence Flows and mes concerns
Message Flows. For a given element E we have in(E),
out(E), inseq(E), outseq(E), ismes(E), outmes(E).

Each maximal connected component of the underlying
undirected graph of P=(N,FsFb) is called a BPMN Pool (an
element for grouping nodes). Every node in N must be
contained in some Pool. Additionally, we intentionally omit
BPMN Swimlanes as the authors of the notation left its
meaning to the modeler, which is ambiguous [5].

There are additional syntactical constraints that the graph
(N,F) must fulfil: Sequence Flows cannot have the same
node as source and target, Start Events must not have
incoming Sequence Flows, End Events must not have
outgoing Sequence Flows, and Interrupting Boundary

Intermediate Events must have exactly one incoming flow: a
Boundary Link.

D. BPMN Process Diagram semantics

The proposed BPMN semantics is based on the labeled
transition system, called state space. For BPMN nodes we
use the term internal state to distinguish it from IMDS
server state.

While the general structure of a diagram – its nodes and
flows – constitutes the static characteristics of a diagram, the
concept of tokens and their interactions with nodes is
introduced to describe the semantics of BPMN [3]. In
contrast to [3], we model BPMN messages using tokens,
which simplifies the semantics of Message Flows.

A marking is a pair S = (Dflows, Dnodes), where: Dflows is a
distribution of tokens on flows of the given diagram, and
Dnodes is a distribution of symbols {neutral, activated, 1, 2,

…} on the nodes of the given diagram. The symbol of the
given node N in Dnodes is the internal state of N. In the Initial
Marking, the Start Events are in the activated state, all other
nodes are in neutral, and all Dflows have 0 tokens. The End

Events play the role of sinks for tokens.

The lifecycle of a BPMN element, is just an automaton:
the loop of transitions between the states neutral, activated,

1, 2,…, and back to neutral. If there exists a Boundary Link,
then a transition from every state to neutral is triggered by
an Interrupting Boundary Intermediate Event.

In order to formalize BPMN execution semantics in a
concise way, the authors propose to split the dynamics of a
BPMN element into 3 phases: activation, execution pattern
and completion. Activation and completion are atomic
transitions fired at the beginning and at the ending of BPMN
element execution, respectively. Execution pattern in turn is
a sub-automaton which simulates the stateful execution
semantics of a given BPMN element.

Activation can be fired only if the required number of
tokens were put on the incoming Sequence Flows or
Boundary Links of a given BPMN element, and the node has
been the neutral state. During activation of the BPMN
element, two things happen atomically: the number of tokens
from its incoming flows that triggered the activation is
consumed (i.e. the tokens disappear) and the element’s
changes its state to activated.

Activation it is followed by the execution pattern which
simulates arbitrary stateful interactions that the BPMN
element may be subject to. Execution pattern is required to
mark its ending with a completion transition to the neutral
state of the BPMN element. This article focuses primary on
BPMN elements that follow an execution pattern involving:
empty automata, handling of Message Flows in Activities

(i.e. inter-process communication) and handling of

WIKTOR DASZCZUK, JAKUB JAŁOWIEC: FORMAL VERIFICATION OF BPMN DIAGRAMS IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS 67

Boundary Events in Activities (i.e. exception handling)
which will be discussed later in this subsection.

Completion finalizes the execution of a BPMN element.
Analogously to activation, the following two things happen
atomically at the same time during it: a specified number of
tokens is emitted along a subset of its outgoing Sequence
Flows and the element changes its state back to neutral.

1. Activation patterns

We interpret the behavior of BPMN diagram as a token
game: the tokens on arrows incoming to an element
represent preconditions, and the tokens on arrows outgoing
from an element represent postconditions. Each BPMN
element follows either of the two activation patterns: XOR
or AND. If a BPMN element follows the XOR activation

pattern, a token on any of its incoming Sequence

Flows or Boundary Links will enable activation of the
element. In case of the AND activation pattern, a token will
be put on each of its incoming Sequence Flows to enable its
activation. If the number of tokens on any incoming
Sequence Flow exceeds the number of tokens required for its
activation, only the required number of tokens is consumed.

2. Execution patterns

Empty execution pattern. This pattern represents the
trivial case when the element does not involve a complex
stateful synchronization logic. That includes elements such
as Parallel and Exclusive Gateways (control flow elements)
as well as normalized Activities that do not have incident
Message Flows or incident Interrupting Boundary

Intermediate Events.
Handling of Message Flows. We define handling of

Message Flows of a given BPMN element E as sequential
generation of tokens on the outgoing Message Flows, and
consumption of tokens from the incoming Message Flows
incident to E, provided that the element was activated. The
Message Flows are processed sequentially, in a left-to-right
and then upper-to-lower order implied by graphical
representation of the BPMN diagram. If the given incoming
Message Flow does not contain a token, the message
exchange will be blocked until such a token appears on it.
Each numeric internal state (1, 2, …) denotes how many
Message Flows have been processed by the Activity.

Handling of Boundary Events (Exception handling). By

exception handling, we mean the ability of BPMN Activities
with Boundary Events to change their state to neutral at any
point of their execution and generate a token on their
incident Boundary Link. This definition effectively treats
Boundary Events as interrupting exceptions.

3. Completion patterns

Analogously to nodes activation, each BPMN element
follows either of the two completion patterns: XOR and
AND. If a BPMN element follows the XOR completion

pattern, a token will be generated along exactly one arbitrary
outgoing Sequence Flows. If the BPMN element follows the
AND activation pattern, a token will be generated on each of
its outgoing Sequence Flows.

4. Final remarks on execution semantics

The activation and completion patterns for individual
BPMN elements are: Parallel Gateway (AND, AND),
Exclusive Gateway (XOR, XOR), Activity (XOR, AND),
Event (XOR, AND).

Additionally, we assume throughout this article that
BPMN uses interleaving semantics. It means that if many
transformations are enabled in the diagram, one of them is
executed, chosen in a non-deterministic manner. Choosing
other semantics is also possible, but interleaving matches the
semantics of IMDS used for verification. As shown in [34],
every coincidence-based system can be transformed into an
interleaved system.

The concepts of reachability, initial marking, reachable
markings, and marking space are introduced to complement
the semantics of BPMN.

Consider marking A. Reachable markings are all
markings that can be reached from A by executing a
sequence of transformations (nodes activation, message
exchange, nodes completion, Boundary Event handling). The
initial marking sets all Start Events to the activated state and
all others to the neutral.

The transformation of a BPMN diagram include:

1. Node completion changes the state of the node to
neutral and inserts tokens to the output Sequence Flows
following the appropriate Completion Pattern.

2. Node activation removes the tokens from input
Sequence Flows following the appropriate Activation

Pattern and changes the state of the node from
activated to the next state according to its Execution

Pattern.
3. Message sending changes the state of the node to the

next state and inserts a token to the Message Flow.
4. Message receiving removes the token from the Message

Flow and changes the node state to the next state.
5. Executing a Boundary Link resets the state of the node

to neutral and inserts a token into the Sequence Flow
incident to the link.

The initial marking of the diagram is implied by its
structure. Namely, all nodes with no incoming Sequence

Flows that are not Boundary Events are initially in the
activated state, i.e., they contain tokens.

The marking space of the BPMN diagram is the graph G
= (S0, S, R), where S0 is initial marking (position of tokens
and internal states of nodes), S is a set of all reachable
markings and R is a transformation relation moving the
tokens and changing states of the nodes.

To sum up, vertices of marking space are markings of the
given BPMN diagram, that are reachable from its initial
marking. Initially, the tokens are present in all Sequence

Flows outgoing from Start Events, as they are activated.
Every transformation moves activation to the output of the
Sequence Flows. Some transformations are executed with
non-deterministic choices, like Exclusive Gateways and
Activities with Boundary Events. If |inmes(n)|+|outmes(n)|>0,
the enabled transformations contain sending and receiving

68 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

messages. Also, Parallel Gateways move the tokens to all
their outgoing Sequence Flows atomically. All those rules
are adopted in target IMDS models in a slightly different,
but equivalent way. The difference lies in breaking atomicity
with interleaving; see next section. The formal semantics of
BPMN marking space is given by translation rules to IMDS
system.

Apart from the braking atomicity of BPMN, the marking
space of the BPMN diagram and the LTS of its translation to
IMDS are the same. So both descriptions share the same
semantics.

IV. TRANSLATION OF BPMN INTO IMDS

A. Normalization

This is a preliminary step for translation to IMDS.
Normalization strips the diagram of ambiguity:

 appending Start Events to all elements e which are not
Events and for which |inseq(e)|=0,

 appending End Events to all elements e for which are not
Events and for which |outseq(e)|=0,

 refactoring all BPMN elements that are not Exclusive

Gateways and Parallel Gateways into semantically

Table I.

BPMN TO IMDS TRANSLATION RULES

Group Element type Graphical symbol Translation rules

1 𝑃𝑜𝑜𝑙 𝒮

set of agents 𝐴𝒮 ⊆ A,

server pool(𝒮) = (𝒮, 𝑉𝒮, 𝑄𝒮) , 𝑉𝒮 = {ready}

initial state (pool(𝒮), ready)

2 Sequence Flow f service f ∈ 𝑄𝒮

3

Message Flow f between

Activity A in Pool X

and Activity B in Pool Y,

{𝑎𝑔𝑒𝑛𝑡𝑓𝑗 |𝑗 ∈ {1, … , 𝐾|| ⊆ 𝐴

𝑀f = {𝑚𝑓𝑗|(𝑎𝑔𝑒𝑛𝑡𝑓𝑗 , 𝑓) ∧ 𝑗 ∈ {1, … , 𝐾|| ⊆ 𝑀𝑖𝑛𝑖𝑡

service f ∈ 𝑄𝑎𝑛𝑑(𝐴),
service f ∈ 𝑄𝑎𝑛𝑑(𝐵),

set agents(f) =

initial messages for agents in agents(f):

4
Start Event ℰ,

agent 𝑎ℰ ∈ agents(𝒮),

initial message (𝑎ℰ , 𝑝𝑜𝑜𝑙(𝒮), 𝑓) ∈ Minit

5

End Event ℰ,

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑓), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|

action

→ {−, (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|

(agent-terminating action)

6 Nodes with 1 incoming &

1 outgoing Sequence Flows,

no incident Message Flows,

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑓1), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|

action

→ {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑓2), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|

7
XOR activation /

XOR execution,

(nondeterministic choice)

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑖𝑛𝑖), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| → {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑜𝑢𝑡𝑗), 𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)} 𝑖 ∈ {1, … , 𝑛|, 𝑗 ∈ {1, … , 𝑚|

set of actions:

8
Interrupting Boundary

Intermediate Event ℰ bound to

Activity 𝒯,

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑖𝑛), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|

{(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑖𝑛), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)| → {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), 𝑜𝑢𝑡), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|

2 actions in 𝑃𝑜𝑜𝑙 (𝒮):
→ {(𝑎𝑔𝑒𝑛𝑡𝑠(𝒮), 𝑝𝑜𝑜𝑙(𝒮), ), (𝑝𝑜𝑜𝑙(𝒮), 𝑟𝑒𝑎𝑑𝑦)|,

9a

AND activation /

AND execution,

 Tuple

) 𝐴𝑁𝐷𝑠𝑒𝑟𝑣𝑒𝑟, 𝑎𝑛𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠,𝑝𝑜𝑜𝑙𝐴𝑐𝑡𝑖𝑜𝑛𝑠, 𝑎𝑔𝑒𝑛𝑡𝑠, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠*

= createAND(n, 𝒮, 𝐾)

9b

Activity with incident Message

Flows and optional Interrupting

Boundary Intermediate Event,

WIKTOR DASZCZUK, JAKUB JAŁOWIEC: FORMAL VERIFICATION OF BPMN DIAGRAMS IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS 69

equivalent constructs in which |outseq(e)|=1 and

|inseq(e)|=1.

The first two rules follow directly from the BPMN
specification of nodes that do not have incoming or
outgoing Sequence Flows [3]. The third rule guarantees that
elements that follow mixed XOR activation and AND
completion semantics are transformed into equivalent groups
of elements, following either XOR activation and XOR
completion semantics or AND activation and AND
completion semantics.

B. Translation of normalized graph into IMDS

The model is formally the tuple (S, A, Minit, Rinit, F), The
actions have the form ((agent, server, service), (server,

state))/((agent, other server, other service), (server, next

state)). The proposed BPMN-to-IMDS translation reflects
the behavior of BPMN elements. Server states mimic the
BPMN internal states while agent messages are tokens.
Node activation, execution and completion are all mimicked
by IMDS actions.

Elements of a BPMN diagram can be divided into ten
groups with respect to the way that they are mapped into
IMDS, as described in Table 1.

For Group (9) the authors propose a special procedure of
translation called createAND(n, 𝒫, K), transforming the
given BPMN element e that is contained within a Pool 𝒮
into a tuple (ANDserver, andActions, poolActions, agents,

initialMessages) consisting of: a new ANDserver, its set of
andActions, a set of poolActions in the corresponding Pool 𝒮, new agents in agents(𝒮), that become agents of the Pool 𝒮, and initialMessages of the new agents. The new server
mimics the atomic consumption and generation of multiple
tokens, and to mimic consumption and generation of tokens.
As proved in [34], coincident actions are equivalent to
interleaved actions at the cost of adding new states between
them.

Because IMDS agents cannot be created dynamically,
they must be preallocated during the translation of BPMN
into IMDS. Let us introduce a constant K to define how
many agents are preallocated on each Message Flow or
group (9) and used in the function, described in detail in
[35].

C. Limitations of the proposed translation

The proposed translation method has some major issues
which should be taken into account. The first is that IMDS
agents cannot be created dynamically. In order to simulate
the dynamic creation of tokens, the concept of preallocation

of agents is introduced. The translation method cannot work
for diagrams whose execution may generate infinitely many
tokens (for example in a loop containing a Parallel

Gateway). We refer to such diagrams as unbounded. The
translation method proposed in this article can preallocate
more IMDS agents than are needed. This is because the
translation parameter, K, can be arbitrarily large. If K is
allowed to be infinite, then the resulting IMDS system
would not be static.

If the translation method is parametrized using K = 1,
then only a single agent will be created for the Sequence

Flow f. First execution of the Parallel Gateway G is
correctly simulated by the translated IMDS model. The
problem arises when the gateway is executed for the second
time. In this case, there is no agent whose message can
mimic the behavior of the token generated for the second
time on the Sequence Flow f. Using parametrization K=2

solves the problem, because there is a second preallocated
agent, whose messages simulate the second execution. Thus,
K has to be chosen carefully. It stems from the nature of
IMDS. The choice of K value belong to the designer, it
depends on how many token can come to a node “splitting”
the behavior.

In the future, we plan to extend the plan to enrich IMDS
to cover dynamic process creation, which will substitute
agent preallocation.

The second major problem with the proposed translation
method concerns BPMN elements with non-local semantics,
like Inclusive Gateways. They were excluded from the
proposed syntax, because the authors could not propose
correct execution semantics for such elements. Thus, they
are also not considered in the translation method. We don't
plan to support this feature as non-local behavior is
incompatible with distributed system.

V. EXAMPLES

A. AND activation and AND execution pattern

Here we use the graphical view of IMDS [26]. The
example in Fig. 2 contains a Pool P, Start Event E1, two End

Events E2 and E3, Parallel Gateway G, and three Sequence

Flows: s1, s2, s3. Those flows names are included in both
Pool server and AND server definitions. We add the suffix P

to Pool server services and G to AND server services, to
differentiate between the two servers' services. Red dashed
arrows show the transfers of agents between the servers, the
arrows point to the states expected by the agents to perform
their next actions.

Let K = 2 be the parametrization used in the translation. It
can be the result of receiving more than one token acquired
from the subdiagram represented by E1 (for example tokens
produced by a Parallel Gateway). The translation results in
the following IMDS system:
1. (S, A, Minit, Rinit, F) = (

2. S = {(pool(P), {ready}, {s1P, s2P, s3P}),

(and(G), {0,1,2}, {s1G, s2G, s3G})},

3. A = {as1 , as31 , as32 },

4. Minit = {(pool(P), ready), (and(G), 0)},

5. Rinit = {(pool(P), as1 , s1P), (and(G), as31 ,
s3G), (and(G), as32 , s3G)},

6. F = {

7. ((agents(P),pool(P),s1P),(pool(P),ready))→((age
nts(P),and(G),s1G),(pool(P),ready)),

8. ((agents(P),and(G),s1G), (and(G),0)) →
((agents(P),and(G),s2G),(and(G),1)),

9. ((agents(P),and(G),s3G), (and(G),1)) →
((agents(P),pool(P),s3P), (and(G),2)),

70 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

10. ((agents(P),and(G),s2G), (and(G),2)) →
((agents(P),pool(P),s2P), (and(G),0)),

11. ((agents(P),pool(P),s2P), (pool(P),ready)) →
((pool(P),ready)),

12. ((agents(P),pool(P),s3P), (pool(P),ready)) →
((pool(P),ready))})

Individual actions are responsible for: Action 7. starts the
operation of the AND server by transferring the agent 𝑎𝑠1
from the Pool server to AND server. Action 8. Transfers the
incoming agent to the outgoing Sequence Flow 𝑠2. Action 9.
activates the preallocated agent 𝑎𝑠31 , (or 𝑎𝑠32), transfers it to
the Pool server, and changes the AND server state to 2.
Action 10. finishes counting the flows, transfers agent 𝑎𝑠1 to
the Pool server, and changes the state of AND server to 0.
Actions 11. and 12. terminate both agents as they are
simulating behavior of the two End Events.

Note that action 9. can be executed by both agents 𝑎𝑠31 and 𝑎𝑠32 . However, any of those actions changes the state
of AND server to 2, prohibiting the other agent to execute its
action. As a result, only one on the agents executes its action
when the gate G is activated. Actions 7.-10. are created by
the createAND procedure.

B. partial deadlock

Fig. 3 presents an example of a BPMN diagram that
contains a partial deadlock. It consists of two Pools: X and Y.
Pool X consists of one Start Event, one End Event, two
Exclusive Gateways, and two Activities, one of which is

connected through a Message Flow to the other Pool. Pool Y
consists of one Start Event, one End Event, two Parallel

Gateways connected in a fork manner, and two Activities,
one of which is connected to an Exclusive Gateway,

Message Flow, and a Interrupting Boundary Intermediate

Event of type Timer.
This BPMN diagram falls into partial deadlock if Pool X

follows this execution path: f1, f2, f4, f6. In this case, Activity

R in Pool Y will keep throwing timeout exceptions because
the Message Flow M will not be fired. The proposed
translation of BPMN diagrams into IMDS lets the designer
keep track of such partial deadlocks using the Dedan tool,
and backward way to bpmn2imds tool for observing the
deadlock is source diagram. The agent in Pool X is not
deadlocked since it terminates. The agent of M is technically
deadlocked (its starting message will never cause an action),
but we do not treat such situation as a real deadlock
(however, the designer can draw some conclusions from this
fact). One of the agents in Pool Y – ag1 is looping (g4, g5, g4,
g5, …); it does not deadlock but the question of its
termination gives false. The question of possible termination
gives true with the witness of the agent X following f1, f3, f5,
f6, the “upper” agent Y – ag1 following g1, g2, g4, g6, g8, the
“lower” agent Y - aP1g3 following g3, g7, and the agent aM
following Message Flow M.

Let K = 1 be the parametrization used in the translation.
The translation results in the following IMDS system; we
omit the upper index in the services of P and Q Activities;
we add the X, Y, Q and R, P1 and P2 suffixes to IMDS
services for readability.

Let K = 1 be the parametrization used in the translation.
The translation results in the following IMDS system; we
omit the upper index in the services of P and Q Activities;
we add the X, Y, Q and R, P1 and P2 suffixes to IMDS
services for readability:
1. (S, A, Minit, Rinit, F) = (

2. S = {

3. (pool(X), {ready}, {f1, f2, f3, f4, f5, f6}),

4. (pool(Y), {ready}, {g1, g2, g3, g4, g5, g6, g7,

g8}),

5. (and(P1), {0, 1, 2}, {g1, g2, g3}),

6. (and(P2), {0, 1, 2}, {g6, g7, g8}),

7. (and(R), {0, 1, 2}, {g4, M, g6}),

8. (and(Q), {0, 1, 2}, {f3, M, f5})},

9. A = {af1, ag1, aM, aP1g3},

10. Minit = {(pool(X), ready), (pool(Y), ready),
(and(Q), 0), (and(R), 0), (and(P1), 0),

(and(P2), 0)},

11. Rinit = {(pool(X), af1, f1), (pool(Y), ag1, g1),
(and(Q), aM, M),(and(P1), aP1g3, g3)},

12. F = {
13. ((agents(X),pool(X),f1),

(pool(X),ready))→((agents(X),pool(X),f2),
(pool(X),ready)),

14. ((agents(X),pool(X),f1),
(pool(X),ready))→((agents(X),pool(X),f3),
(pool(X),ready)),

15. ((agents(X),pool(X),f2),
(pool(X),ready))→((agents(X),pool(X),f4),
(pool(X),ready)),

b)

a)

P,ready

(as1,P,s1P)/(as1,G,s1G)

(as2,P,s2P)/-

(a
1

s3,P,s3P)/-

G,0

G,1

G,2

(as1,G,s1G)/(as1,G,s2G)

(a
1

s3,G,s3G)/(a
1

s3,P,s3P)

(as1,G,s2G)/(as1,P,s2P)

(a
2

s3,G,s3G)/(a
2

s3,P,s3P)

Fig. 2. a) Exclusive Gateway b) its translation to the IMDS automaton

WIKTOR DASZCZUK, JAKUB JAŁOWIEC: FORMAL VERIFICATION OF BPMN DIAGRAMS IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS 71

16. ((agents(X),pool(X),f3),
(pool(X),ready))→((agents(X),and(Q),f3),
(pool(X),ready)),

17. ((agents(X),pool(X),f4),
(pool(X),ready))→((agents(X),pool(X),f6),
(pool(X),ready)),

18. ((agents(X),pool(X),f6),
(pool(X),ready))→((pool(X),ready)),

19. ((agents(X),and(Q),f3), (and(Q),0)) →
((agents(X),and(Q),f5), (and(Q),1)),

20. ((agents(M),and(Q),M), (and(Q),1)) →
((agents(M),and(R),M), (and(Q),2)),

21. ((agents(X),and(Q),f5), (and(Q),2)) →
((agents(X),pool(X),f5), (and(Q),0)),

22. ((agents(Y),pool(Y),g1),

(pool(Y),ready))→((agents(Y),and(P1),g1),
(pool(Y),ready)),

23. ((agents(Y),and(P1),g1), (and(P1),0)) →
((agents(Y),and(P1),g2), (and(P1),1)),

24. ((agents(Y),and(P1),g2), (and(P1),1)) →
((agents(Y),pool(Y),g2), (and(P1),2)),

25. ((agents(Y),and(P1),g3), (and(P1),2)) →
((agents(Y),pool(Y),g3), (and(P1),0)),

26. ((agents(Y),pool(Y),g2),
(pool(Y),ready))→((agents(Y),pool(Y),g4),
(pool(Y),ready)),

27. ((agents(Y),pool(Y),g5),
(pool(Y),ready))→((agents(Y),pool(Y),g4),
(pool(Y),ready)),

28. ((agents(Y),pool(Y),g4),
(pool(Y),ready))→((agents(Y),and(R),g4),
(pool(Y),ready)),

29. ((agents(Y),pool(Y),g3),
(pool(Y),ready))→((agents(Y),pool(Y),g7),
(pool(Y),ready)),

30. ((agents(Y),and(R),g4), (and(Q),0)) →
((agents(Y),and(R),g6), (and (Q),1)),

31. ((agents(M),and(R),M), (and(Q),1)) → ((and
(Q),2)),

32. ((agents(Y),and(R),g6), (and(Q),2)) →
((agents(Y),pool(Y),g6), (and (Q),0)),

33. ((agents(Y),pool(Y),g6),
(pool(Y),ready))→((agents(Y),and(P2),g6),
(pool(Y),ready)),

Q,0 Q,1 Q,2
(a

M
,Q,M)/(a

M
,R,M)

(a

f3
,Q,f

5
)/(a

f3
,X,f

5
)

(a
f3

,Q,f
3
)/(a

f3
,Q,f

5
)

X,ready

(a
f1

,X,f
1
)/(a

f1
,X,f

2
)

(a
s1

,X,f
6
)/-

(a
f1

,X,f
1
)/(a

f1
,X,f

3
)

(a

f1
,X,f

3
)/(a

f1
,X,f

4
)

(a

f1
,X,f

4
)/(a

f1
,X,f

6
)

 (a
f1

,X,f
5
)/(a

f1
,Q,f

6
)

P1,

P1,
1 P1,

2

(aP1g3
,P

1
,g

3
)/(aP1g3

,Y,g
3
)

(a
g1

,P
1
,g

1
)/(a

g1
,P

1
,g

2
)

(a
g1

,P
1
,g

2
)/(a

g1
,Y,g

2
)

Y,read
y

(a
g1

,Y,g
1
)/(a

g1
,P

1
,g

1
)

(a

g1
,Y,g

2
)/(a

g1
,Y,g

4
)

 (a
g1

,Y,g
3
)/(a

g1
,Y,g

7
)

(a

g1
,Y,g

6
)/(a

g1
,P

2
,g

6
)

(aP1g1

,Y,g
7
)/(a P1g1

,P
2
,g

7
)

(a
g1

,Y,g
5
)/(a

g1
,Y,g

4
)

R,
0 R,

1 R,
2

(a
M

,P,M)/-

(a
g1

,R,g
6
)/(a

g1
,Y,g

6
)

(a
g1

,R,g
4
)/(a

g1
,R,g

6
)

(a
g1

,R,g
6
)/(a

g1
,Y,g

5
)

(a
g1

,R,g
6
)/(a

g1
,Y,g

5
)

P2,

P2,
1 P2,

2
(a

g1
,P

2
,g

8
)/(a

g1
,Y,g

8
)

(a
g1

,P
2
,g

6
)/(a

g1
,P

,g)
(a

P1g3
,P

2
,g

7
)/-

(a
g1

,Y,g
4
)/(a

g1
,R,g

4
)

b) a)

Fig. 3. Example BPMN (a) to IMDS (b) translation translation

(a
g1

,Y,g
8
)/-

72 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

34. ((agents(Y),pool(Y),g7),
(pool(Y),ready))→((agents(Y),and(P2),g7),
(pool(Y),ready)),

35. ((agents(Y),and(P2),g6), (and(P1),0)) →
((agents(Y),and(P2),g8), (and(P1),1)),

36. ((agents(Y),and(P2),g7), (and(P1),1)) →
((and(P1),2)),

37. ((agents(Y),and(P2),g8), (and(P1),2)) →
((agents(Y),pool(Y),g8), (and(P1),0)),

38. ((agents(Y),pool(Y),g8), (pool(Y),ready)) →
((pool(Y),ready))})

Another example of a partial deadlock can concern the
communication itself, when two Activities try to accept
messages from each other. We would like to supplement the
examples with more real-life ones, but text size constraints
do not allow it.

VI. CONCLUSION AND FUTURE WORK

The main goal of this article is to propose a translation of
Business Process Collaboration and Process Diagrams into
the IMDS, and verification of BPMN diagrams for
deadlocks and termination. In order to achieve this,
normalization of BPMN and translation of Process and
Collaboration Diagrams into IMDS specifications was
introduced. We identify partial (and total) deadlocks and
check distributed termination. In IMDS, such checking is
possible thanks to the preservation of information about
component processes in the configuration space, and the
development of temporal formulas independent of the
structure of the analyzed system, and thus not requiring the
designer to know temporal logic [6][7]. Compared to other
tools, such as [9] and [13], our tool enables the visualization
of diagrams and animation of their dynamics (not possible in
[36]). Fig. 4 shows the example of deadlock animation. The
designer is not limited to automatic verification of
deadlocks/termination. The model can be automatically
converted to the Uppaal tool [37], where arbitrary temporal

questions can be asked, even with real-time constraints.
However, reverse engineering of highlighting erroneous
situations is impossible in such cases. Nevertheless, the
simulation of a counterexample over the source BPMN
diagram is preserved.

It should be noted that the complexity of every stage of
work: conversion BPMNIMDS, partial/total deadlock
checking [38] and conversion IMDSUppaal are performed
in linear time to size of a system (number of nodes and
transitions). The example system of nearly 1 million
configurations was checked in about an hour.F

What is rare in BPMN diagrams verification, we
introduce Boundary Links, in order to formalize Interrupting

Boundary Intermediate Event handling. The proposed
semantics is characterized by locality – that is, the semantics
of each of those elements depends only on other elements to
which they are directly connected. During translation, the
given BPMN diagrams are refactored into another
semantically equivalent diagram to achieve consistency of
activation and execution semantics.

One of the limitations of the proposed method is that it
cannot handle diagrams that are unbounded, because it stems
from the nature of finite state model checking. Another
limitation is not considering BPMN elements with non-local
semantics. Additionally, the need to use preallocated agents
slows down the process of its analysis. Some elements are
not covered by our translation, particularly Event-based

Gateways and Inclusive Gateways. Event-based Gateways as
they cannot be as easily translated into a model checking
formalism. They need the creation of a set of agents of a
purely technical nature to reset the gateway if an
Interrupting Boundary Intermediate Event is bound to it.
Inclusive Gateways have non-local semantics

We support the verification process with automatizing the
verification process and giving run visualization and
counterexample simulation properties (screenshots would
take too much space, they can be found in [35]).

A possible improvement to the proposed translation
method is to use preallocated agents for the entire diagram
rather than for individual elements. This problem could be
solved generally by introducing dynamic agent creation or
agent reusability.

It may seem a controversial way of ordering messages
sent and received by an Activity in the syntactic order of
their appearance on the edge of the symbol. Other
communication semantics can be envisioned. For example,
first sending all outgoing messages and then waiting for all
incoming. Alternatively, any order of sending and waiting
for incoming messages. with the cost of exponential number
of states in implementing server.

REFERENCES

[1] W. M. P. van der Aalst, “The Application of Petri Nets to Workflow
Management,” J. Circuits, Syst. Comput., vol. 08, no. 01, pp. 21–66,
Feb. 1998. doi: 10.1142/S0218126698000043

[2] W. Reisig, Understanding Petri Nets. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-33278-4

[3] Object Management Group, “Business Process Model and Notation

Fig. 4. Example operation of the bpmn2imds program.

WIKTOR DASZCZUK, JAKUB JAŁOWIEC: FORMAL VERIFICATION OF BPMN DIAGRAMS IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS 73

(BPMN) Version 2.0.2,” 2013. http://www.omg.org/spec/BPMN/2.0.2
[4] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,

MA: MIT Press, 2008. doi: 10.1007/978-3-030-12835-7_6
[5] F. Kossak et al., A Rigorous Semantics for BPMN 2.0 Process

Diagrams. Cham: Springer International Publishing, 2014. doi:
10.1007/978-3-319-09931-6

[6] W. B. Daszczuk, “Specification and Verification in Integrated Model of
Distributed Systems (IMDS),” MDPI Comput., vol. 7, no. 4, pp. 1–26,
Dec. 2018. doi: 10.3390/computers7040065

[7] W. B. Daszczuk, “Using the Dedan Program,” in Integrated Model of
Distributed Systems, Cham, Switzerland: Springer Nature, 2020, pp.
87–97. doi: 10.1007/978-3-030-12835-7_6

[8] W. B. Daszczuk, “Fairness in Temporal Verification of Distributed
Systems,” in 13th International Conference on Dependability and
Complex Systems DepCoS-RELCOMEX, 2-6 July 2018, Brunów,
Poland, AISC vol.761, 2019, pp. 135–150. doi: 10.1007/978-3-319-
91446-6_14

[9] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis of
business process models in BPMN,” Inf. Softw. Technol., vol. 50, no.
12, pp. 1281–1294, Nov. 2008. doi: 10.1016/j.infsof.2008.02.006

[10] J. Billington et al., “The Petri Net Markup Language: Concepts,
Technology, and Tools,” in ICATPN 2003: Applications and Theory of
Petri Nets, Eindhoven, The Netherlands, 23–27 June 2003, LNCS vol.
2679, 2003, pp. 483–505. doi: 10.1007/3-540-44919-1_31

[11] A. Rachdi, “Liveness and Reachability Analysis of BPMN Process
Models,” J. Comput. Inf. Technol., vol. 24, no. 2, pp. 195–207, Jun.
2016. doi: 10.20532/cit.2016.1002774

[12] K. Kluza, K. Jobczyk, P. Wiśniewski, and A. Ligęza, “Overview of
Time Issues with Temporal Logics for Business Process Models,” in 11
Federated Conference on Computer Science and Information Systems
(FedCSIS), 11-14 Sept 2016, Gdansk, Poland, 2016, pp. 1115–1123.
doi: 10.15439/2016F328

[13] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Hierarchical
Verification for the BPMN Design Model Using State Space Analysis,”
IEEE Access, vol. 7, pp. 16795–16815, 2019. doi:
10.1109/ACCESS.2019.2892958

[14] L. Li and F. Dai, “Transformation and Visualization of BPMN Models
to Petri Nets,” in International Conference of Green Buildings and
Environmental Management (GBEM 2018), Qingdao, China, 23–25
Aug. 2018, IOP Conference Series: Earth and Environmental Science
vol. 186, 2018, vol. 186, p. 012047. doi: 10.1088/1755-
1315/186/5/012047

[15] R. Boussetoua, H. Bennoui, A. Chaoui, K. Khalfaoui, and E.
Kerkouche, “An automatic approach to transform BPMN models to Pi-
Calculus,” in 2015 IEEE/ACS 12th International Conference of
Computer Systems and Applications (AICCSA), Marrakech, Morocco,
17-20 Nov. 2015, 2015, pp. 1–8. doi: 10.1109/AICCSA.2015.7507176

[16] S. Yamasathien and W. Vatanawood, “An approach to construct formal
model of business process model from BPMN workflow patterns,” in
Fourth International Conference on Digital Information and
Communication Technology and its Applications (DICTAP), Bangkok,
Thailand, 6-8 May 2014, 2014, pp. 211–215. doi:
10.1109/DICTAP.2014.6821684

[17] D. Prandi, P. Quaglia, and N. Zannone, “Formal Analysis of BPMN
Via a Translation into COWS,” in International Conference on
Coordination Models and Languages COORDINATION 2008: Oslo,
Norway, 4-6 June 2008, LNCS, vol. 5052, 2008, pp. 249–263. doi:
10.1007/978-3-540-68265-3_16

[18] M. Szpyrka, G. J. Nalepa, and K. Kluza, “From Process Models to
Concurrent Systems in Alvis Language,” Informatica, vol. 28, no. 3,
pp. 525–545, Jan. 2017. doi: 10.15388/Informatica.2017.143

[19] J. Ye and W. Song, “Transformation of BPMN Diagrams to YAWL
Nets,” J. Softw., vol. 5, no. 4, pp. 396–404, Apr. 2010. doi:
10.4304/jsw.5.4.396-404

[20] V. Rafe and A. T. Rahmani, “A Graph Transformation-Based
Approach to Formal Modeling and Verification of Workflows,” in
CSICC 2008: Advances in Computer Science and Engineering, Kish
Island, Iran, 9-11 March 2008, 2008, pp. 291–298. doi: 10.1007/978-3-
540-89985-3_36

[21] F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi, and A. Vandin,
“BProVe: Tool support for business process verification,” in 32nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), Urbana, IL, 30 Oct.-3 Nov. 2017, 2017, pp. 937–
942. doi: 10.1109/ASE.2017.8115708

[22] F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi, and A. Vandin,
“BProVe: A formal verification framework for business process
models,” in 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), Urbana, IL, 30 Oct.-3 Nov. 2017, 2017,
pp. 217–228. doi: 10.1109/ASE.2017.8115635

[23] A. Krishna, P. Poizat, and G. Salaün, “VBPMN: Automated
Verification of BPMN Processes,” in 13th International Conference on
integrated Formal Methods (iFM 2017), Turin, Italy, Sep 2017, 2017,
pp. 1–8. http://convecs.inria.fr/doc/publications/Krishna-Poizat-Salaun-
17.pdf. Accessed on 23.07.2023

[24] G. Salaün and P. Poizat, “VBPMN Samples.” 2017.
https://pascalpoizat.github.io/vbpmn-web/ Accessed on 23.07.2023

[25] N. Tantitharanukul, P. Sugunnasil, and W. Jumpamule, “Detecting
deadlock and multiple termination in BPMN model using process
automata,” in 2010 ECTI International Confernce on Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology, Chiang Mai, Thailand, 19-21 May 2010,
2010, pp. 478–482. https://ieeexplore.ieee.org/document/5491443
Accessed on 23.07.2023

[26] W. B. Daszczuk, “Graphic modeling in Distributed Autonomous and
Asynchronous Automata (DA3),” Softw. Syst. Model., vol. 20, no. 5,
pp. 363–398, 2021. doi: 10.1007/s10270-021-00917-7

[27] K. Kluza and G. J. Nalepa, “Towards Rule-based Pattern Perspective
for BPMN 2.0 Business Process Models,” in 11 Federated Conference
on Computer Science and Information Systems (FedCSIS), 11-14 Sept
2016, Gdansk, Poland, 2016, pp. 1359–1364. doi: 10.15439/2016F324

[28] K. Kluza and P. Wiśniewski, “Spreadsheet-Based Business Process
Modeling,” in 11 Federated Conference on Computer Science and
Information Systems (FedCSIS), 11-14 Sept 2016, Gdansk, Poland,
2016, pp. 1355–1358. doi: 10.15439/2016F376

[29] W. M. P. van der Aalst, “Using Free-Choice Nets for Process Mining
and Business Process Management,” in 16 Federated Conference on
Computer Science and Information Systems (FedCSIS), 2-5 Sept 2021,
Sofia, Bulgaria, 2021, pp. 9–15. doi: 10.15439/2021F002

[30] S. J. Niepostyn and I. Bluemke, “The Function-Behaviour-Structure
Diagram for Modelling Workflow of Information Systems,” in CAiSE
2012: International Conference on Advanced Information Systems
Engineering, Gdańsk, Poland, 25-26 June 2012, 2012, pp. 425–439.
doi: 10.1007/978-3-642-31069-0_34

[31] S. Robak, B. Franczyk, and M. Robak, “Applying Linked Data
concepts in BPM,” in 6 Federated Conference on Computer Science
and Information Systems (FedCSIS), 9-12 Sept 2012, Wrocław,
Poland, 2012, pp. 1105–1110. url:
https://ieeexplore.ieee.org/abstract/document/6354386 Accessed on
23.07.2023

[32] A. Suchenia, P. Wiśniewski, and A. Ligęza, “Overview of Verification
Tools for Business Process Models,” in 12 Federated Conference on
Computer Science and Information Systems (FedCSIS), 3-6 Sept 2017,
Prague, Czech Republic, 2017, pp. 295–302. doi: 10.15439/2017F308
doi: 10.15439/2017F308

[33] T. Lopes and S. Guerreiro, “Assessing business process models: a
literature review on techniques for BPMN testing and formal
verification,” Bus. Process Manag. J., vol. 29, no. 8, pp. 133–162, Apr.
2023. doi: 10.1108/BPMJ-11-2022-0557

[34] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems. New York, NY: Springer, 1992. doi:
10.1007/978-1-4612-0931-7

[35] J. Jałowiec, “Translation of Business Process Model and Notation into
Integrated Model of Distributed Systems,” B.Sc. thesis, Warsaw
University of Technology, Institute of Computer Science, 2019.
https://repo.pw.edu.pl/info/bachelor/WUT31de757656da422c87be61e7
ede00630/?r=diploma&tab=&lang=pl Accessed on 23.07.2023

[36] F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi, “Global vs. Local
Semantics of BPMN 2.0 OR-Join,” in 44th International Conference on
Current Trends in Theory and Practice of Computer Science, Krems,
Austria, 29 Jan. - 2 Feb., 2018, LNCS, vol. 10706, 2018, pp. 321–336.
doi: 10.1007/978-3-319-73117-9_23

[37] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi,
“Developing UPPAAL over 15 years,” Softw. Pract. Exp., vol. 41, no.
2, pp. 133–142, Feb. 2011. doi: 10.1002/spe.1006

[38] W. B. Daszczuk, “Evaluation of temporal formulas based on ‘Checking
By Spheres,’” in Euromicro Symposium on Digital Systems Design,
Warsaw, Poland, 4-6 Sept. 2001, 2001, pp. 158–164. doi:
10.1109/DSD.2001.952267

74 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

