
An Empirical Framework for Software

Aging-Related Bug Prediction using Weighted

Extreme Learning Machine

Lov Kumar1, Vikram Singh2

Dept. Computer Engineering

National Institute of Technology, Kurukshetra

{lovkumar, viks}@nitkkr.ac.in

Lalita Bhanu Murthy3

Dept. CSIS

BITS Pilani Hyderabad Campus

bhanu@hyderabad.bits-pilani.ac.in

Sanjay Misra4

Department of Applied Data Science

Institue for Energy Technology, Halden, Norway

ssopam@gmail.com

Aneesh Krishna5

School of Elec Eng, Comp and Math Sci (EECMS)

Curtin University Perth, Australia

A.Krishna@curtin.edu.au

Abstract—Software ageing (SA) related bugs highlight the
issue of software failure within continuously running systems,
resulting in a decline in quality, system crashes, resource misuse,
and more. To mitigate these bugs, software companies employ
various techniques, including code reviews, bug-tracking systems
deployment, and thorough testing. Nevertheless, the identification
of aging-related bugs remains challenging through these conven-
tional approaches. To address this predicament, early prediction
of the affected software regions due to runtime failures can
be immensely valuable for software quality assurance teams.
By accurately identifying the vulnerable areas, these teams can
strategically allocate their limited resources during the testing
and maintenance processes. This proactive approach ensures
a more efficient and effective bug detection and resolution,
enhancing overall software reliability and performance. This
study aims to develop aging-related bug prediction models using
source code metrics as input. In particular, our objective is to
investigate metrics selections, data balancing, and weighted ELM
to detect software runtime failure. Experimental results show
that ELM with data imbalance SMOTE technique performs
the best compared to weighted ELM for addressing the class
imbalance problem. The weighted ELM and ELM + SMOTE can
predict SA bugs, and these models can be applied to the future
releases of software projects for online failure prediction well in
advance. The experimental finding shows that the models trained
using normal ELM with SMOTE data sampling techniques have
significant performance improvement.

Index Terms—Functional Requirements, Non-Functional Re-
quirements, Data Imbalance Methods, Feature Selection, Classi-
fication Techniques, Software Aging

I. INTRODUCTION

I
N TODAY’S scenario, software (SW) companies are adopt-

ing Object-Oriented (OO) concepts to develop modern

software systems. The primary reason for adopting these

concepts is due to their efficient functionalities, like reusability

(extending the code use again), inheritance, data abstraction,

polymorphism, cohesion, and coupling. These functionalities

help to design SW with high quality such as maintainabil-

ity, reliability, portability, and reusability. Estimating the SW

quality and finding its correlation with static code metrics can

help testers, architects, and requirement analysts to analyze

the source code concerning SW quality before deploying[1][2].

This point is our primary motivation for present work, with an

aim to find the correlation between Software Aging (SA) re-

lated bugs and static code metrics as both cost and effort to fix

run-time failures or Aging-related bugs increase exponentially

if the reason for these failures is not identified prior to SW

deployment [3] [4]. In such contexts, the utilization of software

aging prediction models emerges as a valuable asset during

the initial stages of the SW development life cycle (SDLC).

Furthermore, their application holds the potential to enhance

software quality, diminish testing expenses, and streamline

maintenance efforts.

Software development companies often intend to consider

different techniques, such as code reviews, deployment of

bug-tracking systems, and various testing techniques for

reducing SA bugs [3] [4]. However, it is quite an arduous task

to discover the region of SW to be affected due to runtime

failure [5]. This study aims to address the issue of predicting

runtime failures related to SA by developing a model that

incorporates source code metrics and aging-related data.

By combining these elements, we strive to create a robust

prediction model capable of identifying potential runtime

failures in SW systems.

More specifically, this work aims to study the relationship

between various source code metrics and SW aging-related

bugs and develop a machine learning (ML) enabled prediction

model to proactively predict these bugs. These ML models

would steer the identification of patterns within the future

versions of the SW system based on source code metrics for

bug detection. However, we found two major issues in the

development of aging-related bugs[6][7][8][9]:

• High-Dimensional Data: Before applying any technique

for model development, it is essential to select relevant

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 181–188

DOI: 10.15439/2023F9248

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 181 Thematic track: Software Engineering for

Cyber-Physical Systems



and right sets of features that are significant for the

development of ML models. In this study, we have

considered five different feature ranking techniques: Gain

Ratio (GR), OneR, Relief-F(RF), Information Gain (IG),

and Symmetric Uncertainty (SU) for ranking and select-

ing the significantly relevant features for the development

of bug prediction models [6][7].

• Imbalanced Data: Developing an effective prediction

model becomes very challenging, particularly with train-

ing over highly imbalanced data, it is another pertinent

issue for designing SA-related bug prediction models. In

these settings, ELM has emerged as a highly efficient

and effective ML technique with interest across various

domains in recent years. ELM utilizes least square learn-

ing methods within a single hidden layer neural network,

forming the foundation of its concept for the creation

of robust regression and classification models. In this

study, the Weighted ELM (WELM) technique has been

considered to handle the imbalanced data and develop an

effective model for SW aging prediction [8][9]. Further,

the performance of these models developed using WELM

has been compared with the data imbalance technique and

unweighted ELM [8][9].

This work focuses on conducting extensive experimenta-

tion to design intelligent models that utilize machine-learning

techniques for the proactive prediction of ageing-related bugs

in SW. To achieve this, various approaches were employed,

including the selection of effective metrics, data balancing, and

pattern identification using weighted ELM. Additionally, the

data balancing techniques employed addressed class imbalance

issues, ensuring that the models were trained on a well-

represented dataset. By leveraging these techniques, this study

aimed to enhance the proactive identification of SW ageing-

related bugs, enabling developers to mitigate potential issues

and improve overall SW reliability. Accordingly, the respective

Research Questions (RQs) are justified in this study:

RQ1: What benefits on the performance of aging prediction

models after removing ineffective metrics?

RQ2: What benefits on the performance of aging prediction

models after changing kernel functions?

RQ3: What is the benefit of using weighted ELM over ELM +

SMOTE techniques for aging prediction models?

The rest of the paper is organized as follows: Literature

Review on methods used for SA bugs is presented in SectionII.

The solution methodology, experimental datasets, as well as

the various performance parameters used to compare the

developed models, are described in SectionIII. The exper-

imental finding of this work and comparative analysis of

models developed using different methods are described in

SectionIV. Finally, Section VIIwraps up the material presented

and suggests research directions for future studies.

II. RELATED WORK

In today’s scenario, the SW systems operate continuously

to complete the assigned task. However, due to faults in

design, development, testing, and inappropriate application

environment, there is a chance of occurrence of bugs during

run time that eventually causes software ageing (SA). Here,

we present some key background concepts related to SA.

The idea of SA was first introduced by Huang et al.

[10] and subsequently, other researchers have extended it

in order to recognize this significant phenomenon [3][11].

Specifically, Parnas et al. [3] discussed the reason behind

SA and characterized two types of SA: first, the malfunction

of the manufactured goods prior to transforming it to gather

transforming needs and second, the effect of the modifications

that are prepared. Similarly, Alonso et al. [11] have performed

a comparative study related to software rejuvenation and have

demonstrated SA in 6 different ways from ground to gran-

ularity level. Further, Matias [4] focused on highlighting the

potentially common problems that occur due to SA presence,

such as data discrepancy, statistical errors, and exhaustion of

operating system (OS) resources, which are sample demonstra-

tions of SA. There are a good number of classes where SA

effects are reported in the literature with associated impacts

to running down of OS resources, and predominantly those

connected to the functioning of main memory [12][13].

Zheng and his group developed different rejuvenation rules

to find time-based constraints[14]. They have conducted a sys-

tematic study to measure these rules numerically and observed

that they are better than Markovian arrival processes (MAPs).

They observed that eliminating all bugs is not practically possi-

ble. Therefore, efforts are being made to estimate the run-time

failure or SA of an SW system with the objective of avoiding

future system failures. The process of identifying and predict-

ing these bugs is a challenging task for software engineers.

Padhy et al. [15] proposed an aging prediction system based

on re-usability optimization. This prediction system estimates

the re-usability level of the software components. They have

applied the concept of re-usability risk management and found

that aging-related systems are excessively reused systems. The

other method to avoid aging failures is Rejuvenation. Sharma

and Kumar have used different types of ensemble models to

develop SA prediction models [16]. They have validated the

effectiveness of ensemble learning for SA prediction using

LINUX and MYSQL bug datasets. They have observed that

ensemble methods can identify bugs at early stages and can

help reduce the cost and damage caused due to SA.

Khanna and her team have used Artificial Immune Systems

for developing SA bugs prediction classifiers [17]. They have

used five different types of open-source SW systems to validate

the proposed models and asserted that these models have

the ability to predict SA bugs. Similarly, Fangyun Qin and

his team [18] have examined the variation performance of

the models for cross-project SA bugs prediction using differ-

ent normalization methods, kernel functions, and ML-based

classifiers. They have adopted the Scott-Knott test technique

to validate their finding and observed that the performance

of cross-project SA bugs prediction models depends on the

classifiers and kernel functions, while normalization methods

do not impact much on performance.

182 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



From the above studies and developments, we observed that

many researchers have addressed the problem of SA bug pre-

diction. However, the prediction models trained on imbalanced

data have rarely been addressed in the literature. Thus, this

research work will be a pioneer in the development of SA

bugs on imbalanced datasets. In this work, we empirically in-

vestigate the performance of SA prediction models developed

using weighted ELM and ELM with separate methods for data

sampling i.e., SMOTE.

III. METHODOLOGY

This section presents the methodology adopted in this exper-

iment in order to predict SA using various ML techniques. Fig-

ure 1 illustrates the proposed framework for the development

of the SA bug prediction model considering publicly available

datasets from seven large open-source software systems. In the

discussion in the previous section, it is observed that there have

been different types of static code metrics used for developing

intelligent models to detect SA bugs[19][20] [21][22]. There-

fore, we have applied different sets of static code metrics, such

as McCabe’s cyclomatic complexity, Halstead’s set of metrics,

metrics related to the size of software, and metrics associated

with aging bugs for aging-related bug prediction. Since we

are using these sets of metrics as input, so it is compulsory

to remove ineffective metrics, which may help improve the

models’ performance.

The proposed solution’s first phase is applying the feature

selection concept to remove ineffective metrics and compute

the best sets of effective metrics on pre-processed datasets.

Here, we have used five techniques to remove ineffective

features such as Gain Ratio, Symmetric Uncertainty, OneR,

RELIEF, and Information Gain. The concepts of these tech-

niques are based on performance parameters to rank the

features and select top-ranked features for the analysis. In this

work, we have used ⌈logn2 ⌉ numbers of top features as the

best sets of effective features i.e., ⌈log822 ⌉=7.

The next phase of the proposed framework involves bal-

ancing data using SMOTE techniques. We have used ELM

with SMOTE and WELM to find patterns to predict SA-

related bugs. Here, WELM is applied separately because it

was observed that the WELM could handle class imbalance

problems. Finally, the ability of the model prediction trained

by using ELM with SMOTE and WELM is computed in terms

of AUC and Accuracy. This research framework uses two

projects, Linus and MySQL, which are downloaded from the

PROMISE data repository. We have considered four variants

of Linus and three variants of MySQL. Table I presents the

description of Linux and MySQL project with the total number

of classes(Total Classes), number of non-ageing classes(Non-

Aging), number of Aging classes(Aging), % of non-ageing

classes(% Non-aging), and % of ageing classes (%Aging).

TABLE I: Software Projects Description

Linux MySQL

Name Driver Net Ext3 Driver Scsi Ipv4 Optimizer Replication Innodb

ID Proj1 Proj2 Proj3 Proj4 Proj5 Proj6 Proj7

Total Classes 2292 29 962 117 36 32 402

Non-Aging 2283 24 958 115 33 28 370

Aging 9 5 4 2 3 4 32

%Non-Aging 99.61 82.76 99.58 98.29 91.67 87.5 92.04

%Aging 0.39 17.24 0.42 1.71 8.33 12.5 7.96

Feature Ranking: In this work, we have considered 82

different source code metrics as input to the models used

for SA prediction. In order to achieve better performance,

five different feature ranking techniques are used for feature

selection. In this method, a performance parameter is used to

rank the features, and the top log2n features out of n number

of features are selected for aging prediction. The output of

two feature ranking techniques i.e., Gain ratio and relief are

shown in TableII. Table II presents the ranking of software

metrics using two feature ranking techniques from rank 1 to

82 metrics for all 3 projects.

Similarly, the rank of software metrics is computed using

other three feature ranking techniques i.e., oneR, infogain,

OneR

Info Gain

Gain Ratio

Relief

Symmetrical

Uncert

Normalization

SMOTE+ELM

Weighted ELM

Sine Kernel

Radial basis function

Triangular basis function

Sigmoid

Performance

Analysis

Removal of Ineffective Metrics

Relevent Feature Analysis

Effective Sets of Metrics

Features are Normalized in the

range [0,1] using the below

technique.

M
′ =

M − min(M)

max(M) − min(M)
5-fold cross-validation.

SW Aging-Related Bugs Prediction Model

Data Set Data Set

Fig. 1: Conceptual Scheme of Proposed Framework

LOV KUMAR ET AL.: AN EMPIRICAL FRAMEWORK FOR SOFTWARE AGING-RELATED BUG PREDICTION USING WEIGHTED EXTREME LEARNING 183



Symmetric Uncertainty (SU) ranking techniques. It is observed

from Table II that the rank of AltAvgLineBlank metrics is 38,

82, and 82 for projects Proj1, Proj2, and Proj3 respectively

when gain-ratio feature ranking technique is applied.

IV. EXPERIMENTAL RESULTS

RQ1: What benefits on the performance of aging prediction

models after removing ineffective metrics? The AUC value

is computed for every model over multiple cutoff points, these

values of AUC curve along with Accuracy and F-Measure are

listed in Tables III and IV. Here, the results are presented

over different projects, different classification techniques, and

one data imbalance technique. The feature ranking technique

yielding the high AUC for a given project is depicted in green

color. Further, inference from Tables III and IV, the AUC value

of proj1 using oneR with the sigmoid kernel is better than the

other feature ranking techniques and kernel methods. In most

of the cases, the performance parameters values of the feature

ranking techniques with ELM + SMOTE were found to be

comparable or even better than feature ranking techniques with

weighted ELM.

Comparison of Feature Ranking Techniques using Box-

plots and Descriptive Statistics: Figures 2 and 3 depict

boxplots for comparing the minimum, maximum, interquartile

range, degree of dispersion, and outliers in the AUC, F-

Measure, and Accuracy for all feature ranking techniques.

Table refdst reports the descriptive statistics of the perfor-

mance of different feature ranking techniques. From Figures

2 and 3, we infer that the accuracy and F-measure values

of the case where feature ranking techniques are used with

ELM + SMOTE is better than the one in which we use

feature ranking techniques with weighted ELM. However,

these performance parameters such as accuracy and F-measure

are not those good parameters to validate the model developed

using imbalanced data sets. So, in this experiment, Area under

the ROC (Receiver Operating Characteristics) Curve (AUC)

values have been considered to measure classifier performance.

The line is represented using the red color of the Figures 2

and 3 displays the median points of the data and this line is

used to divide the box into two segments. Similarly, Figures

2 and 3 depict the average AUC of RF in the case of ELM

+ SMOTE is higher than the corresponding values for other

feature ranking techniques.

Comparison: Null Hypothesis: Feature Ranking Tech-

niques: Statistical Significance Testing: After comparing

different feature ranking techniques using boxplots and De-

scriptive Statistics, Wilcoxon signed-rank test with a Bon-

ferroni correction has been applied for statistical hypothesis

testing. The objective of this testing is to investigate the

statistical difference between the pairs of different feature

ranking techniques.

The results of the Wilcoxon signed-rank test with a Bon-

ferroni correction of the feature ranking technique are shown

in Figures 4 and 5. Figures 4 and 5 consist of a green and

red dots. The rejected null hypothesis is represented using a

red dot and the accepted null hypothesis is represented using

TABLE II: Ranking of Static Code Metrics for all Projects

using Gain Ratio and Relief.

Gain Ratio Relief

Proj1 Proj2 Proj3 Proj1 Proj2 Proj3

CountDeclInstanceVariable 43 10 17 52 61 81

CountLineInactive 20 42 47 32 51 36

CountClassDerived 46 36 40 57 57 67

CountLineBlank 2 17 48 10 22 22

AvgCyclomaticStrict 53 31 33 50 13 47

CountDeclMethodPrivate 82 8 21 80 81 59

MaxCyclomaticModified 64 78 75 45 6 33

CountDeclClass 42 35 38 56 56 71

MaxCyclomatic 63 80 77 44 4 34

n2 23 44 10 3 37 4

N1 4 45 56 9 42 8

CountDeclMethodConst 74 5 23 78 79 70

CountLineCodeExe 7 15 71 26 38 2

MinEssentialKnots 76 64 53 71 71 52

CyclomaticStrict 62 73 80 74 60 64

DeallocOps 34 55 60 31 41 37

RatioCommentToCode 72 62 51 47 44 82

CountDeclInstanceVariablePublic 58 2 19 75 82 73

Dif 13 61 11 7 5 26

DerefUse 21 57 59 21 12 15

MaxInheritanceTree 67 76 64 62 64 57

CountStmtEmpty 70 67 67 51 46 50

CountDeclMethodProtected 77 12 25 81 76 51

CountStmtDecl 17 65 8 23 20 25

CountDeclFunction 26 13 26 6 8 28

CountDeclClassMethod 47 33 28 53 55 77

AllocOps 35 58 61 37 40 38

CountDeclMethod 71 6 16 82 77 69

MaxCyclomaticStrict 65 75 65 46 3 32

AvgLineCode 55 40 44 34 25 40

CountLineCode 31 14 66 20 35 10

CountStmtExe 24 66 74 16 9 5

SumCyclomatic 16 51 50 38 19 13

CountPath 79 71 68 66 65 61

CountDeclMethodPublic 78 18 20 76 73 56

MaxNesting 66 74 54 63 63 53

Essential 61 79 79 60 69 63

n1 10 47 4 2 2 24

DerefSet 11 23 1 19 28 20

CountClassCoupled 49 34 27 55 58 66

CountLine 27 19 41 4 32 16

CountClassBase 48 37 39 58 53 65

AvgCyclomaticModified 41 25 36 49 16 45

AvgEssential 54 28 37 41 26 49

AltCountLineComment 15 24 31 25 39 31

SumCyclomaticModified 12 50 55 39 15 19

PercentLackOfCohesion 57 63 52 72 59 79

AltAvgLineComment 40 1 34 35 23 39

AvgCyclomatic 52 26 30 48 7 48

UniqueDerefUse 32 56 2 14 18 23

CountLineComment 14 41 12 27 36 30

CountDeclInstanceMethod 44 21 18 59 52 80

AltAvgLineBlank 38 82 82 29 30 44

Cyclomatic 59 72 76 69 68 76

CountStmt 25 68 73 18 11 12

MaxEssentialKnots 68 77 57 65 66 55

AltAvgLineCode 51 30 35 33 27 41

AltCountLineBlank 1 29 32 8 33 21

SumCyclomaticStrict 19 49 49 42 10 9

Knots 60 81 78 70 70 58

Vol 9 59 63 13 48 1

CountDeclInstanceVariableProtected 50 7 13 67 75 74

CountOutput 80 46 69 64 62 60

AvgLineBlank 37 38 45 28 29 46

SumEssential 28 48 3 15 1 3

CountDeclMethodAll 75 3 22 77 78 68

AltCountLineCode 33 27 29 17 34 17

CountDeclInstanceVariablePrivate 56 9 14 61 67 75

CountInput 81 20 46 73 72 54

AvgLine 30 32 43 30 14 43

Eff 8 60 62 24 50 18

AvgLineComment 39 39 42 36 24 42

N2 5 52 9 12 45 6

Len 3 53 58 11 43 7

Voc 18 54 7 1 31 14

CountLinePreprocessor 36 43 70 43 47 35

CountLineCodeDecl 29 16 72 40 49 27

CountDeclClassVariable 45 22 24 54 54 78

CountDeclMethodFriend 73 11 15 79 80 72

CountSemicolon 22 70 6 22 21 11

CyclomaticModified 69 69 81 68 74 62

UniqueDerefSet 6 4 5 5 17 29

184 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE III: AUC: Accuracy: Weighted ELM

AUC

Sine Radial basis function Triangular basis function Sigmoid

OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU

Proj1 0.63 0.60 0.60 0.58 0.43 0.58 0.50 0.50 0.50 0.50 0.48 0.50 0.50 0.50 0.50 0.8 0.70 0.66 0.72 0.67

Proj2 0.9 0.41 0.79 0.61 0.80 0.79 0.88 0.56 0.59 0.57 0.57 0.49 0.57 0.50 0.47 0.70 0.71 0.85 0.80 0.82

Proj3 0.67 0.61 0.55 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.67 0.71 0.58 0.69

Proj4 0.37 0.86 0.65 0.51 0.62 0.68 0.39 0.47 0.50 0.45 0.49 0.45 0.48 0.50 0.46 0.58 0.56 0.81 0.73 0.80

Proj5 0.59 0.44 0.47 0.57 0.48 0.50 0.50 0.49 0.50 0.49 0.52 0.50 0.51 0.50 0.49 0.76 0.67 0.74 0.66 0.71

Proj6 0.35 0.21 0.26 0.64 0.55 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.56 0.59 0.56 0.55 0.55

Proj7 0.54 0.55 0.70 0.46 0.54 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.77 0.86 0.70 0.61 0.77

Accuracy

Sine Radial basis function Triangular basis function Sigmoid

OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU

Proj1 71.20 52.66 52.66 49.61 52.14 94.28 99.61 99.61 99.61 99.61 95.99 99.61 99.61 99.61 99.61 59.86 51.27 43.06 43.98 34.42

Proj2 80.56 81.81 83.26 71.52 84.82 83.06 75.99 87.32 92.41 88.15 89.71 98.13 89.19 98.96 93.04 65.38 67.15 70.06 60.19 63.93

Proj3 58.62 62.07 37.93 62.07 44.83 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 31.03 58.62 51.72 31.03 48.28

Proj4 72.65 72.65 78.63 52.14 73.50 85.47 76.07 92.31 98.29 88.89 95.73 88.03 94.87 98.29 90.60 64.96 61.54 63.25 47.86 61.54

Proj5 77.86 47.26 50.00 67.66 51.99 92.04 92.04 91.04 91.54 85.82 92.29 91.54 92.04 91.29 91.04 62.94 62.69 62.94 63.93 64.18

Proj6 36.11 38.89 47.22 61.11 72.22 91.67 91.67 91.67 91.67 91.67 91.67 91.67 91.67 91.67 91.67 19.44 25.00 19.44 16.67 16.67

Proj7 56.25 59.38 65.63 62.50 56.25 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 78.13 75.00 65.63 50.00 59.38

TABLE IV: AUC: Accuracy: ELM + SMOTE

AUC

Linear Polynomial Sigmoid Radial basis function

OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU

Proj1 0.50 0.49 0.48 0.50 0.48 0.57 0.62 0.61 0.72 0.62 0.57 0.50 0.50 0.50 0.50 0.72 0.50 0.50 0.50 0.50

Proj2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.59 0.68 0.69 0.55 0.65

Proj3 0.89 0.75 0.76 0.89 0.78 0.68 0.91 0.80 0.81 0.81 0.40 0.50 0.50 0.56 0.50 0.50 0.60 0.65 0.50 0.60

Proj4 0.50 0.50 0.50 0.48 0.50 0.49 0.50 0.49 0.83 0.49 0.50 0.50 0.50 0.50 0.50 0.48 0.48 0.49 0.50 0.48

Proj5 0.85 0.76 0.77 0.66 0.78 0.79 0.80 0.79 0.85 0.83 0.73 0.50 0.50 0.81 0.50 0.77 0.63 0.64 0.88 0.65

Proj6 0.66 0.96 0.96 0.88 0.84 0.63 0.65 0.60 0.66 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Proj7 0.92 0.85 0.85 0.94 0.98 0.92 0.85 0.88 0.87 0.82 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Accuracy

Linear Polynomial Sigmoid Radial basis function

OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU OneR IG GR RF SU

Proj1 98.44 97.30 95.05 98.30 95.13 98.57 98.39 76.40 95.60 78.63 93.31 98.43 98.39 98.43 98.43 98.22 98.39 98.44 98.43 98.43

Proj2 98.24 98.33 98.33 98.25 98.33 98.34 98.33 98.33 98.35 98.33 98.34 98.33 98.02 98.35 98.33 98.34 98.23 98.54 96.80 98.23

Proj3 89.19 77.78 77.78 89.19 80.56 67.57 91.67 80.56 81.08 80.56 40.54 55.56 55.56 56.76 55.56 48.65 55.56 61.11 48.65 55.56

Proj4 96.52 96.52 96.52 92.24 96.52 94.78 95.65 94.78 89.66 94.78 96.52 96.52 96.52 96.55 96.52 93.04 93.04 94.78 95.69 93.04

Proj5 87.58 80.70 79.33 64.73 78.68 85.33 86.62 86.44 89.51 88.13 72.46 71.93 71.56 75.45 71.87 85.33 79.39 79.33 92.19 79.78

Proj6 48.65 94.59 94.59 86.84 86.49 67.57 70.27 72.97 60.53 59.46 75.68 75.68 75.68 76.32 75.68 75.68 75.68 75.68 76.32 75.68

Proj7 90.48 83.33 80.95 92.86 97.44 90.48 80.95 85.71 83.33 76.92 61.90 61.90 61.90 61.90 64.10 61.90 61.90 61.90 61.90 64.10

OneR IG GR RF SU

A
U

C

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OneR IG GR RF SU

F
-
M

e
a
s
u

r
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OneR IG GR RF SU

A
c
c
u

r
a
c
y

20

30

40

50

60

70

80

90

100

Fig. 2: Box-and-Whisker plot: AUC Value of Weighted ELM

with Feature ranking techniques

a green dot. The null hypothesis in this experiment is that

"there is no statistically significant difference between the two

techniques". In this experiment, the standard cut-off value of

0.05/(total number of unique pairs)=0.05/10=0.005 is used

to reject and accept this hypothesis. The results shown in the

Figures 4 and 5 depict that all cells contain a green dot for

feature ranking techniques in both weighted ELM and ELM

+ SMOTE cases. Based on these results, it is observed that

the aging prediction model developed by considering different

OneR IG GR RF SU

A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1

OneR IG GR RF SU

F
-
M

e
a

s
u

r
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OneR IG GR RF SU

A
c

c
u

r
a

c
y

40

50

60

70

80

90

100

Fig. 3: Box-and-Whisker plot: AUC Value of ELM + SMOTE

with Feature ranking techniques

sets of metrics obtained using feature ranking techniques is

not significantly different.

RQ2: What benefits on the performance of aging prediction

models after changing kernel functions?

After finding relevant sets of features using five different

feature ranking techniques, the aging prediction models are

developed using weighted ELM with various kernels and ELM

with SMOTE data imbalance technique. In this study, four

different types of kernel functions are used to develop a model

LOV KUMAR ET AL.: AN EMPIRICAL FRAMEWORK FOR SOFTWARE AGING-RELATED BUG PREDICTION USING WEIGHTED EXTREME LEARNING 185



S
in

e

R
B

F

T
B

F

S
ig

m
o

id

Sine

RBF

TBF

Sigmoid

O
n

e
R IG G
R

R
F

S
U

OneR

IG

GR

RF

SU

Fig. 4: Weighted ELM: Wilcoxon Signed-Rank Test + Bon-

ferroni Correction: A Red Dot Means that H0 is Rejected
L

in

P
o

ly

R
B

F

S
ig

m
o

id

Lin

Poly

RBF

Sigmoid

O
n

e
R IG G
R

R
F

S
U

OneR

IG

GR

RF

SU

Fig. 5: ELM + SMOTE: Wilcoxon Signed-Rank Test + Bon-

ferroni Correction: A Red Dot Means that H0 is Rejected

Sine RBF TBF Sigmoid

A
U

C

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sine RBF TBF Sigmoid

F
-
M

e
a

s
u

r
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sine RBF TBF Sigmoid

A
c

c
u

r
a

c
y

20

30

40

50

60

70

80

90

100

Fig. 6: box-and-whisker plot: AUC Value of Weighted ELM

with different kernels

for predicting SA bugs. The developed models are validated

using 5-fold cross-validation. The value of the AUC curve

along with accuracy and F-Measure for different kernels are

shown in Tables III and IV. The results are presented over

different projects, different feature ranking techniques, andone

data imbalance technique. From the Tables III and IV, it can

be inferred that AUC values of models using sine and sigmoid

kernels are better than the other radial basis function and

triangular basis function kernels in the case of weighted ELM.

Similarly, the AUC value of linear, polynomial, and radial

basis function kernels are better than the sigmoid kernel in

the case of ELM + SMOTE

Comparison of kernel functions using Boxplots and

Descriptive Statistics: Figures 6 and 7 depict boxplots for

comparing the minimum, maximum, interquartile range, de-

gree of dispersion, and outliers in the AUC, F-Measure, and

Accuracy for all considered kernel functions. From Figures 6

and 7, we infer that the accuracy and F-measure values of the

case where kernel functions are used with ELM + SMOTE

Lin Poly RBF Sigmoid

A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1

Lin Poly RBF Sigmoid

F
-
M

e
a
s
u

r
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lin Poly RBF Sigmoid

A
c
c
u

r
a
c
y

40

50

60

70

80

90

100

Fig. 7: box-and-whisker plot: AUC Value of ELM + SMOTE

with different kernels

are better than the one in which we use kernel functions

with weighted ELM. In this experiment, Area under the ROC

Curve (AUC) values has been considered to measure classifier

performance. Figures 6 and 7 depict the average AUC of

sigmoid kernel function in case of weighted ELM is higher

than the corresponding values for other kernel functions.

Comparison: Null Hypothesis: kernel functions: Hy-

pothesis Statistical Significance Testing: The results of the

Wilcoxon signed-rank test with a Bonferroni correction of the

different pairs of kernels are shown in Figures 4 and 5. The

rejected null hypothesis is represented using a red dot and

the accepted null hypothesis is represented using the green

dot. In this experiment, a standard cut-off value of 0.05/(total

number of unique pairs)=0.05/6 has been considered to reject

and accept this hypothesis. The results shown in Figures 4

and 5 depict that the aging prediction models developed using

weighted ELM with sine and RBF kernel function are not

significantly different. Similarly, the SA prediction models

developed using weighted ELM with sine, TBF, and sigmoid

kernel functions are significantly different.

RQ3: What is the benefit of using weighted ELM over

ELM + SMOTE techniques for aging prediction models?

Zong et al.[8] mathematically proved that weighted ELM with

various kernel functions is able to handle imbalanced data and

also maintain better performance on balanced data as com-

pared to unweighted ELM. In this work, we have considered

weighted ELM and unweighted ELM with data imbalance

techniques i.e., SMOTE (Synthetic Minority Oversampling

Technique) to develop a SA bugs prediction model. SMOTE

technique is based on the oversampling concept and aimed

to increase the number of artificial instances that belong to

the minority class. Specifically, artificial instances are created

using oversampling.

The value of the AUC curve along with Accuracy and F-

Measure for WELM and ELM + SMOTE listed in Tables

III and IV. According to Tables III and IV, the performance

parameters i.e., AUC, Accuracy, and F-Measure of the scenario

where weighted ELM is used are lower or comparable with

that of the one in which ELM with data imbalance SMOTE

technique is used.

Comparison of weighted ELM and ELM + SMOTE

using Boxplots and Descriptive Statistics: Figure 8 presents

186 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



W
e

ig
h

te
d

-E
L

M

S
M

O
T

E
+

E
L

M

A
U

C

0.2

0.4

0.6

0.8

1

W
e

ig
h

te
d

-E
L

M

S
M

O
T

E
+

E
L

M

F
-M

e
a
s
u

re

0

0.2

0.4

0.6

0.8

1

W
e

ig
h

te
d

-E
L

M

S
M

O
T

E
+

E
L

M

A
c
c
u

ra
c
y

20

40

60

80

100

W
e
ig

h
te

d
-E

L
M

S
M

O
T

E
+

E
L

M

Weighted-ELM

SMOTE+ELM

Fig. 8: Box-and-whisker plot: AUC Value of ELM + SMOTE and Weighted ELM

the pictorial representation of descriptive statistics containing

Minimum, Maximum, Interquartile range, Degree of disper-

sion, and Outliers the AUC, F-Measure, and Accuracy for

weighted ELM and ELM + SMOTE. An analysis of the

Figure 8 indicates the performance parameter value of ELM

+ SMOTE is better than the one in which we use weighted

ELM. So, the aging prediction model developed using ELM +

SMOTE obtains better performance as compared to weighted

ELM.

Comparison: Null Hypothesis: weighted ELM and ELM

+ SMOTE: Hypothesis Statistical Significance Testing: In

this paper, we have also applied Wilcoxon signed-rank test

with a Bonferroni correction for statistical hypothesis testing

i.e., NULL Hypothesis: "There is no significant difference

in the predictive ability of models trained using different

machine learning techniques". The results of the Wilcoxon

signed-rank test with a Bonferroni correction of the weighted

ELM and ELM + SMOTE are shown in the last sub-figure

Figure8, which consists of green and red dots. The rejected

null hypothesis is represented using a red dot and the accepted

null hypothesis is represented using the green dot.

The null hypothesis in this experiment is that "there is no

statistically significant difference between the model devel-

oped using weight ELM and model developed using ELM +

SMOTE". The results shown in Figure 8 depicts that the cell

contains a red dot for weighted ELM and ELM + SMOTE.

Based on this result, it may be observed that the aging

prediction model developed using weighted ELM and ELM

+ SMOTE is significantly different.

V. DISCUSSION OF RESULTS

The proposed study conducted extensive experimentation

with the application of the five feature ranking techniques

to extract the relevant metrics against 7 projects, to analyse

the impact on the accuracy and predictability of SA related

Bugs Prediction models when SMOTE (data sampling) +

ELM is used in comparison to WELM. Additionally, we

examined the performance of sine, sigmoid, radial basis, and

triangular basis function kernels in the case of WELM and

linear, polynomial, radial basis, and sigmoid basis function

kernels in the case of ELM + SMOTE to further investigate

the finding with the use of different kernels. The outcome of

the empirical experimentation reveals that in the majority of

cases, the performance parameter values of feature ranking

techniques with ELM + SMOTE were found to be equivalent

to or outperformed than with WELM. The employment of

OneR feature ranking techniques typically yields results that

are competitive. The ELM + SMOTE with the application of

Relief feature ranking has the highest F-measure, at 0.93, of

all the combinations.

The experimental analysis of the effectiveness of various

kernels manifests that the AUC values of models using sine

and sigmoid kernels outperform other applied kernels in

the case of weighted ELM, whereas for ELM + SMOTE,

the sigmoid kernel underperforms other utilised kernels. The

study established the improved performance post-implication

of kernel techniques with ELM + SMOTE in comparison to

weighted ELM. The ELM + SMOTE with linear kernel secures

the highest performance among other developed models with

0.75 AUC value, 92.86% Accuracy, and 0.96 F-measure. This

study noticed improved AUC, F-measure, and Accuracy values

in the descriptive statics based on WELM and ELM + SMOTE

results. The Accuracy value of ELM + SMOTE is 87.86,

whereas 82.9 for WELM is 82.29, indicating an increase in

accuracy of 5.57%.

VI. THREATS TO VALIDITY

We have also expressed threats to the validity of the

proposed work.

i. Internal Validity: In relation to internal validity the

SA bugs datasets are utilized, to validate the proposed

models, which were sourced from the tera-promise data

repository. It is important to note that we cannot assert

with absolute certainty that the provided data is 100 per

cent accurate. However, we have confidence that it was

collected consistently. Another factor affecting internal

validity is that the sampled data obtained through the use

of the SMOTE technique may not precisely reflect the

characteristics of actual aging datasets. Both assertions

may lead to a potential threat to internal validity because

sampled data is used as an input of the trained models

and not generalized for testing. However, in the proposed

solutions we have been validated with different classifi-

cation performance parameters such as Accuracy, AUC,

and F-Measure, in order to reduce the validation bias.

LOV KUMAR ET AL.: AN EMPIRICAL FRAMEWORK FOR SOFTWARE AGING-RELATED BUG PREDICTION USING WEIGHTED EXTREME LEARNING 187



ii. Construct Validity: Many researchers have already de-

veloped the SA bugs prediction methods using different

sets of source code metrics, as highlighted within the

related work section. These works successfully validated

the SA bugs that we have also used in this experiment.

So, the construct validity threat related to aging or run

time failures does not exist.

iii. External Validity: The developed models are validated

using 07 different datasets that have been designed using

procedure language. The finding may vary for projects

developed using other programming languages. Hence, a

threat to external validity exists in this study. However,

the argument setting of developed models helps to reduce

the threats to generalizability.

VII. CONCLUSION

The development of SA prediction model using source

code metrics steers the improved software quality and reduces

runtime failure. In this paper, empirical experiments have been

conducted on seven different applications and proposed to

develop early SA bug prediction. The major contributions

of this paper are (a) the development of aging prediction

models using weighted ELM and ELM + SMOTE with various

kernels, (b) the selection of significant right sets of features

using different feature ranking techniques, (c) the handling

of imbalanced data using SMOTE and weighted elm, and (d)

analysis of the performance of the developed model to find

the generalized and meaningful conclusion. The experimental

assertions of the study are as follows:

• The effectiveness of feature ranking techniques employ-

ing ELM + SMOTE exceeds that of feature ranking

techniques utilizing weighted ELM.

• The aging prediction model, developed by incorporating

diverse metric sets obtained through feature ranking tech-

niques, demonstrates no significant variation.

• The performance of the same kernel functions with ELM

+ SMOTE is better than kernel functions with weighted

ELM.

• The aging prediction models developed using different

kernel functions are significantly different.

• The aging prediction model developed using ELM +

SMOTE outperforms the weighted ELM approach, and

a prediction model based on weighted ELM and ELM +

SMOTE exhibit significant dissimilarities.

Thus, we finally conclude that the better value of AUC for

the models trained using weighted ELM and ELM + SMOTE

confirms that the trained models have the ability to predict SA

bugs. These models can be applied to future releases of the

SW system’s for proactive runtime failure prediction.

VIII. ACKNOWLEDGEMENTS

This research is funded by TestAIng Solutions Pvt. Ltd.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp.
476–493, 1994.

[2] M. K. Thota, F. H. Shajin, P. Rajesh et al., “Survey on software defect
prediction techniques,” International Journal of Applied Science and

Engineering, vol. 17, no. 4, pp. 331–344, 2020.
[3] R. Pietrantuono and S. Russo, “A survey on software aging and rejuve-

nation in the cloud,” Software Quality Journal, vol. 28, no. 1, pp. 7–38,
2020.

[4] R. Matias, B. E. Costa, and A. Macedo, “Monitoring memory-related
software aging: An exploratory study,” in 2012 IEEE 23rd International

Symposium on Software Reliability Engineering Workshops. IEEE,
2012, pp. 247–252.

[5] S. S. Chouhan, S. S. Rathore, and R. Choudhary, “A study of aging-
related bugs prediction in software system,” in Proceedings of the

International Conference on Paradigms of Computing, Communication

and Data Sciences. Springer, 2021, pp. 49–61.
[6] J. Dai, J. Chen, Y. Liu, and H. Hu, “Novel multi-label feature selection

via label symmetric uncertainty correlation learning and feature redun-
dancy evaluation,” Knowledge-Based Systems, vol. 207, p. 106342, 2020.

[7] A. G. Karegowda, A. Manjunath, and M. Jayaram, “Comparative study
of attribute selection using gain ratio and correlation based feature selec-
tion,” International Journal of Information Technology and Knowledge

Management, vol. 2, no. 2, pp. 271–277, 2010.
[8] W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme learning

machine for imbalance learning,” Neurocomputing, vol. 101, pp. 229–
242, 2013.

[9] K. Li, X. Kong, Z. Lu, L. Wenyin, and J. Yin, “Boosting weighted elm
for imbalanced learning,” Neurocomputing, vol. 128, pp. 15–21, 2014.

[10] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: Analysis, module and applications,” in Twenty-fifth international

symposium on fault-tolerant computing. Digest of papers. IEEE, 1995,
pp. 381–390.

[11] J. Alonso, R. Matias, E. Vicente, A. Maria, and K. S. Trivedi, “A
comparative experimental study of software rejuvenation overhead,”
Performance Evaluation, vol. 70, no. 3, pp. 231–250, 2013.

[12] R. Matias and J. Paulo Filho, “An experimental study on software aging
and rejuvenation in web servers,” in 30th Annual International Computer

Software and Applications Conference (COMPSAC’06), vol. 1. IEEE,
2006, pp. 189–196.

[13] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker, “Experimental
evaluation of software aging effects on the eucalyptus cloud computing
infrastructure,” in Proceedings of the middleware 2011 industry track

workshop, 2011, pp. 1–7.
[14] J. Zheng, H. Okamura, L. Li, and T. Dohi, “A comprehensive evaluation

of software rejuvenation policies for transaction systems with markovian
arrivals,” IEEE Transactions on Reliability, vol. 66, no. 4, pp. 1157–
1177, 2017.

[15] N. Padhy, R. Singh, and S. C. Satapathy, “Enhanced evolutionary
computing based artificial intelligence model for web-solutions software
reusability estimation,” Cluster Computing, vol. 22, no. 4, pp. 9787–
9804, 2019.

[16] S. Sharma and S. Kumar, “Analysis of ensemble models for aging related
bug prediction in software systems.” in ICSOFT, 2018, pp. 290–297.

[17] M. Khanna, M. Aggarwal, and N. Singhal, “Empirical analysis of
artificial immune system algorithms for aging related bug prediction,”
in 2021 7th International Conference on Advanced Computing and

Communication Systems (ICACCS), vol. 1. IEEE, 2021, pp. 692–697.
[18] F. Qin, X. Wan, and B. Yin, “An empirical study of factors affecting

cross-project aging-related bug prediction with tlap,” Software Quality

Journal, vol. 28, no. 1, pp. 107–134, 2020.
[19] A. G. Koru and H. Liu, “An investigation of the effect of module size

on defect prediction using static measures,” in Proceedings of the 2005

workshop on Predictor models in software engineering, 2005, pp. 1–5.
[20] T. Mende, “Replication of defect prediction studies: problems, pitfalls

and recommendations,” in Proceedings of the 6th International Confer-

ence on Predictive Models in Software Engineering, 2010, pp. 1–10.
[21] T. Mende and R. Koschke, “Revisiting the evaluation of defect predic-

tion models,” in Proceedings of the 5th International Conference on

Predictor Models in Software Engineering, 2009, pp. 1–10.
[22] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo, “Workload

characterization for software aging analysis,” in 2011 IEEE 22nd Inter-

national Symposium on Software Reliability Engineering. IEEE, 2011,
pp. 240–249.

188 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023


