Logo PTI Logo rice

Proceedings of the 2023 Eighth International Conference on Research in Intelligent Computing in Engineering

Annals of Computer Science and Information Systems, Volume 38

Emerging Trends In Pulsar Star Studies: A Synthesis Of Machine Learning Techniques In Pulsar Star Research

,

DOI: http://dx.doi.org/10.15439/2023R66

Citation: Proceedings of the 2023 Eighth International Conference on Research in Intelligent Computing in Engineering, Pradeep Kumar, Manuel Cardona, Vijender Kumar Solanki, Tran Duc Tan, Abdul Wahid (eds). ACSIS, Vol. 38, pages 9398 ()

Full text

Abstract. The pulsar is an extremely magnetized gyrating neutron star having a radius of 10 -- 15 km. Pulsars provide the indirect evidence of the gravitational wave's existence. So, to study the gravitational waves identification of pulsars is mandatory. Pulsars are considered as the Universe's gift. Pulsars provide scientists and researchers with information of the physics of neutron stars, which are thought to be the densest materials in the universe. The reason why astronomers give importance to the pulsars, because they are the leading edge of the research, based on the gravity. All pulsars produce marginally distinct emission pattern and it varies to some extent with every rotation. Hence, a promising signal detection is termed as a candidate, which is averaged based on every rotation of the pulsars. Any absence of the additional information, implies that each candidate is a real pulsar. The valid signals are extremely hard to detect due to noise and radio frequency interference (RFI). To clear up with this issue, Machine Learning (ML) algorithms were used for automatically classifying, identifying and many other process of pulsar candidates. This survey paper talks about different techniques used by different researchers for the pulsar star classification, identification and still more, using ML techniques.

References

  1. A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, R. A. Collins, “Observation of a Rapidly Pulsating Radio Source”, Nature, 217 (5130):709-713, 1968.
  2. V. I. Shishov, T. V. Smirnova, C. R. Gwinn, A. S. Andrianov, M. V. Popov, A. G. Rudnitskiy, V. A. Soglasnov, “Interstellar scintillations of PSR B1919+21: space–ground interferometry”, Monthly Notices of the Royal Astronomical Society, Volume 468, Issue 3, Pages 3709–3717, 25 April 2017.
  3. M. Ryle, “Mullard Radio Astronomy Observatory, Cavendish Laboratory, University of Cambridge. Report for the period 1977 October 1 to 1978 September 30”, Quarterly Journal of the Royal Astronomical Society, Vol. 20, p. 261 – 271, 1979.
  4. M. Bailes, B. K. Berger, P. R. Brady, M. Branchesi, K. Danzmann, M. Evans, K. Holley-Bockelmann, B. R. Iyer, T. Kajita, S. Katsanevas, M. Kramer, A. Lazzarini, L. Lehner, G. Losurdo, H. Lück, D. E. McClelland, M. A. McLaughlin, M. Punturo, S. Ransom, S. Raychaudhury, D. H. Reitze, F. Ricci, S. Rowan, Y. Saito, G. H. Sanders, B. S. Sathyaprakash, B. F. Schutz, A. Sesana, H. Shinka, X. Siemens, D. H. Shoemaker, J. Thorpe, J. F. J. van den Brand, S. Vitale, “Gravitational-wave physics and astronomy in the 2020s and 2030s”, Nature Reviews Physics, volume 3, pages344–366 (2021), 14 April 2021.
  5. Iqbal H Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions”, SN Computer Science, volume 2, Article number: 160 (2021), 22 March 2021.
  6. Dalya Baron, “MACHINE LEARNING IN ASTRONOMY: A PRACTICAL OVERVIEW”, https://arxiv.org/abs/1904.07248v1 [astro-ph.IM],15 Apr 2019.
  7. M. J. Keith, A. Jameson, W. van Straten, M. Bailes, S. Johnston, M. Kramer, A. Possenti, S. D. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, N. D. Amico, L. Levin, Peter L McMahon, S. Milia, B. W. Stappers, “The High Time Resolution Universe Pulsar Survey – I. System configuration and initial discoveries”, Monthly Notices of the Royal Astronomical Society, Volume 409, Issue 2, December 2010, Pages 619–627, 15 November 2010.
  8. Chhaya A Khanzode Ku, Ravindra D Sarode, “Advantages and Disadvantages of Artificial Intelligence and Machine Learning: A Literature Review”, International Journal of Library & Information Science (IJLIS), Volume 9, Issue 1, pp. 30-36, January-April 2020.
  9. F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi, J. Akinjobi, “Supervised Machine Learning Algorithms: Classification and Comparison”, International Journal of Computer Trends and Technology (IJCTT) – Volume 48, Number 3 June 2017.
  10. I. Tariq, M. Qiao, L. Wei, S. Yao, C. Zhou, Z. Ali, S. W. Azeem, A.Spanakis-Misirlis, “Classification of pulsar signals using ensemble gradient boosting algorithms based on asymmetric under- sampling method”, Journal of Instrumentation, Volume 17, 21 March 2022.
  11. https://archive.ics.uci.edu/dataset/372/htru2
  12. Jiangping Xiao, Xiangru Li, Haitao Lin, Kaibin Qiu, “Pulsar candidate selection using pseudo-nearest centroid neighbour classifier”, Monthly Notices of the Royal Astronomical Society, Volume 492, Issue 2, Pages 2119–2127, 19 December 2019.
  13. Yuan-Chao Wang, Ming-Tao Li, Zhi-Chen Pan, Jian-Hua Zheng, “Pulsar candidate classification with deep convolutional neural networks”, Research in Astronomy and Astrophysics, Volume 19, Number 9.
  14. Wenbo Zhu, Zachary T Webb, Kaitian Mao, José Romagnoli, “A Deep Learning Approach for Process Data Visualization Using t‑Distributed Stochastic Neighbor Embedding”, Industrial & Engineering Chemistry Research, 9564–9575, 16 May 2019.
  15. Thomas Ryan Devine, Katerina Goseva-Popstojanova, Maura McLaughlin, “Detection of dispersed radio pulses: a machine learning approach to candidate identification and classification”, Monthly Notices of the Royal Astronomical Society, Volume 459, Issue 2, Pages 1519–1532, 01 April 2016.
  16. Ping Guo, Fuqing Duan, Pei Wang, Yao Yao, Qian Yin, Xin Xin,Di Li, Lei Qian, Shen Wang, Zhichen Pan, Lei Zhang, “Pulsar candidate classification using generative adversary networks”, Monthly Notices of the Royal Astronomical Society, Volume 490, Issue 4, Pages 5424–5439, 14 November 2019.
  17. Y. Wang, Z. Pan, J. Zheng, L. Qian, M. Li, “A hybrid ensemble method for pulsar candidate classification”, Astrophysics and Space Science 364(8), August 2019.
  18. Jin Rong Song, “The effectiveness of different machine learning algorithms in classifying pulsar stars and the impact of data preparation”, Journal of Physics: Conference Series, Volume 2428, 2022 2nd International Conference on Detection Technology and Intelligence System (DTIS 2022) Tianjin, China, 14/10/2022 - 16/10/2022.
  19. K. J. Lee, L. Guillemot, Y. L. Yue, M. Kramer, D. J. Champion, “Application of the Gaussian mixture model in pulsar astronomy - pulsar classification and candidates ranking for the Fermi 2FGL catalogue”, Monthly Notices of the Royal Astronomical Society, Volume 424, Issue 4, Pages 2832–2840, 21 August 2012
  20. Apratim Sadhu, “Pulsar Star Detection: A Comparative Analysis of Classification Algorithms using SMOTE”, International Journal of Computer and Information Technology, Vol. 11 No. 1 (2022): February 2022, 2022-03-05.
  21. Mourad Azhari, Abdallah Abarda, Altaf Alaoui, Badia Ettaki, Jamal Zerouaoui, “Detection of Pulsar Candidates using Bagging Method”, Procedia Computer Science, Volume 170, Pages 1096- 1101,2020.
  22. Fahriye Gemci Furat, Turgay Ibrikci, “Application of Feed Forward Backpropagation and Cascade Forward Backpropagation Neural Network Algorithms to Detect Pulsar Stars”, International Advanced Researches & Engineering Congress-2017, 16-18 November 2017.
  23. Haitao Lin, Xiangru Li, Ziying Luo, “Pulsars detection by machine learning with very few features”, Monthly Notices of the Royal Astronomical Society, Volume 493, Issue 2, April 2020, Pages 1842–1854, 28 January 2020.
  24. Ernesto Lee, Furqan Rustam, Wajdi Aljedaani, Abid Ishaq, Vaibhav Rupapara, Imran Ashraf, “Predicting Pulsars from Imbalanced Dataset with Hybrid Resampling Approach”, Advances in Astronomy, Volume 2021, 03 Dec 2021.
  25. R. J. Lyon, B. W. Stappers, S. Cooper, J. M. Brooke, J. D. Knowles, “Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach”, Monthly Notices of the Royal Astronomical Society, Volume 459, Issue 1, 11 June 2016, Pages 1104–1123, 15 April 2016.
  26. Alexander Ylnner Choquenaira Florez, Braulio Valentin S´anchez Vinces, Diana Carolina Roca Arroyo, Josimar Edinson Chire Saire, Patr´ıcia Batista Franco, “Machine Learning Pipeline for Pulsar Star Dataset”, https://arxiv.org/abs/2005.01208v1 [astro-ph.IM] 3 May 2020.
  27. J. K. Swiggum, Z. Pleunis, E. Parent, D. L. Kaplan, M. A. McLaughlin, I. H. Stairs, R. Spiewak, G. Y. Agazie, P. Chawla, M. E. DeCesar, T. Dolch, W. Fiore, E. Fonseca, A. G. Istrate, V. M. Kaspi, V. I. Kondratiev, J. van Leeuwen, L. Levin, E. F. Lewis, R. S. Lynch, A. E. McEwen, H. Al Noori, S. M. Ransom, X. Siemens, and M. Surnis, “The Green Bank North Celestial Cap Survey. VII. 12 New Pulsar Timing Solutions”, The Astrophysical Journal, 944:154 (15pp), 20 February 2023.