Logo PTI Logo rice

Proceedings of the 2023 Eighth International Conference on Research in Intelligent Computing in Engineering

Annals of Computer Science and Information Systems, Volume 38

Utilizing Flex Sensors for the Evaluation of Parkinson's Disease

, , ,

DOI: http://dx.doi.org/10.15439/2023R75

Citation: Proceedings of the 2023 Eighth International Conference on Research in Intelligent Computing in Engineering, Pradeep Kumar, Manuel Cardona, Vijender Kumar Solanki, Tran Duc Tan, Abdul Wahid (eds). ACSIS, Vol. 38, pages 115120 ()

Full text

Abstract. Parkinson's disease is a neurodegenerative disorder with symptoms such as tremors, stiffness, and issues with balance and coordination. Detecting and monitoring the signs of the disease is of great significance. By combining flex sensors and Arduino, we have designed a simple and effective system capable of recording, detecting, and evaluating early signs of the disease. The electronic components used are: an Arduino Nano, two flex sensors, and a glove with sensors attached to each finger to capture movements and flexion. The patient wears the glove and whenever tremors are detected, the sensor sends a signal to the Arduino which is converted into an angle of flexion by changing resistance. The tremor signals are initially transmitted as resistance and subsequently transformed into voltage. This voltage is then graphed according to the sensor's bending angle. By analyzing abrupt and rapid tremors, a threshold is established to deduce the severity and progression stage of the illness.

References

  1. Almeida, J.S.; Filho, P.P.R.; Carneiro, T.; Wei, W.; Damaševičius, R.; Maskeliunas, R.; de Albuquerque, V.H.C. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognit. Lett. 2019, 125, 55–62.
  2. B I. Y. Abdi, S. S. Ghanem, and O. M. El-Agnaf, “Immune-related biomarkers for Parkinson’s disease,” Neurobiol Dis, (2022) vol. 170, p. 105771.
  3. Battista L,Romaniello A. A wearable tool for selective and continuous monitoring of tremor and dyskinesia in Parkinsonian patients. Parkinsonism Relat Disord. (2020) 77:43–7. http://dx.doi.org/10.1016/j.parkreldis.2020.06.020
  4. Chenbin Ma, Lishuang Guo , Longsheng Pan , Xuemei Li , Chunyu Yin , Rui Zong , Zhengbo Zhang “ Tremor detection Transformer: An automatic symptom assessment framework based on refined whole-body pose estimation” Elsevier: Amsterdam, The Netherlands, 2020.
  5. Dai H, Cai G, Lin Z, Wang Z, Ye Q. Validation of inertial sensing-based wearable device for tremor and bradykinesia quantification. IEEE J Biomed Health Inform. (2020) 25:997–1005. http://dx.doi.org/10.1109/JBHI.2020.3009319
  6. Duc Hung Pham, Viet-Ngu Nguyen, Thi Minh -Le,” Fuzzy Brain Emotional Controller for Heart Disease Diagnosis” Proceedings of the 2022 Seventh International Conference on Research in Intelligent and Computing in Engineering Annals of Computer Science and Information Systems, Volume 33
  7. F. Salman, Y. Cui, Z. Imran, F. Liu, L. Wang, and W. Wu, “A Wireless-controlled 3D printed Robotic Hand Motion System with Flex Force Sensors,” Sens Actuators A Phys, (2020) vol. 309, p. 112004
  8. Filippo Milano, Gianni Cerro, Francesco Santoni,Alessio De Angelis,Gianfranco Miele, And Paolo Carbone, “Parkinson’s Disease Patient Monitoring: A Real-Time Tracking and Tremor Detection System Based on Magnetic Measurements”
  9. Huo W, Angeles P, Tai YF, Pavese N, Wilson S, Hu MT, et al. A heterogeneous sensing suite for multisymptom quantification of Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng. (2020) 28:1397–406. http://dx.doi.org/10.1109/TNSRE.2020.2978197
  10. Hssayeni MD, Jimenez-Shahed J, Burack MA, Ghoraani B. Wearable sensors for estimation of Parkinsonian tremor severity during free body movements. Sensors (Basel). (2019) 19:4215. http://dx.doi.org/10.3390/s19194215
  11. G. Saggio, “A novel array of flex sensors for a goniometric glove,” Sens Actuators A Phys, (2014) vol. 205, pp. 119–125.
  12. G. Saggio and G. Orengo, “Flex sensor characterization against shape and curvature changes,” Sens Actuators A Phys, (2018) vol. 273, pp. 221–231.
  13. G. Saggio, “Mechanical model of flex sensors used to sense finger movements,” Sens Actuators A Phys, (2012) vol. 185, pp. 53–58.
  14. HoudeDai ;Pengyue Zhang and Tim C. Lueth; Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit; Published: 29 September 2015.
  15. Huo W, Angeles P, Tai YF, Pavese N, Wilson S, Hu MT, et al. A heterogeneous sensing suite for multisymptom quantification of Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng. (2020) 28:1397–406. http://dx.doi.org/10.1109/TNSRE.2020.2978197
  16. Hssayeni MD, Jimenez-Shahed J, Burack MA, Ghoraani B. Wearable sensors for estimation of Parkinsonian tremor severity during free body movements. Sensors (Basel). (2019) 19:4215. http://dx.doi.org/10.3390/s19194215
  17. K. Elgeneidy, N. Lohse, and M. Jackson, “Data-Driven Bending Angle Prediction of Soft Pneumatic Actuators with Embedded Flex Sensors,” IFAC-PapersOnLine, (2016) vol. 49, no. 21, pp. 513– 520
  18. K. T. Lee, P. S. Chee, E. H. Lim, and C. C. Lim, “Artificial intelligence (AI)-driven smart glove for object recognition application,” Mater Today Proc, (2022) vol. 64, pp. 1563–1568.
  19. Lu R, Xu Y, Li X, Fan Y, Zeng W, Tan Y, Ren K, Chen W, Cao X. Evaluation of wearable sensor devices in Parkinson's disease: a review of current status and future prospects. Parkinsons Dis. (2020) 2020:4693019. http://dx.doi.org/10.1155/2020/4693019
  20. Luis Sigcha, Ignacio Pavón,Nélson Costa,Susana Costa  Miguel Gago,Pedro Arezes, Juan Manuel López, and Guillermo De Arcas, “Automatic Resting Tremor Assessment in Parkinson’s Disease Using Smartwatches and Multitask Convolutional Neural Networks” Sensors 2021, 21(1), 291
  21. M. C. Fennema, R. A. Bloomfield, B. A. Lanting, T. B. Birmingham, and M. G. Teeter, “Repeatability of measuring knee flexion angles with wearable inertial sensors, (2019)” Knee, vol. 26, no. 1, pp. 97–105.
  22. Mahadevan N, Demanuele C, Zhang H, Volfson D, Ho B, Erb MK, et al. Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. NPJ Digit Med. (2020) 3:5. http://dx.doi.org/10.1038/s41746-019-0217-7
  23. N. Tran Thi Hong, G. L. Nguyen, N. Quang Huy, D. Viet Manh, D.-N. Tran, and D.-T. Tran, “A low-cost real-time IoT human activity recognition system based on wearable sensor and the supervised learning algorithms,” Measurement, vol. 218, p. 113231, 2023.
  24. Luu, M. H., Tran, D. T., Nguyen, T. L., Nguyen, D. D., & Nguyen, P. T. Errors determination of the MEMS IMU. Journal of Science, Vietnam National University - Hanoi, (2006) vol. 22, pp. 6-14.
  25. Pham Minh Chuan, Luong Thi Hong Lan, Tran Manh Tuan, Nguyen Hong Tan, Cu Kim Long, Pham Van Hai, Le Hoang Son, “ Chronic kidney disease diagnosis using Fuzzy Knowledge Graph Pairs-based inference in the extreme case” Proceedings of the 2022 Seventh International Conference on Research in Intelligent and Computing in Engineering Annals of Computer Science and Information Systems, Volume 33..
  26. S. Hawi, J. Alhozami, R. AlQahtani, D. AlSafran, M. Alqarni, and L. el Sahmarany, “Automatic Parkinson’s disease detection based on the combination of long-term acoustic features and Melfrequency cepstral coefficients (MFCC),” Biomed Signal Process Control, (2022) vol. 78, p. 104013.
  27. Rubén San-Segundo, Ada Zhang, Alexander Cebulla,.. Jessica Hodgins,”Parkinson’s Disease Tremor Detection in the Wild Using Wearable Accelerometers” Sensors 2020, 20, 5817; http://dx.doi.org/10.3390/s2020581.
  28. Rahman, A.; Rizvi, S.S.; Khan, A.; Abbasi, A.A.; Khan, S.U.; Chung, T.-S. Parkinson’s Disease Diagnosis in Cepstral Domain Using MFCC and Dimensionality Reduction with SVM Classifier. Mob. Inf. Syst. 2021, 2021, 1–10.
  29. S. I. Lee, J.-F. Daneault, L. Weydert, and P. Bonato, “A novel flexible wearable sensor for estimating joint-angles,” in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks, (2016) pp. 377–382.
  30. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review of wearable sensors and systems with application in rehabilitation,” J Neuroeng Rehabil, (2012) vol. 9, no. 1, p. 21.
  31. Shawen N, O'Brien MK, Venkatesan S, Lonini L, Simuni T, Hamilton JL, et al. Role of data measurement characteristics in the accurate detection of Parkinson's disease symptoms using wearable sensors. J Neuroeng Rehabil. (2020) 17:52. http://dx.doi.org/10.1186/s12984-020-00684-4
  32. San-Segundo R, Zhang A, Cebulla A, Panev S, Tabor G, Stebbins K, et al. Parkinson's disease tremor detection in the wild using wearable accelerometers. Sensors (Basel). (2020) 20:5817. http://dx.doi.org/10.3390/s20205817
  33. S. Huang et al., “Development and evaluation of a novel flex sensor-based glenohumeral subluxation degree assessment for wearable shoulder sling,” Sens Actuators A Phys, (2022) vol. 337, p. 113405
  34. Tiboni, M.; Amici, C. Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications. Actuators 2022, 11, 232. https://doi.org/ 10.3390/act11080232.
  35. T.-H. Dao, D.-N. Tran, Q.-T. Hoang, H.-D. Vu, D. T. Huy, and D.-T. Tran, “Developing Real-time Automatic Step Detection On A Low-Cost, Performance-Constrained Microcontroller,” in 2023 IEEE Statistical Signal Processing Workshop (SSP), 2023, pp. 150–154.
  36. T. H. Dao, H. T. H. Yen, V. N. Hoang, D. T. Tran, and D. N. Tran, “Human Activity Recognition System For Moderate Performance Microcontroller Using Accelerometer Data And Random Forest Algorithm,” EAI Endorsed Trans. Ind. Networks Intell. Syst., vol. 9, no. 4, pp. 1–18, 2022, http://dx.doi.org/10.4108/eetinis.v9i4.2571.