Logo PTI Logo FedCSIS

Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 39

Successfully Improving the User Experience of an Artificial Intelligence System

, ,

DOI: http://dx.doi.org/10.15439/2024F2707

Citation: Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 39, pages 253258 ()

Full text

Abstract. An important aspect of Artificial Intelligence (AI) Systems is their User Experience (UX), which can impact the user's trust in the AI system. However, UX has not yet been in the focus of AI research. In previous research, we have evaluated the UX of the Meta AutoML platform OMA-ML, uncovering weak points and proposing several recommendations for ensuring a positive UX in AI systems. In this paper we show that implementing those recommendations leads to measurable UX improvements. We present the UX-improving features implemented in a new release of OMA-ML and the results from a second UX evaluation. The UX of OMA-ML could successfully be improved in four interactive principles (suitability for the user's tasks, self-descriptiveness, user engagement and learnability). We argue that an iterative approach to UX potentially leads to more human-centered AI.

References

  1. S. J. Russell and P. Norvig, Artificial intelligence: A modern approach, fourth edition ed., ser. Pearson Series in Artificial Intelligence. Hoboken, NJ: Pearson, 2021. ISBN 9780134610993
  2. B. Ríos-Sánchez, D. C.-d. Silva, N. Martín-Yuste, and C. Sánchez-Ávila, “Deep learning for face recognition on mobile devices,” IET Biometrics, vol. 9, no. 3, pp. 109–117, 2020. http://dx.doi.org/10.1049/iet-bmt.2019.0093
  3. P. Polakova and B. Klimova, “Using deepl translator in learning english as an applied foreign language - an empirical pilot study,” Heliyon, vol. 9, no. 8, p. e18595, 2023. http://dx.doi.org/10.1016/j.heliyon.2023.e18595
  4. D. A. Norman, The design of everyday things, revised and expandes editons ed. Cambridge, MA and London: The MIT Press, 2013. ISBN 9780262525671
  5. M. Mahmoud, U. Badawi, W. Hassan, Y. Alomari, F. Alghamdi, and T. Farag, “Evaluation of user experience in mobile applications,” vol. 15, p. 2021, 2021.
  6. L. Brand, B. G. Humm, A. Krajewski, and A. Zender, “Towards improved user experience for artificial intelligence systems,” in Engineering applications of neural networks, ser. Communications in Computer and Information Science, S. Alonso, L. Iliadis, C. Jayne, I. Maglogiannis, and E. Pimenidis, Eds. Cham: Springer, 2023, vol. 1826, pp. 33–44. ISBN 978-3-031-34203-5
  7. B. G. Humm, H. Bense, M. Fuchs, B. Gernhardt, M. Hemmje, T. Hoppe, L. Kaupp, S. Lothary, K.-U. Schäfer, B. Thull, T. Vogel, and R. Wenning, “Machine intelligence today: applications, methodology, and technology,” Informatik Spektrum, pp. 1–11, 2021. http://dx.doi.org/10.1007/s00287-021-01343-1. [Online]. Available: https://link.springer.com/article/10.1007\%2Fs00287-021-01343-1
  8. A. Zender, B. G. Humm, and T. Pachmann, “Improving the efficiency of meta automl via rule-based training strategies,” in 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS), 2023. http://dx.doi.org/10.15439/2023F708 pp. 235–246.
  9. P. P. Ray, “Chatgpt: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 121–154, 2023. http://dx.doi.org/10.1016/j.iotcps.2023.04.003
  10. A. Sarkar, “Will code remain a relevant user interface for end-user programming with generative ai models?” in Proceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, T. van der Storm and R. Hirschfeld, Eds. New York, NY, USA: ACM, 2023. doi: 10.1145/3622758.3622882. ISBN 9798400703881 pp. 153–167.
  11. V. S. Moustakis and J. Herrmann, “Where do machine learning and human-computer interaction meet?” Applied Artificial Intelligence, vol. 11, no. 7-8, pp. 595–609, 1997. http://dx.doi.org/10.1080/088395197117948
  12. B. Pennington, S. Chapman, A. Fry, A. Deschenes, and C. G. McDonald, “Strategies to improve the user experience,” Serials Review, vol. 42, no. 1, pp. 47–58, 2016. http://dx.doi.org/10.1080/00987913.2016.1140614
  13. Å. Stige, E. D. Zamani, P. Mikalef, and Y. Zhu, “Artificial intelligence (ai) for user experience (ux) design: a systematic literature review and future research agenda,” Information Technology & People, 2023. http://dx.doi.org/10.1108/ITP-07-2022-0519
  14. M. Chromik, F. Lachner, and A. Butz, “Ml for ux? - an inventory and predictions on the use of machine learning techniques for ux research,” in Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, ser. ACM Digital Library, D. Lamas, H. Sarapuu, I. Šmorgun, and G. Berget, Eds. New York,NY,United States: Association for Computing Machinery, 2020. http://dx.doi.org/10.1145/3419249.3420163. ISBN 9781450375795 pp. 1–11.
  15. A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli, “Trends and trajectories for explainable, accountable and intelligible systems,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, ser. ACM Conferences, R. Mandryk, Ed. New York, NY: ACM, 2018. http://dx.doi.org/10.1145/3173574.3174156. ISBN 9781450356206 pp. 1–18.
  16. S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh, S. Iqbal, P. N. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil, and E. Horvitz, “Guidelines for human-ai interaction,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, ser. ACM Digital Library, S. Brewster, Ed. New York,NY,United States: Association for Computing Machinery, 2019. http://dx.doi.org/10.1145/3290605.3300233. ISBN 9781450359702 pp. 1–13.
  17. D. Wang, Q. Yang, A. Abdul, and B. Y. Lim, “Designing theory-driven user-centric explainable ai,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, ser. ACM Digital Library, S. Brewster, Ed. New York,NY,United States: Association for Computing Machinery, 2019. http://dx.doi.org/10.1145/3290605.3300831. ISBN 9781450359702 pp. 1–15.
  18. A. Colley, M. Kalving, J. Häkkilä, and K. Väänänen, “Exploring tangible explainable ai (tangxai): A user study of two xai approaches,” in Bowen, Pantidi et al. (Hg.) 12.02.2023 – Proceedings of the 35th Australian, pp. 679–683.
  19. R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, G. Morgan, and R. Ranjan, “Explainable ai (xai): Core ideas, techniques, and solutions,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–33, 2023. http://dx.doi.org/10.1145/3561048
  20. Jakob Nielsen, “Usability 101: Introduction to usability.” [Online]. Available: https://www.nngroup.com/articles/usability-101-introduction-to-usability/
  21. K. Bittner and I. Spence, Use case modeling, ser. The Addison-Wesley object technology series. Boston, Mass.: Addison-Wesley, 2003. ISBN 0201709139
  22. Aurora Harley, “Ux expert reviews.” [Online]. Available: https://www.nngroup.com/articles/ux-expert-reviews/
  23. “Din en iso 9241-110:2020-10, ergonomie der mensch-system-interaktion_- teil_110: Interaktionsprinzipien (iso_9241-110:2020); deutsche fassung en_iso_9241-110:2020,” Berlin.
  24. S. B. Merriam, Qualitative research and case study applications in education, rev. and expanded. ed., ser. A joint publication of the Jossey-Bass education series and the Jossey-Bass higher and adult education series. San Francisco, Calif.: Jossey-Bass Publishers, 1998. ISBN 0787910090
  25. Jakob Nielsen, “Severity ratings for usability problems.” [Online]. Available: https://www.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/
  26. ——, “10 usability heuristics for user interface design.” [Online]. Available: https://www.nngroup.com/articles/ten-usability-heuristics/
  27. Alita Joyce, “Help and documentation (usability heuristic #10).” [Online]. Available: https://www.nngroup.com/articles/help-and-documentation/
  28. J. J. Ferreira and M. S. Monteiro, “What are people doing about xai user experience? a survey on ai explainability research and practice,” in Design, User Experience, and Usability. Design for Contemporary Interactive Environments, ser. Springer eBook Collection, A. Marcus and E. Rosenzweig, Eds. Cham: Springer International Publishing and Imprint Springer, 2020, vol. 12201, pp. 56–73. ISBN 978-3-030-49759-0
  29. Meg Kurdziolek, “Explaining the unexplainable: Explainable ai (xai) for ux.” [Online]. Available: https://uxpamagazine.org/explaining-the-unexplainable-explainable-ai-xai-for-ux/
  30. Alita Joyce, “Mobile-app onboarding: An analysis of components and techniques.” [Online]. Available: https://www.nngroup.com/articles/mobile-app-onboarding/
  31. Alita Joyce, “Mobile tutorials: Wasted effort or efficiency boost?” [Online]. Available: https://www.nngroup.com/articles/mobile-tutorials/
  32. Page Laubheimer, “Onboarding tutorials vs. contextual help.” [Online]. Available: https://www.nngroup.com/articles/onboarding-tutorials/
  33. Amy Schade, “Inverted pyramid: Writing for comprehension.” [Online]. Available: https://www.nngroup.com/articles/inverted-pyramid/
  34. A. Zender and B. G. Humm, “Ontology-based meta automl,” Integrated Computer-Aided Engineering, vol. 29, no. 4, pp. 351–366, 2022. http://dx.doi.org/10.3233/ICA-220684
  35. Alita Joyce, “Tooltip guidelines.” [Online]. Available: https://www.nngroup.com/articles/tooltip-guidelines/