Logo PTI Logo FedCSIS

Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 39

Linked Labor Market Data: Towards a novel data housing strategy

DOI: http://dx.doi.org/10.15439/2024F3577

Citation: Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 39, pages 355362 ()

Full text

Abstract. The labor market is a domain rich in diverse data structures, both quantitative and qualitative, and numerous applications. This leads to challenges in the domain of data warehouse architecture and linked data. In this context, only a few approaches exist to generate linked data sets. For example, the multilingual classification system of European Skills, Competences, Qualifications, and Occupations (ESCO) and the German Labor Market Ontology (GLMO) serve as prominent examples showcasing the pivotal role of ontologies.

References

  1. R. Dobischat, B. Käpplinger, G. Molzberger, and D. Münk, “Digitalisierung und die folgen: Hype oder revolution?” Bildung 2.1 für Arbeit 4.0?, pp. 9–24, 2019.
  2. R. Helmrich, M. Tiemann, K. Troltsch, F. Lukowski, C. Neuber-Pohl, A. C. Lewalder, and B. Gunturk-Kuhl, Digitalisierung der Arbeitslandschaften: keine Polarisierung der Arbeitswelt, aber beschleunigter Strukturwandel und Arbeitsplatzwechsel. Wissenschaftliche Diskussionspapiere, 2016, no. 180.
  3. J. Dörpinghaus, D. Samray, and R. Helmrich, “Challenges of automated identification of access to education and training in germany,” Information, vol. 14, no. 10, p. 524, 2023.
  4. J. De Smedt, M. le Vrang, and A. Papantoniou, “Esco: Towards a semantic web for the european labor market.” in Ldow@ www, 2015.
  5. J. Dörpinghaus, J. Binnewitt, S. Winnige, K. Hein, and K. Krüger, “Towards a german labor market ontology: Challenges and applications,” Applied Ontology, no. 18(4), pp. 1–23, 2023.
  6. P. Koch, W. Konen, and K. Hein, “Gesture recognition on few training data using slow feature analysis and parametric bootstrap,” in International Joint Conference on Neural Networks, Barcelona, Spain, Jul. 2010, p. 8 pages.
  7. A. Dutt, M. A. Ismail, and T. Herawan, “A systematic review on educational data mining,” Ieee Access, vol. 5, pp. 15 991–16 005, 2017.
  8. S. K. Mohamad and Z. Tasir, “Educational data mining: A review,” Procedia-Social and Behavioral Sciences, vol. 97, pp. 320–324, 2013.
  9. C. Romero and S. Ventura, “Educational data mining: A survey from 1995 to 2005,” Expert systems with applications, vol. 33, no. 1, pp. 135–146, 2007.
  10. J. Dörpinghaus and M. Tiemann, “Vocational education and training data in twitter: Making german twitter data interoperable,” Proceedings of the Association for Information Science and Technology, vol. 60, no. 1, pp. 946–948, 2023.
  11. R. M. Chang, R. J. Kauffman, and Y. Kwon, “Understanding the paradigm shift to computational social science in the presence of big data,” Decision Support Systems, vol. 63, pp. 67–80, 2014, 1. Business Applications of Web of Things 2. Social Media Use in Decision Making. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167923613002212
  12. I. Moalla, A. Nabli, L. Bouzguenda, and M. Hammami, “Data warehouse design approaches from social media: review and comparison,” Social Network Analysis and Mining, vol. 7, no. 1, p. 5, 2017.
  13. B. Marlis, H. Buchs, and G. Ann-Sophie, “Occupational inequality in wage returns to employer demand for types of information and communications technology (ict) skills: 1991–2017,” Kölner Zeitschrift für Soziologie und Sozialpsychologie, vol. 72, pp. 455–482, 2020.
  14. J. Dörpinghaus, J. Binnewitt, and K. Hein, “Lessons from continuing vocational training courses for computer science education,” in Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2, 2023, pp. 636–636.
  15. A. Settelmeyer, F. Bremser, and A. C. Lewalder, “Migrationsbedingte mehrsprachigkeit—ein “plus” beim übergang von der schule in den beruf,” Interkulturelle und sprachliche Bildung im mehrsprachigen Übergang Schule-Beruf, pp. 135–150, 2017.
  16. F. Derksen and J. Dörpinghaus, “Digitalization and sustainability in german continuing education,” in INFORMATIK 2023 - Designing Futures: Zukünfte gestalten. Bonn: Gesellschaft für Informatik e.V., 2023, pp. 1945–1953.
  17. P. K. Ningrum, T. Pansombut, and A. Ueranantasun, “Text mining of online job advertisements to identify direct discrimination during job hunting process: A case study in indonesia,” Plos one, vol. 15, no. 6, p. e0233746, 2020.
  18. I. Smirnov, “Estimating educational outcomes from students’ short texts on social media,” EPJ Data Science, vol. 9, no. 1, pp. 1–11, 2020.
  19. C. Ospino, “Occupations: Labor market classifications, taxonomies, and ontologies in the 21st century,” Inter-American Development Bank, 2018.
  20. S. Guru Rao, “Ontology matching using domain-specific knowledge and semantic similarity,” Master’s thesis, University of Twente, 2022.
  21. I. Szabó, “The implementation of the educational ontology,” in Proceedings of the 7th European Conference on Knowledge Management, Corvinus University of Budapest, Hungary, ACL, UK, 2006, pp. 541–547.
  22. E. Boldyreva and V. Kholoshnia, “Ontological approach to modeling the current labor market needs for automated workshop control in higher education.” in MICSECS, 2019.
  23. M. Khobreh, F. Ansari, M. Fathi, R. Vas, S. T. Mol, H. A. Berkers, and K. Varga, “An ontology-based approach for the semantic representation of job knowledge,” IEEE Transactions on Emerging Topics in Computing, vol. 4, no. 3, pp. 462–473, 2015.
  24. M. Papoutsoglou, A. Ampatzoglou, N. Mittas, and L. Angelis, “Extracting knowledge from on-line sources for software engineering labor market: A mapping study,” IEEE Access, vol. 7, pp. 157 595–157 613, 2019.
  25. A. Poletaikin, S. Sinitsa, L. Danilova, Y. Shevtsova, and N. Dvurechenskaya, “Ontology approach for the intelligent analysis of labor market and educational content matching,” in 2021 International Symposium on Knowledge, Ontology, and Theory (KNOTH). IEEE, 2021, pp. 50–55.
  26. Z. Li, W. Xu, L. Zhang, and R. Y. Lau, “An ontology-based web mining method for unemployment rate prediction,” Decision Support Systems, vol. 66, pp. 114–122, 2014.
  27. T.-P. Liang and Y.-H. Liu, “Research landscape of business intelligence and big data analytics: A bibliometrics study,” Expert Systems with Applications, vol. 111, pp. 2–10, 2018.
  28. T. Avdeenko and M. Bakaev, “Modeling information space for decision-making in the interaction of higher education system with regional labor market,” in 2014 12th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2014, pp. 617–623.
  29. A. Fischer and J. Dörpinghaus, “Web mining of online resources for german labor market research and education: Finding the ground truth?” Knowledge, vol. 4, no. 1, pp. 51–67, 2024.
  30. B. Batrinca and P. C. Treleaven, “Social media analytics: a survey of techniques, tools and platforms,” Ai & Society, vol. 30, pp. 89–116, 2015.
  31. M. Tiemann, H.-J. Schade, R. Helmrich, A. Hall, U. Braun, and P. Bott, “Berufsfeld-definitionen des bibb auf basis der klassifikation der berufe 1992,” Schriftenreihe des Bundesinstituts für Berufsbildung Bonn, vol. 105, no. 1, p. 57, 2008.