Logo PTI Logo FedCSIS

Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 39

The comparison of pixel-based image analysis for detection of weeds in winter wheat from UAV imagery

, , , ,

DOI: http://dx.doi.org/10.15439/2024F4147

Citation: Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 39, pages 683687 ()

Full text

Abstract. Creating weed maps directly by growers is becoming increasingly common. In this study, an unmanned aerial vehicle (UAV) imaged a field infested by field thistle (Cirsium arvense). This paper compares four detection methods that can be used concerning agricultural practice. Two algorithms are supervised classification methods - Maximum Likelihood (ML) and Supported Vector Machine (SVM). The Pix4Dfields (Magic Tool) classification algorithm and the thresholding method are other methods used. The Kappa coefficient and the overall accuracy determined the accuracy of the individual algorithms. The highest accuracy was achieved by the thresholding method, and the lowest by the Pix4Dfields algorithm. Among the supervised classification methods, SVM achieved higher accuracy than the ML algorithm. In terms of using the methods in practice, the thresholding method proved more effective than supervised classification methods.

References

  1. N. Ubben, M. Pukrop, and T. Jarmer, “Spatial Resolution as a Factor for Efficient UAV-Based Weed Mapping—A Soybean Field Case Study”, Remote Sensing, vol. 16, no. 10, 2024.
  2. J. Su, D. Yi, M. Coombes, C. Liu, X. Zhai, K. McDonald-Maier, and W. -H. Chen, “Spectral analysis and mapping of blackgrass weed by leveraging machine learning and UAV multispectral imagery”, Computers and Electronics in Agriculture, vol. 192, 2022.
  3. T. B. Shahi, S. Dahal, C. Sitaula, A. Neupane, and W. Guo, “Deep Learning-Based Weed Detection Using UAV Images: A Comparative Study”, Drones, vol. 7, no. 10, 2023.
  4. G. Castellano, P. De Marinis, and G. Vessio, “Weed mapping in multispectral drone imagery using lightweight vision transformers”, Neurocomputing, vol. 562, 2023.
  5. V. Vijayakumar, Y. Ampatzidis, J. K. Schueller, and T. Burks, “Smart spraying technologies for precision weed management: A review”, Smart Agricultural Technology, vol. 6, 2023.
  6. S. Meesaragandla, M. P. Jagtap, N. Khatri, H. Madan, and A. A. Vadduri, “Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review”, Results in Engineering, vol. 21, 2024.
  7. C. de Villiers, C. Munghemezulu, Z. Mashaba-Munghemezulu, G. J. Chirima, and S. G. Tesfamichael, “Weed Detection in Rainfed Maize Crops Using UAV and PlanetScope Imagery”, Sustainability, vol. 15, no. 18, 2023.
  8. S. Villette, T. Maillot, J. -P. Guillemin, and J. -P. Douzals, “Assessment of nozzle control strategies in weed spot spraying to reduce herbicide use and avoid under- or over-application”, Biosystems Engineering, vol. 219, pp. 68-84, 2022.
  9. R. Raja, T. T. Nguyen, D. C. Slaughter, and S. A. Fennimore, “Real-time weed-crop classification and localisation technique for robotic weed control in lettuce”, Biosystems Engineering, vol. 192, pp. 257-274, 2020.
  10. M. Spaeth, M. Sökefeld, P. Schwaderer, M. E. Gauer, D. J. Sturm, C. C. Delatrée, and R. Gerhards, “Smart sprayer a technology for site-specific herbicide application”, Crop Protection, vol. 177, 2024.
  11. S. Meesaragandla, M. P. Jagtap, N. Khatri, H. Madan, and A. A. Vadduri, “Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review”, Results in Engineering, vol. 21, 2024.
  12. L. Mariga, I. Silva Tiburcio, C. A. Martins, A. N. Almeida Prado, and C. Nascimento, “Measuring battery discharge characteristics for accurate UAV endurance estimation”, The Aeronautical Journal, vol. 124, no. 1277, pp. 1099-1113, 2020.
  13. A. Shirzadifar, S. Bajwa, J. Nowatzki, and A. Bazrafkan, “Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season”, Biosystems Engineering, vol. 200, pp. 200-214, 2020.
  14. T. Blaschke, G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Queiroz Feitosa, F. van der Meer, H. van der Werff, F. van Coillie, and D. Tiede, “Geographic Object-Based Image Analysis – Towards a new paradigm”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 87, pp. 180-191, 2014.
  15. H. Huang, Y. Lan, A. Yang, Y. Zhang, S. Wen, and J. Deng, “Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery”, International Journal of Remote Sensing, vol. 41, no. 9, pp. 3446-3479, May 2020.
  16. J. -L. TANG, D. -J. HE, X. JING, and F. David, “Maize seedling/weed multiclass detection in visible/near infrared image based on SVM”, JOURNAL OF INFRARED AND MILLIMETER WAVES, vol. 30, no. 2, pp. 97-103, Mar. 2011.
  17. N. Ubben, M. Pukrop, and T. Jarmer, “Spatial Resolution as a Factor for Efficient UAV-Based Weed Mapping—A Soybean Field Case Study”, Remote Sensing, vol. 16, no. 10, 2024.
  18. N. Islam, M. M. Rashid, S. Wibowo, C. -Y. Xu, A. Morshed, S. A. Wasimi, S. Moore, and S. M. Rahman, “Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm”, Agriculture, vol. 11, no. 5, 2021.
  19. G. Rozenberg, R. Kent, and L. Blank, “Consumer-grade UAV utilized for detecting and analyzing late-season weed spatial distribution patterns in commercial onion fields”, Precision Agriculture, vol. 22, no. 4, pp. 1317-1332, 2021.
  20. A. P. Nicolau, K. Dyson, D. Saah, and N. Clinton, “Accuracy Assessment: Quantifying Classification Quality”, Cloud-Based Remote Sensing with Google Earth Engine, pp. 135-145, Oct. 2024.
  21. Z. Wu, Y. Chen, B. Zhao, X. Kang, and Y. Ding, “Review of Weed Detection Methods Based on Computer Vision”, Sensors, vol. 21, no. 11, 2021.
  22. J. Elbl, V. Lukas, J. Mezera, I. Hunady, and A. Kintl, “USING SELF-PROPELLED SPRAYERS FOR THE TARGETED APPLICATION OF HERBICIDES”, pp. 307-314, Oct. 2023.