Logo PTI Logo FedCSIS

Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS)

Annals of Computer Science and Information Systems, Volume 39

Agricultural Data Space: the METRIQA Platform and a Case Study in the CODECS project

, , , , , , ,

DOI: http://dx.doi.org/10.15439/2024F5291

Citation: Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 39, pages 543548 ()

Full text

Abstract. This work describes the design and development of the METRIQA platform, hosting the Italian agrifood data space (IADS). Both are key components that the Italian National Research Centre for Agricultural Technologies is putting forward. We present a high-level description of the platform, which is designed to provide web-like access to digital resources and services following an approach called Web of Agri-Food, to support the digital transformation of the sector in Italy. To show its potential, we also present a real case study demonstrating both the benefits and impacts of the proposed architecture, connecting stakeholders and authorities at different levels.

References

  1. S. Chessa, G. M. Dimitri, M. Gori, and A. Kocian, “WoA: an Infrastructural, Web-based Approach to Digital Agriculture,” in Proc. 14th Int. Symposium on Ambient Intelligence. Guimarães, Portugal: Springer, 2023, p. 10.
  2. M. Atzori, A. Ciaramella, C. Diamantini, B. Martino, S. Distefano, T. Facchinetti, F. Montecchiani, A. Nocera, G. Ruffo, R. Trasarti et al., “Dataspaces: Concepts, Architectures and Initiatives,” in CEUR WORKSHOP PROCEEDINGS, vol. 3606. CEUR-WS, 2024.
  3. “European Data Strategy,” 2019. [Online]. Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy en
  4. J. Pampus, B.-F. Jahnke, and R. Quensel, “Evolving Data Space Technologies: Lessons Learned from an IDS Connector Reference Implementation,” in Leveraging Applications of Formal Methods, Verification and Validation. Practice: 11th International Symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part IV. Springer, 2022, pp. 366–381.
  5. EU, “Simpl: Cloud-to-Edge Federations Empowering EU Data Spaces,” Tech. Rep., 2024. [Online]. Available: https://digital-strategy.ec.europa. eu/en/policies/simpl
  6. L. Nagel and D. Lycklama, “How to Build, Run, and Govern Data Spaces,” in Designing Data Spaces: The Ecosystem Approach to Competitive Advantage. Springer International Publishing Cham, 2022, pp. 17–28.
  7. M. Bacco, P. Barsocchi, E. Ferro, A. Gotta, and M. Ruggeri, “The Digitisation of Agriculture: a Survey of Research Activities on Smart Farming,” Array, vol. 3, p. 100009, 2019.
  8. A. Kocian and L. Incrocci, “Learning from Data to Optimize Control in Precision Farming,” Stats, vol. 3, pp. 239–245, 2020, editorial.
  9. G. Burchi, S. Chessa, F. Gambineri, A. Kocian, D. Massa, P. Milano, P. Milazzo, L. Rimediotti, and A. Ruggeri, “Information Technology Controlled Greenhouse: A System Architecture,” in Proc. IoT Vertical and Topical Summit for Agriculture. Tuscany, Italy: IEEE, May 2018.
  10. A. Kocian, G. Carmassi, F. Cela, S. Chessa, P. Milazzo, and L. Incrocci, “IoT-based Dynamic Bayesian Prediction of Crop Evapotranspiration in Soilless Cultivations,” Computer and Electronics in Agriculture, vol. 205, Feb. 2023.
  11. M. Koch, S. Kober, S. Straburzynski, B. Gaunitz, and B. Franczyk, “Federated Learning for Data Trust in Logistics,” in FedCSIS (Position Papers), 2023, pp. 51–58.
  12. C. A. Ardagna, N. Bena, N. Bennani, C. Ghedira-Guegan, N. Grecchi, and G. Vargas-Solar, “Revisiting Trust Management in the Data Economy: A Roadmap,” IEEE Internet Computing, no. 01, pp. 1–8, 2024.
  13. J. Doerr, R. Kalmar, B. Rauch, and S. Stiene, “Data Spaces in Agriculture - Status Quo and Perspectives,” in LAND.TECHNIK 2022. VDI Verlag, 2022, pp. 511–520.
  14. R. Kalmar, B. Rauch, J. Dörr, and P. Liggesmeyer, Agricultural Data Space. Springer, 2022, ch. Designing Data Spaces.
  15. R. Falcão, R. Matar, B. Rauch, F. Elberzhager, and M. Koch, “A Reference Architecture for Enabling Interoperability and Data Sovereignty in the Agricultural Data Space,” Information, vol. 14, no. 3, p. 197, mar 2023.
  16. M. Šestak and D. Copot, “Towards Trusted Data Sharing and Exchange in Agro-Food Supply Chains: Design Principles for Agricultural Data Spaces,” Sustainability, vol. 15, no. 18, p. 13746, 2023.
  17. A. Ferrari, M. Bacco, K. Gaber, A. Jedlitschka, S. Hess, J. Kaipainen, P. Koltsida, E. Toli, and G. Brunori, “Drivers, Barriers and Impacts of Digitalisation in Rural Areas from the Viewpoint of Experts,” Information and Software Technology, vol. 145, p. 106816, 2022.
  18. C. Mannari, M. Bacco, A. Ferrari, L. Ortolani, M. B. Lai, C. Mignani, A. Silvi, A. Malizia, and G. Brunori, “A Methodology for Process Modelling in Living Labs to Foster Agricultural Digitalisation,” in 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). IEEE, 2023, pp. 19–24.
  19. A. Kung, S. Gusmeroli, G. Monteleone, A. Dognini, L. Nicolas, and C. Polcaro, “Reference Architectures and Interoperability in Digital Platforms,” H2020 Open Dei, techreport, Apr. 2022.
  20. M. Bauer and C. Augenstein, “Can Unlabelled Data Improve AI Applications? A Comparative Study on Self-Supervised Learning in Computer Vision,” in 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2023, pp. 93–101.
  21. M. Bacco, A. Ferrari, and G. Brunori, “Co-design of Technological Solutions for Agriculture and Rural areas: Methodology and Cases for Responsible Innovation,” in IEEE 8th World Forum on Internet of Things - Vertical Track: Agriculture, Yokohama, Japan, Nov 2022.
  22. L. Nagel, D. Lycklama, and U. Ahle, “Design Principles for Data Spaces: Position Paper,” International Data Spaces Association, 2021.