Impact of Local Geometry on Methods for Constructing Protein Conformations
Wagner Da Rocha, Therese Malliavin, Antonio Mucherino, Leo Liberti
DOI: http://dx.doi.org/10.15439/2024F8235
Citation: Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 39, pages 677–681 (2024)
Abstract. The prediction of protein structures is an important problem in molecular biology. In spite of the large efforts from the research community, and of the recent development of artificial intelligence tools specifically designed for this problem, a complete and definitive solution to the problem has not been found yet. This work is based on the observation that many tools for the prediction of protein conformations rely on both local and non-local geometrical information, even though the non-local information can be very hard to identify within the desired precision in some particular situations. For this reason, we explore in this work the effect of local geometry on methods capable of constructing protein conformations. This initial study has the final aim of devising new alternative methods where the predictions may be guided mainly by the local geometry of proteins.
References
- J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A.J. Ballard, J. Bambrick, S.W. Bodenstein, D.A. Evans, C-C. Hung, M. O’Neill, D. Reiman, K. Tunyasuvunakool, Z. Wu, A. Zemgulyté, E. Arvaniti, C. Beattie, O. Bertolli, A. Bridgland, A. Cherepanov, M. Congreve, A.I. Cowen-Rivers, A. Cowie, M. Figurnov, F.B. Fuchs, H. Gladman, R. Jain, Y.A. Khan, C.M.R. Low, K. Perlin, A. Potapenko, P. Savy, S. Singh, A. Stecula, A. Thillaisundaram, C. Tong, S. Yakneen, E.D. Zhong, M. Zielinski, A. Zı́dek, V. Bapst, P. Kohli, M. Jaderberg, D. Hassabis, J.M. Jumper, Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3, to appear in Nature, accelerated preview on Nature.com published on May 8, 2024.
- F.C.L. Almeida, A.H. Moraes, F. Gomes-Neto, An Overview on Protein Structure Determination by NMR, Historical and Future Perspectives of the Use of Distance Geometry Methods. In:
- , 377–412, 2013.
- H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, P. Bourne, The Protein Data Bank, Nucleic Acids Research 28, 235–242, 2000.
- D.A. Case, R.M. Betz, D.S. Cerutti, T.E. Cheatham III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, C. Lin, T. Luchko, R. Luo, B. Madej, D. Mermelstein, K.M. Merz, G. Monard, H. Nguyen, H.T. Nguyen, I. Omelyan, A. Onufriev, D.R. Roe, A. Roitberg, C. Sagui, C.L. Simmerling, W.M. Botello-Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu, L. Xiao, P.A. Kollman, AMBER 2016, University of California, San Francisco, 2016.
- K.A. Dill, S. Banu Ozkan, M. Scott Shell, T.R. Weikl, The Protein Folding Problem, Annual Review of Biophysics 37, 289–316, 2008.
- R Engh, R Huber, Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement, Acta Crystallographica A 47, 392–400, 1991.
- D. Förster , J. Idier, L. Liberti, A. Mucherino, J-H. Lin, T.E. Malliavin, Low-Resolution Description of the Conformational Space for Intrinsically Disordered Proteins, Scientific Reports 12, 19057, 16 pages, 2022.
- P. Güntert, L. Buchner, Combined Automated NOE Assignment and Structure Calculation with CYANA, Journal of Biomolecular NMR 62, 453–471, 2015.
- S.B. Hengeveld, T. Malliavin, J.H. Lin, L. Liberti, A. Mucherino, A Study on the Impact of the Distance Types Involved in Protein Structure Determination by NMR, IEEE Conference Proceedings, Computational Structural Bioinformatics Workshop (CSBW21), International Conference on Bioinformatics & Biomedicine (BIBM21), online event, 9 pages, 2021.
- S.B Hengeveld, M. Merabti, F. Pascale, T.E. Malliavin, A Study on the Covalent Geometry of Proteins and Its Impact on Distance Geometry, Lecture Notes in Computer Science 14072 (part 2), F. Nielsen, F. Barbaresco (Eds.), Proceedings of Geometric Science of Information (GSI23), Saint Malo, France, 520–530, 2023.
- S.A. Hollingsworth, M.C. Lewis, D.S. Berkholz, W.K. Wong, P.A. Karplus, (phi,psi) Motifs: a Purely Conformation-based Fine-Grained Enumeration of Protein Parts at the Two-Residue Level. Journal of Molecular Biology 416(1), 78–93, 2012.
- B. Kuhlman and P. Bradley, Advances in protein structure prediction and design, Nature Reviews Molecular Cell Biology 20, 681–697, 2019.
- C. Lavor, L. Liberti, A. Mucherino, The interval Branch-and-Prune Algorithm for the Discretizable Molecular Distance Geometry Problem with Inexact Distances, Journal of Global Optimization 56(3), 855–871, 2013.
- L. Liberti, C. Lavor, N. Maculan, A Branch-and-Prune Algorithm for the Molecular Distance Geometry Problem, International Transactions in Operational Research 15, 1–17, 2008.
- L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean Distance Geometry and Applications, SIAM Review 56(1), 3–69, 2014.
- T.E. Malliavin, Tandem Domain Structure Determination based on a Systematic Enumeration of Conformations, Scientific Reports 11, 16925, 2021.
- A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Eds.), Distance Geometry: Theory, Methods and Applications, 410 pages, Springer, 2013.
- G.N.T. Ramachandran, V. Sasisekharan, Conformation of Polypeptides and Proteins, Advances in Protein Chemistry 23, 283–437, 1968.
- P. Tompa, Intrinsically Disordered Proteins: a 10-Year Recap, Trends in Biochemical Sciences 37(12), 509–516, 2012.
- T. Warnow. Revisiting Evaluation of Multiple Sequence Alignment Methods, Methods in Molecular Biology 2231, 299–317, 2021.
- M. Weigt, R.A. White, H. Szurmant, J.A. Hoch, T. Hwa. Identification of Direct Residue Contacts in Protein-Protein Interaction by Message Passing. PNAS 106, 67–72, 2009.
- B. Worley, F. Delhommel, F. Cordier, T.E. Malliavin, B. Bardiaux, N. Wolff, M. Nilges, C. Lavor, L. Liberti, Tuning Interval Branch-and-Prune for Protein Structure Determination, Journal of Global Optimization 72, 109–127, 2018.