Pathomorphological Diagnosis Process Modeling for Machine Learning Algorithms’ Applying
Małgorzata Pańkowska, Mariusz Żytniewski, Mateusz Kozak, Krzysztof Tomaszek, Dominik Spinczyk
DOI: http://dx.doi.org/10.15439/2024F8289
Citation: Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 39, pages 237–242 (2024)
Abstract. Business process management is oriented towards improving processes to best support people, who are working in them. Recent innovations in the area of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), and distributed systems have provided opportunities for new technologies applications, including process automation. This paper aims at the pathomorphological diagnosis (PD) process modeling for the ML solution implementation. The research methods cover literature review and PD laboratory case study. Authors proposed the case study approach, because they argue that the PD process requires detailed analysis for its digitalization, automation, and combining with ML applications. Authors presented PD process models in BPMN notation, including laboratory equipment and emphasizing data and ML algorithms which are to be utilized in PD process digitalization for appropriate diagnosis for patients. Authors have found and emphasized that implementation of ML/AI algorithms is strongly based on fundamental process modeling
References
- M.M. Abdelsamea, U. Zidan, Z. Senousy, M.M. Gaber, E. Rakha, M. Ilyas, “A survey on artificial intelligence in histopathology image analysis,” in Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery vol. 12, issue 6, pp. 1-44, 2022. https://doi.org/10.1002/widm.1474.
- O.G. Baker, “Process surveillance: an epidemiologic challenge for all health care organizations,“ in American Journal of Infection Control, Vol. 25, Issue 2, pp. 97-101, 1997. http://dx.doi.org/10.1016/s0196- 6553(97)90034-1. PMID: 9113284.
- S. Bharati, M. R. H, Mondal, P. Podder, and V. B. S. Prasath, “Deep Learning for Medical Image Registration: A Comprehensive Review,: in International Journal of Computer Information Systems and Industrial Management Applications, vol. 14, pp. 173-190, 2022.
- Business Process Model and Notation (BPMN) version 2.0, Object Management Group (OMG), 2011, https://www.omg.org/spec/BPMN/2.0/PDF/
- F. C. Dargam, E. Perz, S. Bergmann, E. Rodionova, P. Sousa, F.A. Souza, T. Matias, J. M. Ortiz, A. Esteve-Nuñez, P. Rodenas, and P.Z. Bonachela, “Operational Decision-Making on Desalination Plants: From Process Modelling and Simulation to Monitoring and Automated Control With Machine Learning,” in International Journal of Decision Support System Technology (IJDSST), 15(2), 2023, pp. 1-20. http://doi.org/10.4018/IJDSST.315639
- J. De Matos, S. T. M., Ataky, A. de S. Britto, L. E. S., de Oliveira, and A.L. Koerich, “Machine learning methods for histopathological image analysis: A review,” in Electronics (Switzerland), vol. 10, no. 5, 2021. http://dx.doi.org/10.3390/electronics10050562.
- W. George Davies, S. Babamohammadi, Y. Yang, and S. Masoudi Soltani, “The rise of the machines: A state-of-the-art technical review on process modelling and machine learning with hydrogen production with carbon capture,” in Gas Science and Engineering, Vol.
- 119, No 205104, 2023 .http://dx.doi.org/10.1016/j.jgsce.2023.205104 M. Gholinejad, A. J. Loeve, and J. Dankelman, “Surgical process modelling strategies: which method to choose for determining work- flow?” in Minimally Invasive Therapy and Allied Technologies, 28(2), pp. 91-104, 2019. http://dx.doi.org/10.1080/13645706.2019.1591457
- C. Gisske, J. Liu, and K. Gand, “Applying Goal-Oriented Modelling for Machine Learning Based Rehabilitation Care,” in Studies in Health Technology and Informatics, 294, pp. 342-346, 2022.
- M.N. Gurcan, L.E. Boucheron, A. Can, A. Madabhushi, N.M. Rajpoot, and B. Yener, “ Histopathological Image Analysis: A Review,” in IEEE Reviews in Biomedical Engineering, vol. 2, pp. 147-171, 2009. http://dx.doi.org/10.1109/RBME.2009.2034865.
- O. Jimenez-Del-Toro, S. Otalora, M. Andersson, K. Euren, M. Hed- lund, M. Rousson, H. Muller, and M. Atzori, “Analysis of histopathology images: From traditional machine learning to deep learning” in Biomedical Texture Analysis: Fundamentals, Tools and Challenges, pp. 281-314, 2017. http://dx.doi.org/10.1016/B978-0-12-812133-7.00010-7.
- M. Komorowski, D.C. Marshall, J.D. Salciccioli, and Y. Crutain, “Exploratory Data Analysis,” in Secondary Analysis of Electronic Health Records. M. Komorowski, D.C. Marshall, J.D. Salciccioli, and Y. Crutain. Eds. Cham: Springer, 2016, pp. 185-204.
- https://doi.org/10.1007/978-3-319-43742-2_15 S. Kosaraju, J. Park, H. Lee, J.W. Yang, and M. Kang, “ Deep learning-based framework for slide-based histopathological image anal- ysis,” in Scientific Reports 12, Nature Portfolio, No 19075, 2022.
- https://doi.org/10.1038/s41598-022-23166-0. W. Kratsch, J. Manderscheid, M. Röglinger, and J. Seyfried, “Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Predic- tion,” in Business & Information Systems Engineering, 63, pp. 261276, 2021.
- L. Maas, M. Geurtsen, F. Nouwt, S. Schouten, R. van der Water, S. van Dulmen, F. Dalpiaz, K. van Deemter, S. Brinkkemper, “The Care2Report System: Automated Medical Reporting as an Integrated Solution to Reduce Administrative Burden in Healthcare,” in Proceedings of the 53rd Hawaii International Conference on System Sciences, pp. 3608-3617, 2020. Last accessed 2023/10/25 http://hdl.handle.net/10125/64184.
- D. Marlon, M. La Rosa, J. Mendling, and H.A. Reijers, Fundamentals of Business Process Management, Berlin, Springer, 2018.
- A. Marszałek, W. Grakowska, J. Szumiło, E. Kaznowska, Ł. Szylberg, and J. Szpor, Podręcznik wdrożeniowy, Jednostki diagnostyki patomorfologicznej, Wskazówki i zalecenia dla jednostek diagno- styki patomorfologicznej ułatwiające wdrożenie standardów akredytacyjnych. Kraków, Centrum Monitorowania Jakości w Ochronie Zdrowia, 2022.
- D. Mouromtsev, “Semantic reference model for individualization of information processes in IoT heterogeneous environment,” in Electronics (Switzerland), 10(20), 2523, 2021.
- Obwieszczenie Ministra Zdrowia z dnia 24 września 2021 r w sprawie standardów akredytacyjnych w zakresie udzielania świadczeń zdrowotnych oraz funkcjonowania jednostek diagnostyki patomorfologicznej. Warszawa, Ministerstwo Zdrowia, 2021.
- V. Pereira, M.P. Basilio, and C.H.T. Santos, “pyBibX--A Python Library for Bibliometric and Scientometric Analysis Powered with Artificial Intelligence Tools,” arXiv preprint https://arxiv.org/abs/2304.14516, 2023. https://doi.org/10.48550/arXiv.2304.14516
- M. Roy, F., Wang, G. Teodoro, S. Bhattarai, M. Bhargava, T.S. Rekha, R. Aneja, and J. Kong, “Deep learning based registration of serial whole-slide histopathology images in different stains” in Journal of Pathology Informatics vol. 14, 2023. http://dx.doi.org/10.1016/j.jpi.2023.100311.
- Rozporządzenie Ministra Zdrowia z dnia 18 grudnia 2017 w sprawie standardów organizacyjnych opieki zdrowotnej w dziedzinie patomorfologii. Dziennik Ustaw Rzeczypospolitej Polskiej poz 2435, 2017.
- R. Sun, T. Lei, Q. Chen, Z, Wang, X, Du, and W. Zhao, and A.K. Nandi, “Survey of Image Edge Detection,” in Frontiers in Signal Processing, vol. 2, Mar. 2022, http://dx.doi.org/10.3389/FRSIP.2022.826967.
- M. Take, C. Becker, S. Alpers, and A. Oberweis, “Modeling the Integration of Machine Learning into Business Processes with BPMN,” in Proceedings of Eighth International Congress on Information and Communication Technology. ICICT 2023. Lecture Notes in Networks and Systems, vol 696, H.S. Yang, R.S. Sherratt, N. Dey, and A. Joshi, Eds. Singapore, Springer, 2024, pp. 943-958. https://doi.org/10.1007/978-981-99-3236-8_76
- J. Tang, L. Li, Y. Liu, and K.-Y. Lin, “Automatic identification of bottleneck tasks for business process management using fusion-based text clustering,” in IFAC-PapersOnLine, 54(1), pp. 1200-1205, 2021.
- X. Wang, S. Yang, J. Zhang, M. Wang, J. Zhang, W. Yang, J. Huang, and X. Han, “Transformer-based unsupervised contrastive learning for histopathological image classification,” in Medical Image Analysis, Vol 81, 2022. http://dx.doi.org/10.1016/j.media.2022.102559.
- W.M.P. Van der Aalst, “Process Mining: A 360 Degree Overview,” in Process Mining Handbook, W.M.P. Van der Aalst, J. Carmona Eds. Cham, Springer, 2022, pp. 3-17.
- R. Velioglu, J.P. Gopfert, A. Artelt, and B. Hammer, “Explainable Artificial Intelligence for Improved Modeling of Processes,” in 23rd International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2022. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, Vol 12756 LNCS, H. Yin, D. Camacho, P. Tino, Eds. Cham, Springer, 2022, pp. 313-325.
- Y. Xu, Z. Jia, L.B. Wang, Y. Ai, F. Zhang, M. Lai, and E.-I.-C. Chang, “Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features,” in BMC Bioinformatics, 18, 281, 2017. https://doi.org/10.1186/s12859-017-1685-x.