
Languages for Non-developers: What, How, Where?

Invited Talk—Extended Abstract

Juha-Pekka Tolvanen

0000-0002-6409-5972

MetaCase,

Jyväskylä, Finland

jpt@metacase.com

LANGUAGES TO RAISE THE LEVEL OF ABSTRACTION

P
RODUCTIVITY has improved each time programming

languages have raised the level of abstraction. This trend

continues today with languages that narrow the scope they

address, referred to as domain-specific languages (DSLs) [1].

However, many of these DSLs are built by developers for

developers and tend to focus on the solution domain rather

than the problem domain. These languages typically use text

as the specification language, are built on top of IDE tools

used by programmers and rely on diff and merge of files for

collaboration.

In this talk, we will focus on languages that are more closely

aligned with the problem domain rather than the solution

domain, thereby addressing the needs of domain experts.

Such languages not only raise the level of abstraction beyond

programming but also enable non-developers to capture and

communicate their knowledge, and, together with appropri-

ate tools, support testing, validation, and feedback. This is

important as research has consistently shown that common

reasons for project failures, budget overruns, and similar issues

are often related to limited understanding and formulating

requirements and to the lack of user involvement. By using

languages that are close to the problem domain, many typical

development tasks—especially those related to requirements

specification, checking, and validation—can be performed by

non-developers. In many cases, the specifications created by

domain experts can also be used to automatically generate

code, configurations, tests, deployment instructions, and more.

CHARACTERISTICS OF NON-DEVELOPER LANGUAGES

The talk is based on a review of over 200 industry cases

([2], see Figure 1) involving the creation and use of domain-

specific languages with MetaEdit+ tool [3]. MetaEdit+ enables

users to create and use domain-specific modeling languages

and generators.

Interestingly, most of the analyzed DSLs were developed

for use by non-programmers (see Figure 2), which inspired the

title of this talk. We will present examples of non-developer

languages, such as those used by usability experts, safety

engineers, security engineers, insurance experts and instru-

mentation experts. These sample languages will illustrate how

they differ from traditional programming languages or DSLs

Fig. 1. Examples of DSLs reviewed

created for developers and programmers: Languages for non-

developers are designed to align more closely with specific

domains, representing knowledge through maps, diagrams,

matrices, tables, and their combinations rather than plain text

alone.

We will highlight key findings from the reviewed DSLs,

including who created them (Figure 3), their size relative to

standardized modeling languages like UML (Figure 4), and

whether languages created for domain experts are smaller or

larger than those intended for use by programmers, or if the

role of the language creator influences size of the language.

HOW TO CREATE LANGUAGES FOR NON-DEVELOPERS

In the second part of the talk, we will discuss how creation

of non-developer languages differs from that of programming

languages. While publications on domain-specific languages

typically focus on their abstract syntax, defined through meta-

models or grammars, we will emphasize aspects relevant to

languages used by domain experts, such as the importance of

concrete syntax (e.g. following guidelines like those in [4]) and

the provision of support for language use, including guidance,

animation, and error and warning reporting [5]—features often

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 61–62

DOI: 10.15439/2024F0002

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 61 Invited contribution



Fig. 2. Primary language user (n=45)

Fig. 3. Who implements domain-specific languages (n=100)

not covered in language specifications (see e.g. languages

standardized by OMG, ITU, or The Open Group). Regarding

industrially used languages, we will focus on two critical

aspects of using DSLs: enabling user participation during lan-

guage creation and supporting the evolution of the languages,

along with the co-evolution of the work made using previous

versions of the language [6].

TOOL AND PROCESS SUPPORT

Computer languages also require tools, as tools can trans-

form precise knowledge representations made with DSLs into

software code and other artifacts. We will examine the history

of tools used for creating DSLs, including the latest advances

in this area [7] as well as the effort to create DSLs [8].

Tools are also essential for enabling collaboration, but it

is often unrealistic to apply approaches used in traditional

programming, such as IDE tools and diffing and merging of

files, to languages used by non-developers. Domain experts

and non-developers expect tools that are easier to learn and

Fig. 4. Size of languages - in terms of size of their metamodel (n=39)

use, as they do not typically use their languages on a daily

basis, unlike developers who use programming languages.

Domain experts also expect that collaboration, viewing, and

managing changes in the artifacts will be simpler and more

closely aligned with the problem domain, rather than focusing

on tracking changes through character differences within files.

Not only the languages but also the entire process related to

using them needs to focus on the problem domain.

We conclude by envisioning the role of non-developers in

language creation and identifying situations where DSLs are

most suitable, as well as pointing areas where they may not

be applicable.

REFERENCES

[1] Fowler, M. 2008. "Domain-Specific Languages", Addison-Wesley
[2] MetaCase. 2024. "DSL of the week",

https://www.facebook.com/media/set/?set=a.2102426129807641
(accessed August 2024)

[3] MetaCase. 2023. "MetaEdit+ 5.5 User’s Guides",
https://metacase.com/support/55/manuals/ (accessed August 2024)

[4] D. Moody. 2009. The “Physics” of Notations, IEEE Transactions on
Software Engineering, vol. 35, no. 6

[5] S. Kelly, J-P. Tolvanen. 2021. "Automated Annotations in Domain-
Specific Models: Analysis of 23 Cases". STAF Workshops

[6] J-P. Tolvanen and S. Kelly. 2023. "Evaluating Tool Support for Co-
Evolution of Modeling Languages, Tools and Models", ACM/IEEE
MODELS Conference companion

[7] M. Ozkaya and D. Akdur. 2021. "What do practitioners expect from the
meta-modeling tools? A survey", Journal of Computer Languages, Vo 63

[8] J-P. Tolvanen and S. Kelly. 2018. "Effort Used to Create Domain-
Specific Modeling Languages". ACM/IEEE Conference on Model Driven
Engineering Languages and Systems

62 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


