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Abstract—In this paper, we present an integrated approach
that combines data and information sources from different
domains to better capture the potential effects of a pandemic
and to improve preparedness of critical infrastructures and
decision makers in the future. This approach not only takes
epidemiological data on a pathogen into account but also allows
to simulate the cascading effects of the pandemic itself as well
as the mitigation measures might have on the operation of CIs
from various domains and, consequently, on the well-being of the
society. Additionally, these effects can influence the operational
capacity and economic well-being of CIs. Hence, the approach
also projects the possible economic effects, i.e., monetary costs, a
future pandemic might impose on society, including wide-ranging
counter measures such as school closures or lock-downs.

I. INTRODUCTION

U
NLIKE any other event, the COVID-19 pandemic has

shown the complex and highly sensitive interrelations

among the society, the critical infrastructures (CIs) and the

decision makers on a national and supra-national scale. The

pandemic not only had a huge impact on people’s health

as well as on public health but also on the functioning of

critical services and thus on the social well-being of a large

part of the European population. Additionally, the measures

taken to mitigate the pandemic, ranging from social distancing

to complete lock-downs, came with huge challenges and

high cost for CI operators and national governments. From

pandemic plans existing before COVID-19, it becomes evident

that such wide-ranging effects and large-scale impacts were

not foreseen by decision makers. However, similar pandemic

events will become more likely in Europe in the future,

particularly when considering climate change [4]. Hence, it is

of utmost importance to prepare decision makers, CI operators

and the society as a whole for future pandemics to increase

their individual and combined resilience.

As part of this preparation activities, the SUNRISE project

[29], funded by the European Union in the course of the

Horizon Europe Programme, aims at developing a compre-

hensive strategy for CI operators as well as national and

regional authorities to improve their robustness and resilience

against future pandemic scenarios. To achieve that, the project

focuses on the integration of several simulation approaches and

tools from different domains such as health and epidemiology,

regional and national economics as well as general aspects

of CI protection. This integrated approach provides a holistic

overview on the current pandemic situation to decision makers

on a regional and national level as well as to CI authorities

and operators.

In this paper, we will give a first insight into this integrated

approach and present its overall methodological setup, i.e.,

the SUNRISE Process. This process represents a step-by-step

guideline for CI operators and decision makers from regional

and national authorities on how to prepare for and tackle an

upcoming pandemic. We will show how the process utilizes

data sources from different domains (i.e., epidemiological

data on the pathogen, structural data on the CIs relevant for

or affected by the pandemic as well as data on economic

effects of the pandemic) and combines them into a decision

making framework. As an example, we will also describe three

simulation tools, one for describing the spreading of a virus

during a pandemic, one for indicating the cascading effects of

the pandemic across various industry sectors and domains and

one for capturing the short- and mid-term economic effects on

individual sectors.

The rest of the paper is structured as follows: in the

next section, we provide a short overview on related work

on pandemic preparedness and approaches to increase the

protection and resilience of CIs during a pandemic. In Section

III, we describe on a high level the SUNRISE approach and the
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different process steps that CI operators can use to increase

their resilience. As these steps are driven by ICT tools, we

show some examples of simulation tools in Section IV, which

can be used – and combined – to obtain a better overview on

the effects of a pandemic on the CIs, the economy, and the

society as a whole. Finally, Section V concludes the paper and

provides an outlook on next steps in the project.

II. RELATED WORK

Critical infrastructures (CIs) are interdependent in many

ways. First and foremost, CIs provide goods and services that

are used by other CIs, e.g., a hospital needs electricity and

water for operation, but also depends on the transportation

system for staff and medication. In recent years, digitalization

induced further dependencies, e.g., by electronic control sys-

tems for physical processes. Due to these interdependencies,

CIs cannot be treated as isolated entities. In particular, any

risk analysis carried out by an individual CI needs to take the

interdependencies with other CIs into account, since those re-

lations affect the operation of the CI itself. Furthermore, when

looking at the complex network of CIs within a region or on

a national scale, it is important to consider this entire network

of CIs because the interdependencies affect not only risk level

(i.e., the impact of particular threats on all CIs) but also the

resilience (i.e., how fast all CIs can recover from an incident)

of the entire network. Hence, many approaches to analyse

these cascading effects such as the Cross Impact Analysis

(CIA) [31], the Hierarchical Holographic Model (HHM) [9],

Input-output-Interoperability Model (IIM) [23] or approaches

using Interdependent Markov Chains (IDMCs) [32] have been

developed. More specific models are focused on the coupling

of two different domains, e.g., a power network and an ICT

network by a co-simulation approach [6].

Apart from analysing cascading effects, a major challenge

is to feed their consequences into the CIs’ risk and resilience

management. Although resilience concepts have been dis-

cussed for power distribution [18], railway transportation [5]

and water distribution systems [28], amongst other sectors,

they do not sufficiently address cascading effects. Recently, a

combined risk and resilience management process has been

proposed using a cross-domain simulation approach to inte-

grate the consequences of cascading effects [25]. However,

this process is highly generic whereas more precise guidelines

for CI operators and authorities are required, tailored to the

complex and wide-ranging effects of a pandemic.

A pandemic is usually assessed in terms of its effects on

individual and public health, mostly by analyzing disease

burden and excess mortality. For example, during the COVID-

19 pandemic epidemiological and modeling studies were able

to assess early on the direct disease burden by providing data

or estimates on potential unreported cases [33], transmission

parameters [2] case fatality and number of deaths and expected

population mortality [21] and potential health care burden

such as bed capacity pressures in ICU and hospital wards

[11]. Nevertheless, the actual disease burden and expected

excess mortality during the COVID-19 pandemic depends

on more than these estimates. In a conceptual model, other

dependencies would include the direct COVID-19 burden (as

described above), the indirect COVID-19 burden resulting

from pressures on health system capacity other disease burden

due to economic effects of the pandemic/the response to the

pandemic as well as other disease burden due to social distanc-

ing as a result of the pandemic or the response to the pandemic

[7]. Hence, the effects of a pandemic cannot only be assessed

from a epidemiological perspective but need to include a broad

variety of domains and thus need to cover a multiple impact

categories.Thus, even just for the critical infrastructures of

health care effects and impacts from domains beyond simply

pandemic spread have to be considered. Besides healthcare

systems, CIs in general are at high risk of destabilisation by

both pandemic spread and anti-pandemic measures [26].

Regarding the consideration of interdependencies in

(macro)economic analyses, a wide range of different models

has been used for the economic impact assessment of differ-

ent types of disasters. Most commonly, economic measures

are applied to quantify the relations between CIs and other

sectors. Inoperability input-output models (cf. [27] allow for

a reduction of the operational level if intermediary inputs

are not available. Other approaches may for example take

Computable General Equilibrium (CGE) models or network

approaches [30] into account, each with different advantages

and drawbacks (cf. [17], [8], [16]). Alternatives might look at

CIs as individual agents, interconnected by a set of relations.

This perspective allows applying agent-based macroeconomic

models developed for assessing the impact of natural disasters

[3] or pandemics [20] to CIs, too.

III. SUNRISE PROCESS

The SUNRISE approach is described in the form of an iter-

ative, step-by-step guideline, i.e., the SUNRISE Process, de-

scribing the individual activities that can support CI operators

in increasing the resilience of their respective infrastructures.

The SUNRISE Process is based on existing principles and

standards such as the PDCA (Plan, Do, Check, Act) Cycle

and the International Organization for Standardization (ISO)

31000 [12] standard for risk management. In this way, the

SUNRISE Process implicitly builds on concepts, structures

and mechanisms that are already existing within CIs as well

as regional and national governmental organisations. Accord-

ingly, the SUNRISE Process consists of the five major building

blocks “Establishing the Context”, “Assessing the Pandemic”,

“Analysing the Consequences”, “Evaluating the Measures” and

“Evaluating the Resilience” (see also Fig. 1).

The first block, Establishing the Context, sets the scene for

the SUNRISE Process and the core aspects for implementing

the process are defined. First, this includes the identification

of the stakeholders, i.e., the people that are interested in and

benefit from the process in general and from its results, in par-

ticular. Among them are also the relevant Pandemic-Specific

Critical Entities (PSCEs), which are services, infrastructures or

people that are mostly affected by the different consequences

of a pandemic. As the relation among the PSCEs are of
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Fig. 1. Illustration of the SUNRISE Process

high interest in the SUNRISE Process, these relations and

interdependencies are specifically captured in the next part

of the context establishment. These interrelations will also

be the basis for analysing the impacts and cascading effects

a pandemic can have across different industry sectors and

domains of social life. As final steps of this first block, the

available data sources and general requirements are identified.

The second block is dedicated to gather information about

the main threat, i.e., the pandemic that the CI or the regional

or national government is facing. Therefore, the pathogen

must be identified in the beginning, which can be done, for

example, by using national or international surveillance and

monitoring systems. Once it is clear which pathogen is causing

the pandemic, more information about its characteristics is

required, such as transmissibility, exposure, seriousness of

disease, Case Fatality Rate (CFR) and others. These char-

acteristics are essential to obtain a better estimation on the

spreading of the pathogen and to decide on possible measure

to protect from infection or reduce the spreading. The second

block concludes with the definition of potential scenarios that

the organisation implementing the process could be facing.

When the scenarios are described in detail, the consequences

of the pandemic are analysed in the third block of the SUN-

RISE Process. Since one major objective of the process is to

capture multi-criteria impacts, the consequences are analysed

according to four domains, i.e., the effects on the population,

on PSCEs, on the economy in general and on the society as

a whole. In this way, the process makes sure that the impacts

of a pandemic together with the available countermeasures

are not only analysed according to the effects on individual

and public health but also effects on vital services, economic

processes and the societal well-being is captured as well.

This multi-criteria approach is of particular importance for

governmental organisations on a regional and national level to

make sure that they obtain a holistic overview on the impacts

of a pandemic and can also identify the best countermeasures

not only according to one indicator but to several indicators.

After getting an estimation on the consequences, the fourth

block of the SUNRISE Process deals with the identification

and evaluation of possible measures to prevent, protect against

or mitigate the pandemic. As the SUNRISE Process is focus-

ing on a multi-criteria analysis, also the countermeasures are

gathered from different domains: non-pharmaceutical interven-

tions (NPIs) on a personal, environmental and populational

level, economic measures and legal measures. The NPIs focus

mainly on the health of individual people, i.e., how to protect

someone from getting infected with the pathogen or curing

their illness, sa well as on reducing the spreading of the

pathogen in the general society. Hence, some NPIs such as

school closures or lockdowns potentially have huge effects

onto the society and implications for the daily life, which need

to be taken into account. Since most of the NPIs come with a

high cost that cannot be covered by individual organisations,

the economic measures describe actions how a state can help

in this context, e.g., by providing funds or financial support.

All of the measures taken also need to be set within a legal

framework as laws and directives are still valid in the course

of a pandemic.

The final block of the SUNRISE Process now covers the

estimation of the risk level and the resilience level of the

services, infrastructures and population in the focus of the

analysis. Therefore, the data coming from the consequence

analysis is gathered and compiled into one abstract level

representing the risk for a given scenario, e.g., a value between

1 and 5 on a semi-quantitative risk scale. The same is done for

the resilience level; here, the resilience of individual services

and infrastructures is compiled into a resilience level for an

entire region or nation. As a second step in this block, the

various countermeasures from the previous block are taken

into account and a “what-if” analysis is carried out. This

analysis assumes that one or several of the measures are

implemented and re-calculates the consequences with these

measures in place. This will result in a new risk and resilience

level, giving the decision makers an estimation, on which set

of measures will be most effective according to the criteria

from the different domains.

IV. SUNRISE SIMULATION TOOLS

The individual steps of the SUNRISE Process can be

implemented in different ways, either by literature review and
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research of existing data sources (e.g., for establishing the

context or characterizing the pathogen), by bringing together

experts from the various fields and sharing their knowledge

in a workshop setting (e.g., for scenario description) or by

the application of existing tools for the respective domains.

In particular when it comes to analyzing the potential conse-

quences of a pandemic (i.e., Step 3 of the SUNRISE Process,

as described in Section III), there are several data sources and

specific tools at hand that can support these tasks.

In the following, we will give three indicative examples of

tools that facilitate the analysis of the spreading of a pandemic,

the resulting economic impacts as well as cascading effects on

CIs from various domains and have been extended and adapted

in the course of the SUNRISE project. Additionally, there

are more tools under development in the SUNRISE project

covering other aspects of the analysis of consequences of a

pandemic. In particular, four tools are implemented in the

project providing specific technical solutions for mitigation

activities and the support of NPIs, which are part of Step 4

of the SUNRISE Process. However, a complete description of

all these tools would go beyond the scope of this paper.

A. Epidemiological Simulation

The multi-patch epidemiological model is a computational

framework used to simulate the spread of infectious diseases in

a spatially heterogeneous environment. Unlike simple models

that assume homogeneity in population distribution, the multi-

patch model acknowledges the spatial heterogeneity in pop-

ulations, dividing them into multiple interconnected patches

or compartments. Each patch represents a distinct geographic

area or population subgroup where disease transmission can

occur.

The model simulation was originally developed by Rodiah

[22], [10] using Python. Parameters, initial conditions, and

connectivity matrices can be specified in standard data formats

such as Excel, CSV, or custom text files. Simulation results are

typically saved as time-series data or visualizations, including

graphs and heatmaps. Output formats may include CSV files

for data analysis, image files for visualizations. The compu-

tational resources required depend on the complexity of the

model and the scale of the simulation. Simulations involving

many patches or detailed spatial resolution may require sig-

nificant computational resources, including high-performance

computing clusters or cloud-based infrastructure. Memory and

processing power are essential considerations, particularly for

simulations with a large number of compartments.

At the core of the multi-patch model are differential equa-

tions that describe the flow of individuals between patches and

the transmission dynamics of the disease within each patch.

These equations incorporate parameters such as transmission

rates, recovery rates, and movement rates between patches,

which are crucial in understanding how the disease spreads

across different locations and populations.

One key aspect of the multi-patch model is its ability to

capture the effects of spatial connectivity on disease transmis-

sion. By considering movement between patches, the model

Fig. 2. Illustration of the epidemiological model for direct transmission.

can account for the flow of infected individuals from one

location to another, potentially leading to the introduction

or amplification of the disease in new areas. This spatial

perspective is particularly relevant for diseases with long

incubation periods or those transmitted by mobile hosts, such

as humans or animals.

Furthermore, the multi-patch model allows for the explo-

ration of spatial heterogeneity in factors influencing disease

transmission, such as population density, contact patterns, and

environmental conditions. These variations can have signif-

icant impacts on the spread and persistence of infectious

diseases, making it essential to consider spatial dynamics in

epidemiological modelling and control strategies.

The model is typically set up as a system of differen-

tial equations, where each patch is represented by a set

of state variables describing the population dynamics within

that patch. For the SUNRISE project, each patch within the

model corresponds to a Nomenclature of Territorial Units for

Statistic Level 1 (NUTS1) subdivision. Within each patch,

a meta-population framework is employed to account for

the heterogeneity of populations across different CIs. This

approach considers various demographic factors, such as age

distribution and contact patterns, to capture the nuances of

disease transmission within and between subpopulations.

The epidemiological dynamics within each patch are de-

veloped by adapting a deterministic Susceptible-Exposed-

Infectious-Recovered (SEIR) model, including those transmit-

ted through direct contact or vector-borne transmission. This

model distinguishes between healthy (susceptible) individuals,

infected but not yet infectious (exposed) individuals, and

infectious patients. Moreover, depending on the nature and

severity of the disease, it is possible to introduce additional

compartments. In the case of severe illness, compartments for

hospitalized patients and individuals in intensive care units

(ICUs) can be integrated into the model. Subsequently, patients

may either recover or die from the disease. Furthermore,

an additional compartment is introduced to account for the

indirect impact of the epidemic on critical infrastructures,

represented as an absence compartment. The model structure

within each patch is illustrated in Fig. 2. Therein, an individual

in meta-population i is classified either as susceptible (Si),

absence (Ai), exposed (Ei), infectious (Ii), hospitalized (Hi),

in intensive care (Ui), recovered (Ri), or dead (Di).

In scenarios involving vector-borne transmission, the model

incorporates additional compartments and parameters to rep-

resent the dynamics of the vector population, as well as the

transmission dynamics between vectors and humans. This
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Fig. 3. Illustration of the epidemiological model for vector-borne transmis-
sion.

entails introducing compartments for susceptible vectors, ex-

posed vectors, and infectious vectors, alongside parameters

governing transmission rates between vectors and humans. The

model integrates the interactions between human and vector

populations to simulate the spread of the disease in such trans-

mission scenarios. Fig. 3 illustrates the model structure for

vector-borne transmission, where a human individual in meta-

population i is classified either as susceptible (Shi
), exposed

(Ehi
), infectious (Ihi

), or recovered (Rhi
). A vector in meta-

population i is classified either as susceptible (Svi
), exposed

(Evi
), or infectious (Ivi

). Transmission between human and

vector represents by red dash line.

B. Cascading Effects Simulation

A Cascading Effects Simulation and Risk Analysis appli-

cation (in short: CASSANDRA) has been developed in the

course of the SUNRISE project, building on and extending

already existing approaches of this software. The core of

the simulation tool is a NodeJS-based package covering a

stochastic simulation of the cascading effects an incident might

have on a network of network of assets (which corresponds

to a network of interrelated CIs in SUNRISE). Further, the

tool has an Angular-based web front-end to support the

modelling and to display the simulation results accompanied

by a NestJS application providing a REST-API as an endpoint

for automated access to the simulation back-end.

The first step in the analysis of cascading effects is to

formally describe and model the network of CIs and to create

an interdependency graph out of that. In general, this can be

broken down into two main parts, i.e., identification of relevant

components and identification of the dependencies between

these components. The identification of the relevant compo-

nents depends on the purpose of the analysis. If the focus

lies on raising awareness of various existing dependencies, a

high-level diagram is sufficient where each CI is represented

as one node. If the big picture is known and the focus lies on

a deeper understanding, it is required to model a CI in more

detail, i.e., represent all its relevant (critical) components as

nodes. The granularity depends on the purpose of the analysis,

and in some cases also on the availability of data.

When focusing on the effects of an incident, and particularly

on cascading effects within a CI network, it is necessary to

understand the direction of the propagation of these effects. In

the interdependency graph, this is realized by using a directed

graph. In the context of the interdependency graph, an edge

X → Y means that a problem in component X may influence

component Y . For example, hospital Y needs drinking water

from water utility X .

In general, the dependencies can be of various kinds, and the

type of dependency may influence the propagation in the sense

that the probability that the problem affects other components

may depend on it [15]. An alternative modelling approach

classifies the nodes of the networks as physical, cyber, process,

human etc. and characterizes the propagation through the

node’s behaviour [13]. In case of the above mentioned hospital

depending on multiple products of the water provider, drinking

and cooling water, this dependency is represented as one

physical dependency. If this dependency is important, e.g., if

the hospital is in the focus of the analysis, a more detailed

representation is preferred.

The main purpose of the interdependency graph is to obtain

information about the global behaviour of the CI network

based on the local behaviour of CIs. These local dynamics are

described through a model inside each node, describing how

a threat affects this specific node. The first task is therefore

to measure this effect. Due to the complexity of the modelled

components (either entire CIs or their critical components), it

is not feasible to use specific and detailed measures of loss for

each node. Instead, a qualitative scale to characterize the state

of the node is more favourable, e.g., ranging from 1 (best)

to 5 (worst). Depending on the type of the node, the levels

represent functionality or availability of a component.

In the context of CIs or their crucial components, data is

often sparse or vague, which makes a precise and detailed

description of the local dynamics almost impossible. With

the choice of a qualitative state, specification of the node’s

dynamic boils down to describing when it changes its state,

i.e., when the condition gets better or worse. Such a change is

triggered by an incident, either directly or indirectly through

the state of a node it depends on. Further, the reaction to a

threat may depend on the circumstances, i.e., on the current

state of the node. Such behaviour is best modelled through

a Mealy automaton, as it changes its state upon a given

input and returns an output. The reaction of a node to an

input is influenced in real life by manifold factors that can

hardly be captured in full detail in a practical abstract model.

Therefore, it is appropriate to model a node’s behaviour by

adding probabilities to the state changes of the automaton

model, i.e., through a probabilistic Mealy automaton [14].

Based on the local dynamics of the individual CIs within the

interdependency graph, a simulation approach can be used to

describe the global dynamics, i.e., the behaviour of the entire

CI network upon a specific incident happening at one of the

nodes. This is realized by sending notifications from one node

to all its neighbours if a problem has occurred. The Mealy

automaton inside each node reacts to an input α and returns

an output β if it changes the state (i.e., if it is affected by the

trigger). All neighbouring nodes receive this output as new

input and may react accordingly. Through this transmission of

messages which can be interpreted as alarms, the impact of
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an incident can propagate through the entire network.

This path of events through all possible dependencies mod-

elled in the interdependency graph describes the potential

cascading effects of the threat affecting the initial node. This

simulation is carried out by a tool developed by AIT [24],

[1], which implements this stochastic process. Because of

the probability distributions of the state transitions in the

individual nodes, each simulation could lead to a different

result. The overall impact of the cascading effects on the entire

CI network is then measured by the resulting states of the

individual CIs. Hence, the tool runs numerous iterations of

the simulation to get a statistical overview on the results.

For the SUNRISE project, to provide a multi-faceted view

on cascading pandemic effects, we develop and continuously

refine an interdependency graph that can be integrated with

both the epidemiological (cf. Section IV-A) and economic

(cf. Section IV-C) simulations. To facilitate the integration

of the epidemiological simulation, CIs are connected to: i)

regional nodes based on their NUTS2 region, and ii) pop-

ulation nodes divided by pandemic-specific age groups (e.g.

children, adults, elderly). These connections make it possible

to setup transitions for pandemic events like a threshold of

the population being admitted to hospitals or ICUs, in turn

affecting the operational level of the CIs. In this case, the

cascading effects simulation uses simulation data from the

epidemiological simulation.

Regarding the integration of the economic simulation, CIs

are connected to nodes representing NACE sectors (division

of sectors based on [19]). The CIs are connected to specific

sectors based on their production and demand of goods and

services. These connections make it possible to transfer effects

of pandemic events to national NACE sectors, affecting the

operational level of economic sectors. In this case, the cas-

cading effects simulation provides input data to the economic

simulation in the form of the pandemic-related degrading of

operational levels of economic sectors.

C. Economic Impact Simulation

To capture the economic impact of a pandemic, an agent-

based model (ABM) has been developed in the course of the

SUNRISE project, building on a sector-disaggregated macro-

economic model originally created by Poledna et al. [20].

One crucial aspect in SUNRISE was the required flexibility

of the analysis, since the model should be able to potentially

cover a wide range of sectors and disasters. The model agents

form expectations in each simulation period regarding income,

demand, and growth of the Gross Domestic Product (GDP)

amongst others based on an autoregressive process of order

one. Thus, the agents are not equipped with rational nor model-

consistent expectations.

The ABM is implemented as a Matlab simulation and

was originally developed by [20] in an open-access manner.

Disaster- or model-specific inputs like shocks can be consid-

ered in several ways. One possibility is importing personnell

numbers, productivity losses or similar through Excel or CSV

files.

A complete model computation corresponds to a Monte

Carlo simulation of individual model runs. One single model

run consists of the iteration through the pre-set timesteps (in

quarters), computing all prices, investments, expenditures and

others. Random processes are added to the expectations of

economic growth and prices, imports, exports, government

consumption, and shocks. For each Monte Carlo step, these

random elements are newly drawn and the aggregated macroe-

conomic and disaggregated sectoral indicators computed. For

the final results, the variables are summarized over all runs to

average out the effects of the random components.

The simulation approach can account for CIs and related

capital stocks of sectors based on the statistical classification

of economic activities in the European Community, i.e., the

NACE level (short for nomenclature statistique des activités

économiques dans la Communauté européenne) of the Figaro

tables (i.e., Full international and global accounts for research

in input-output Analysis) provided by Eurostat. The model

is thus based on an input-output framework and originally

calibrated for the small open economy of Austria. For the

SUNRISE project, the model is being continuously refined and

adapted to other national economies and pandemic scenarios.

With the given model architecture, data for other European

countries can be used for calibration which makes a simula-

tions for those economies possible as well.

The economic impact simulation in SUNRISE considers

the following sectors: firms, private households, the general

government, banks including the central bank, and the rest

of the world. Each sector consists of heterogeneous agents

representing either natural persons or legal entities that interact

according to predefined rules (see Figure 4). The firm sector

is made up of 64 industries, each producing a perfectly

substitutable good with labour, capital, and intermediate inputs

from other sectors with a fixed-coefficients technology. The

model is based on quarterly data and typically runs simulations

for up to three years in the current version; this implies a

forecasting period of 12 quarters. The model architecture is

flexible and allows for several types of simultaneous shocks

on a sectoral level. Examples include supply shocks (e.g., due

to disruptions in the supply chain), demand shocks (e.g., travel

restrictions), changes in productivity (e.g., employees absent

from work due to an infection, quarantine or because they

need to take care of others) or destruction of capital stock. It

is further easy to change parameters to assess the implications

and impacts throughout the modelled economy.

The main data source of the ABM is economic data in-

cluding input output tables, national accounts, capital stocks,

business demography, government statistics and population

data mainly provided by Eurostat. For the simulation of var-

ious pandemic scenarios, additional inputs are required, such

as information on the number of persons absent from work

(coming from the epidemiological model, cf. Section IV-A,

estimated reduction of sectoral output, changes regarding the

service level (both coming from the cascading effects simula-

tion, cf. Section IV-B), counter-measures like lock-downs or

travel restrictions and others. As an output, the ABM provides
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Fig. 4. Illustration of the model agents and their interactions

the standard indicators of a macroeconomic model on which

the socio-economic impacts are assessed, e.g., the nominal

and real gross value added as well as the employment in each

considered sector, the GDP, the total employment as well as the

unemployment rate. However, given the model architecture, it

is easy to define new economic output variables and have them

displayed in addition to the standard macroeconomic outputs.

V. CONCLUSION

In the face of a pandemic, it is important to support

decision makers on a regional and national level as well as

CI operators on the selection of the most effective counter

measures. However, the COVID-19 pandemic has shown that

a sole focus on epidemiological factors is not sufficient in

that case but a more holistic view is required that also takes

the functionality of the CIs and the socio-economic effects of

the respective measures into account. The SUNRISE Process

provides such a holistic view by integrating various simulation

methods and by evaluating the effects of a pandemic according

to multi-domain criteria.

The SUNRISE process as described here is currently given

as a first draft and will be further elaborated on in the

course of the project. Next steps in the project include a

more detailed specification of the process, the integration of

additional simulation approaches and the validation of the

overall process with CI operators and regional authorities from

Italy, Spain and Slovenia.
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