
MBSPI—A Model-Based Security Pattern

Integration Approach for software architectures

Anas Motii

0009-0005-4936-0028

Mohammad VI Polytechnic University

College of Computing

Benguerir, Morocco

Email: anas.motii@um6p.ma

Mahmoud El Hamlaoui

0000-0003-3315-7373

Mohammed V University in Rabat

Rabat, Morroco

Email: mahmoud.elhamlaoui@ensias.um5.ac.ma

Abstract—Incorporating security patterns into software ar-
chitecture is essential for robust system design. Model Driven
Engineering (MDE) offers a structured approach to software
development, emphasizing modeling and automation. This paper
explores the integration of security patterns into software archi-
tecture using MDE techniques. We highlight the benefits of this
approach, including improved level of security and enhanced
maintainability. Challenges such as modeling complexity and
tool support are also discussed. Through a SCADA (Supervisory
Control and Data Acquisition) system case study, we demonstrate
the effectiveness of integrating security patterns into software
architecture using MDE.

Index Terms—Security patterns, Pattern Integration, Software
architecture, MDE, OCL

I. INTRODUCTION

I
N THE realm of system and software architecture, while

there exists a fundamental understanding of security engi-

neering principles, there is often a notable gap in best practices

necessary for implementing security measures derived from

risk assessments. This gap has propelled the exploration of

security patterns as a prominent field of study in recent years.

Security patterns serve to encapsulate and disseminate expert

knowledge by offering generic, reusable solutions to frequently

encountered security challenges, particularly those related to

architecture. This methodological approach seeks to equip

architects with the tools required to effectively address and

mitigate common security vulnerabilities. A complete catalog

of security patterns has been introduced by Fernandez [1].

Unfortunately, there are two major issues. First, traditional

security patterns are usually described as informal guidelines

to solve a certain problem using templates such as POSA

(Pattern-Oriented Software Architecture) and GoF (Gangs of

Four). Despite the benefits of security patterns in promot-

ing reuse, their practical application faces significant chal-

lenges. The disconnection between the threat models identified

through risk assessment and the protective measures outlined

in security patterns creates a substantial barrier. Additionally,

the manual integration of these patterns into architectural

designs introduces further complexity, often leading to incor-

rect implementations. This misalignment not only hampers

the effective utilization of security patterns but also leaves

critical security issues unresolved, underscoring the need for

improved methodologies in pattern integration and application.

One notable finding in [2] is the lack of emphasis on pattern

integration, which served as a key motivator for our research

endeavors.

Drawing on the advantages of Model-Driven Engineering

(MDE) such as improved quality and productivity, we use ded-

icated modeling languages and Model-To-Model techniques

tailored to conduct a comprehensive pattern integration pro-

cess. In this paper, we introduce a Model-Based Security Pat-

tern Integration (MBSPI) approach for software architecture

and its tool support. We use the Object Constraint Language

(OCL) for the formalization of security properties.

The remainder of the paper is organized as follows. Sec-

tion II identifies related work to pattern integration. Sec-

tion III presents the main steps of the MBSPI approach. The

MDE framework is described in section IV, more specifically,

Model-to-Model transformations, and OCL constraints. Sec-

tion V specifies requirements for tool support. In section VI,

MBSPI is assessed over a SCADA (Supervisory Control and

Data Acquisition) system case study. Finally, section VII,

concludes and sums up the contributions and future work.

II. RELATED WORK

Over the years there has been a noticeable divorce between

pattern experts and pattern users [3]. On one hand, pattern

experts create and document patterns and on the other hand,

pattern users are rarely aware of relevant patterns. In addition,

the latter do not have a good understanding of how to

leverage and apply a pattern. Works relevant to the integration

of patterns and aspects are discussed since this issue (i.e.,

integration) has been tackled in both research areas.

In [4], the authors explained how pattern integration can be

achieved by using a library of precisely described and formally

verified solutions. In [5], the authors present an approach for

creating a security-enhanced system model using the SecFutur

Engineering Process and the SecFutur Process Tool (SPT).

In [6], the authors introduced a method and tool support for

developing secure and private IT systems using COmputer

Supported Security Patterns (COSSP). The integration process

targets object-oriented applications.

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 443–452

DOI: 10.15439/2024F1796

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 443 Thematic Session: Application of Disruptive Technologies

for Society 5.0

Aspect-Oriented Modeling is similar to pattern modeling

with regards to encapsulating concerns such as security for

use. However, the difference is that aspects are part of software

fulfilling a function dealing with the design stage, whereas

patterns can deal with different development stages. In [7],

Nguyen et al. presented a pattern-driven secure system de-

velopment process combined with an aspect-oriented secu-

rity design methodology. To use this approach, the designer

is required to manually construct security solutions of the

considered system and the definition of mappings of these

solutions into the model under development. Mouheb et al.

[8] developed a UML profile that allows modeling security

mechanisms as UML annotated aspect models to be woven

automatically into a UML design model. Horcas et al. [9]

propose an Aspect-Oriented Modeling (AOM) approach to

weaving customized security models into an application us-

ing the Common Variability Language (CVL) and the Atlas

Transformation Language (ATL). These works have left the

Verification & Validation activity for future work. In addition,

conflicts between the design and other architectural attributes

may occur during this task after the weaving. In [10], Georg

et al. proposed an approach for modeling security mechanisms

and attacks as aspects using UML. To prove that the integration

is correct, they use model verification on the application

composed of the attack model and the security mechanisms.

The authors in [2] have reviewed security pattern speci-

fications and usage. The conclusion indicates that there is

minimal attention given to pattern integration. Peldszus et

al. [11] introduce the GRaViTY approach which offers tools

to align various artifacts generated during the model-driven

development process, along with mechanisms for defining, ap-

plying, and reusing security requirements. Consequently, while

the GRaViTY approach shows promise in supporting model-

driven development, its limited scope and lack of empirical

evidence may restrict its applicability and effectiveness in

real-world scenarios. The work of [12] addresses the criti-

cal challenge of ensuring security in online service-oriented

systems through a pattern-oriented approach. While numerous

security design patterns exist, their integration remains a

less explored area, motivating the proposed methodology. By

utilizing the algebraic specification language SOFIA (Service-

Oriented Formalism In Algebras) and translating specifications

into the Alloy formalism, the work introduces a systematic

approach to verify the validity and correctness of security

design pattern compositions. The development of a tool sup-

port facilitates automated verification, demonstrated through a

crowdfunding application case study. Despite advancements,

existing works lack focus on proving functional correctness of

pattern compositions, presenting an opportunity for future re-

search. Additionally, the work highlights the potential of alge-

braic specifications for automated testing, suggesting avenues

for further experimentation and extension of the proposed

methodology. The approach faces scalability challenges with

complex systems and struggles with adaptability to new secu-

rity threats. Practicality concerns in environments that favor

rapid development may also arise, questioning the method’s

efficiency in fast-paced settings. These factors highlight the

need for a balance between rigorous security verification

processes and the dynamic requirements of modern software

development cycles. In [13], the authors introduce a ground-

breaking aspect-oriented models-centered security framework

aimed at addressing security challenges intrinsic to intelligent

systems. The framework’s components are carefully crafted

based on identified threats specific to intelligent systems, with

each element depicted through Unified Modeling Language

(UML) diagrams. Other works like Armoush and al. [14] have

focused on the integration of security patterns in the design of

safety-critical embedded systems.

III. MBSPI APPROACH

In this section, the MBSPI approach is presented. This pro-

cess is based on the approach done in [15] and previous work

[16]–[18] which provides the first solution for design pattern

integration in the context of object-oriented applications. Here,

we go a step further. The validation of security properties

and constraints has been formalized with OCL1, which is a

standard developed by the Object Management Group (OMG).

Fig. 1 depicts the MBSPI process which consists of five

phases: Preparation, Elicitation, Context Validation, Merge,

and Verification & Validation. The phases are described af-

ter presenting the pattern integration artifacts consumed and

produced by each phase.

A. Definitions

The process interacts with the following artifacts:

• Security Pattern represents a modular part of a system

that encapsulates a solution of a recurrent security prob-

lem in a specific context. The pattern and its constituents

are developed by an security expert.

• Application Diagram is the representation of the soft-

ware architecture of the application.

• Pattern representation artifact is the security pattern

solution. It represents the architectural solution of the

pattern. It consists of a number of software components:

participants and security mechanisms.

• Participants (roles) represent generic components of a

security pattern solution. They are the roles potentially

played by components of the application.

• Security mechanisms are software components part of

the security pattern solution. They provide primitive

security functions (e.g., encryption, signing). A library

of these functions is provided in order to allow security

pattern solution modeling.

• Preconditions are the constraints that the application

must verify in order for the integration to work.

• Postconditions are pattern security properties that the

application verifies after the integration of the pattern.

• Casting Diagram consists of the application diagram,

the pattern representation artifact diagram and the bind-

ings between components of the two diagrams. The

1https://www.omg.org/spec/OCL/

444 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Fig. 1. MBSPI Process

bindings constitute mappings to identify the application

components that play roles (participants) in the security

pattern solution.

• Resulting Application Diagram is the final software

architecture diagram once the pattern has been integrated

into the application.

B. Hypothesis

Below are a set of assumptions that were used to construct

the integration process:

• Hypothesis 1: Security feature incorporation. The pat-

tern integration process is only intended to incorporate

security features. We verify that the application diagram

contains the necessary functional features before starting

the integration.

For example, in order to integrate a Secure Communica-

tion Pattern between a Client and Server components:

– There must be communication.

– Client and Server interfaces must have Send() and

Receive() interfaces.

• Hypothesis 2: Pattern properties relevant to messages.

The focus is particularly on the following pattern prop-

erties intended for transmitted messages:

– Property 1. Confidentiality of messages.

– Property 2. Integrity of messages.

– Property 3. Authenticity of messages.

• Hypothesis 3: Pattern constraints. Preconditions are con-

ditions that the artifacts must meet before going further:

– Precondition 1. All pattern participants should be

bound (one participant per component).

– Precondition 2. All communications in the pattern

should exist in the application.

C. Phase 1 (Preparation)

The purpose of this initial phase is to distill essential

artifacts from a security pattern for use in the subsequent

phase, specifically: pattern representation artifact, proper-

ties (postconditions), constraints (preconditions). This phase

serves as the preparatory step for the pattern integration

process, where the critical inputs required for the process

are identified and readied, effectively setting the stage for the

successful application of the security pattern.

D. Phase 2 (Elicitation)

This phase aims to identify where and how the pattern will

be applied. This Elicitation phase involves two key activities:

identification and role binding. Initially, the architect pinpoints

the software components within the application diagram that

are suitable for the application of the pattern representation

artifact. This step involves identifying components that are

candidates to fulfill roles within the pattern representation

artifacts. Following the identification of these components,

the architect assigns them to their respective roles within the

patterns, as depicted in Fig. 1 through the use of dashed arrows

marked with plays stereotypes.

ANAS MOTII, MAHMOUD EL HAMLAOUI: MBSPI—A MODEL-BASED SECURITY PATTERN INTEGRATION APPROACH 445

E. Phase 3 (Context Validation)

The objective of this phase is to ascertain whether the

application satisfies the specified preconditions of the pattern.

This phase takes as input the Casting Diagram and pattern

Preconditions and provides as output a Result Artifact (that

contains, for each constraint, the result of the checking). It is

imperative that all preconditions are met before proceeding to

the subsequent phase of the integration process, ensuring that

the foundational requirements for security pattern integration

are thoroughly validated.

F. Phase 4 (Merge)

The aim of this phase is to correctly integrate the pattern

using the Casting Diagram. The Merge phase involves the

integration of Security Mechanisms, ports, interfaces, and com-

munication features from the Pattern Representation Artifact

into the application’s architectural diagram. This integration

culminates in a revised version of the application, which

is considered a candidate for enhanced security. This phase

is crucial for ensuring that the security improvements are

accurately and effectively incorporated into the application’s

design, aiming to elevate the overall security posture of the

application. Let A be an application, P a pattern representation

artifact and C a casting diagram containing a set of bindings

bi. The resulting application obtained by integration process

RA is defined by the algorithm in Listing 1.

1 Algor i t hm Merge

2

3 I n p u t : A , P , C .

4 Outpu t : RA .

5

6 RA := d u p l i c a t e (A)

7 C ' : = d u p l i c a t e (C)

8 f o r each b i i n C '

9 component1 = b i . component

10 p a t t e r n P a r t i c i p a n t 1 = b i . p a t t e r n P a r t i c i p a n t

11

12 f o r each p P o r t i n p a t t e r n P a r t i c i p a n t 1

13 i f p P o r t . communica t ion . p r t s . component −> i n c l u d e s (

Secu r i t yMechan i sm)

14 P r t 1 = RA . d u p l i c a t e P o r t (pPor t , component1)

15 s e c u r i t y M e c h a n i s m = RA . d u p l i c a t e C o m p o n e n t (P o r t .

s e c u r i t y M e c h a n i s m)

16 RA . Crea teCommunica t ion (P r t1 , s e c u r i t y M e c h a n i s m .

p o r t)

17 e l s e

18 p a t t e r n P a r t i p a n t 2 = P o r t . communica t ion . p o r t s . component

−> s e l e c t (PP | PP != p a t t e r n P a r t i c i p a n t 1)

19 component2 = p a t t e r n P a r t i c i p a n t . b i n d i n g . component

20 P r t 1 = RA . p o r t s −> s e l e c t (p r t | p r t . owner = component1 and

P r t 1 . communica t ion . c o n n e c t s (component1 , component2)

)

21

22 f o r each p O p e r a t i o n i n P o r t . i n t e r f a c e . o p e r a t i o n s

23 i f P r t 1 . i n t e r f a c e . o p e r a t i o n s −> i n c l u d e s (p O p e r a t i o n) ==

f a l s e

24 RA . a d d O p e r a t i o n (pOp e r a t i on , P r t 1 . i n t e r f a c e)

25 e n d i f

26 endfor

27

28 e n d i f

29 endfor

30 endfor

Listing 1. Merge algorithm

First, the application diagram A and casting diagram C

are duplicated and named RA and C ′ respectively. The

set of bindings in C ′ are parsed. For each binding bi,

patternParticipant1 and component1 are the pattern par-

ticipant and the application component bound by bi respec-

tively. In addition, ports owned by patternParticipant1 are

looked up. Afterward, security mechanisms are deployed. For

each port pPort, if pPort connects patternParticipant1

to a security mechanism, then it is duplicated, added

to component1 in RA, and named Prt1. The secu-

rity mechanism is duplicated, added to RA, and named

securityMechanism. A communication is created between

Prt1 and a securityMechanism port. Finally, the necessary

operations are added to the interfaces of the application com-

ponents in order to correctly call the operations of the security

mechanisms. If pPort does not connect patternParticipant1

to a security mechanism, then it is connected to another

pattern participant that we name patternParticipant2. We

name component2 the application component bound to

patternParticipant2. According to the assumptions, there

must be communication between application components (this

is a precondition). In this case, component1 is connected to

component2 via port Prt1. The operations of pPort interface

are looked up. For each operation pOperation in pPort

interface, if pOperation does not exist in Prt1 interface,

pOperation is added to the operations of Prt1 interface. After

the merge phase, the resulting application verifies the pattern

postconditions.

G. Phase 5 (Verification & Validation)

At this stage, the new application verifies the post- condi-

tions. At each change (e.g., ad-hoc tailoring or the integration

of another pattern), the application is validated against the

postconditions. A dedicated checking module is responsible

for ensuring the application adheres to these postconditions,

which reflect the essential security properties of the pattern.

Modifications to the application, whether due to specific

customizations or the addition of another security pattern,

are scrutinized under this process to ensure the security

enhancements are properly maintained.

The application’s compliance with pattern postconditions is

assessed by ensuring: (1) the inclusion of necessary security

mechanisms, like encryption, to uphold the pattern’s security

attributes within the application, and (2) the correct application

of these mechanisms, such as encrypting messages, to safe-

guard data integrity and confidentiality during transmission.

This process confirms both the presence and proper imple-

mentation of security measures as stipulated by the security

pattern.

IV. MDE FRAMEWORK

MDE is used to support the aforementioned approach,

focusing on software architecture and security patterns. For

architectural modeling, we used a Domain Modeling Spe-

cific Language (DSML) based on UML modeling language

446 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

to describe software architecture using the component-port-

connector fashion. For specifying and analyzing security prop-

erties, OCL is utilized, allowing for precise definition and

verification of security attributes within the system.

Modeling the architecture.: In the context

of Component-Based Development (CBD), the

"ComponentUML" UML profile was developed to facilitate

application modeling. This necessity for a specialized profile

emerged during the formalization of OCL expressions,

where the application of standard UML led to complexities

due to the inclusion of irrelevant concepts. To streamline

this process, the "ComponentUML" profile was crafted,

focusing on simplification. It is built upon key UML

constructs, specifically StructuredClassifiers, Messages, and

Deployments, to tailor the modeling experience to CBD’s

specific needs.

Working example: metamodel instantiation: Fig. 2

shows the software architecture of a three-tier web

application. The structure of the architecture is delineated

into three fundamental types of components: Page, Webapp,

and Database. Each of these components is interconnected

through specific ports, interfaces, data types, and messages.

For example, a Page-type component, referred to as Webapp,

leverages a "Port Client Server" for communication with

the Webapp component, which is classified as a Webapp-

type. In response, the Webapp component utilizes a "Port

Server Client" for reciprocal communication. Annotations

in blue delineate various messages: "m1" describes the

request dispatched to the application, "m2" illustrates the

application’s response, "m3" signifies the request made to the

database, and "m4" represents the response received from the

database. From a deployment standpoint, the architecture is

supported by three nodes, which serve distinct functions: the

Browser node, which hosts the webpage; the Server node,

which is accessible via the Internet and hosts the Webapp;

and a backend node dedicated to database hosting.

Modeling security patterns: We developed a UML pro-

file called SepmUML using UML notations. SepmUML con-

tains the necessary stereotypes for modeling a security pattern

in UML environments. The solution of the security pat-

tern is modeled using ComponentUML. In addition pattern

integration-related concepts are specified. The specification

of the UML profile and the pattern specification is out of

scope in this paper and is detailed in [19]. In this process,

different stakeholders interact in order to specify the pattern

and its constituents including the pattern solution and the

OCL constraints. Five main security mechanism categories of

SepmUML are considered: Authenticity, Authorisation, Au-

thentication, Cryptography, Monitoring, and Filtering. Derived

from security requirements, a customized security pattern

solution can be built up from a combination of these security

mechanisms categories.

Working example : SSL pattern: Fig. 3 shows the solu-

tion of the SSL (Secure Sockets Layer) pattern. It has two

pattern participants clientParticipant and serverParticipant. It

contains the following security mechanisms. The protocol con-

troller is the main component that manages the other security

features to facilitate the execution of the SSL Handshake and

SSL record protocols. The authenticator validates the identity

of either the client or server by verifying their certificates.

The key exchange component calculates the key exchange for

the client, which is essential for encrypting communications.

While the encryptor applies encryption to outgoing messages

utilizing a specific key and the decryptor utilizes a key to

decrypt incoming messages. The Signer generates a digital

signature for each message to ensure its authenticity and

integrity, which accompanies the transmitted message. The

verifier confirms the authenticity and integrity of a message

by examining the digital signature that comes with it. The

description of the properties is encapsulated within a comment

annotated by the stereotype PropertySpecification, encompass-

ing the attributes confidentiality, integrity, and authenticity.

As shown at the bottom of Fig. 3, the pattern provides the

following properties: confidentiality of messages m1 and m2

(Property 1), integrity of messages m1 and m2 (Property 2),

authenticity of messages m1 and m2 (Property 3). The pre-

conditions are: All pattern participants should be bound (one

participant per component) (Precondition 1). Additionally, all

pattern-defined communications must be present within the

application, identified as (Precondition 2).
Casting diagrams and preconditions: Fig. 4 shows the

following bindings between the SSL patterns and components

of the web application where "webpage" and "webapp" play

role "clientParticipant" and "serverParticipant" respectively.

The casting diagram is validated against Precondition 1 and

2. The validation of the castings against the preconditions is

done using OCL invariants. Listing. 2 and Listing. 3 validate

Precondition 1 and 2 respectively. The two preconditions have

been already explained previously and recalled as comments

at the beginning of the listings. In this case, the preconditions

are valid so we move to the next phase.

1 / / P r e c o n d i t i o n 1 : A l l p a t t e r n p a r t i c i p a n t s s h o u l d be bound

(one p a r t i c i p a n t p e r component)

2 C o n t e x t C a s t i n g s

3 s e l f . p lay −> s e l e c t (p1 , p2 |

4

5 (p1 . p a r t i c i p a n t = p2 . p a r t i c i p a n t

6 i m p l i e s

7 p1 . component = p2 . p a r t i c i p a n t)

8

9 and

10

11 (p1 . component = p2 . p a r t i c i p a n t

12 i m p l i e s

13 p1 . p a r t i c i p a n t = p2 . p a r t i c i p a n t)

14

15 and

16 p1 . p a r t i c i p a n t . s t r u c t u r e C o n t a i n t e r . p a r t i c i p a n t s −> f o r A l l (

p a r t i c i p a n t | s e l f . p lay −> e x i s t s (p_ | p_ . p a r t i c i p a n t =

p a r t i c i p a n t)))

Listing 2. Precondition 1: All pattern participants should be bound (one
participant per component)

1

2 / / P r e c o n d i t i o n 2 : a l l communica t ions i n t h e p a t t e r n s h o u l d

e x i s t i n t h e a p p l i c a t i o n

ANAS MOTII, MAHMOUD EL HAMLAOUI: MBSPI—A MODEL-BASED SECURITY PATTERN INTEGRATION APPROACH 447

Fig. 2. Architecture Model and Component Types of a Web Application [18]

Fig. 3. SSL Pattern Solution

448 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Fig. 4. Casting Diagram for Application Communication Using SSL Security
Pattern

3 C o n t e x t C a s t i n g s

4 s e l f . p lay −> f o r A l l (p1 , p2 |

5 (p1 . _ ' < > ' (p2) and p1 . p a r t i c i p a n t . p o r t s −> e x i s t s (p1_ in | p2 .

p a r t i c i p a n t . p o r t s −> e x i s t s (p2_ in | p1_ in . communica t ion

= p2_ in . communica t ion)))

6 i m p l i e s

7 p1 . component . p o r t s −> e x i s t s (p1_ in | p2 . component . p o r t s −>

e x i s t s (p2_ in | p1_ in . communica t ion = p2_ in .

communica t ion))

8)

Listing 3. Precondition 2: all communications in the pattern should exist in
the application

Merge: In this phase, a transformation from Model to

Model is executed, utilizing the procedure outlined in Listing 1

written with QVT (Query, View, and Transformation)2. This

transformation process inputs the application depicted in Fig. 2

along with the castings shown in Fig. 4. The result of the

Merge is a refreshed application model illustrated in Fig. 5.

Furthermore, the initial application’s types and interfaces un-

dergo modifications with the addition of new attributes and

operations, highlighted in green. Additionally, new interfaces

pertinent to security mechanisms have been introduced.

Context checking: At this phase, the new application

undergoes a verification process to ensure it meets the post-

conditions. Whenever a modification occurs, such as ad-hoc

adjustments or the amalgamation of an additional pattern, the

application’s conformity with the postconditions is reassessed.

This evaluation employs the OCL invariant as detailed in

Listing. 4. If the postconditions still hold, the change is

accepted and committed. Else, the change is dismissed. The

validation process involves the application being checked

against Property 1, 2, and 3 through the confirmation of the

following criteria:

• There must be one encryptor and signer mechanisms for

each component sending messages m1 and m2.

• Messages m1 and m2 must be encrypted before being

sent.

/ / P o s t c o n d i t i o n s v a l i d a t i o n

C o n t e x t A p p l i c a t i o n

s e l f . b a s e _ c l a s s . o w n e d A t t r i b u t e s −> s e l e c t (c | c . i s o c l A s K i n d (

Comment)) −> s e l e c t (c |

c . i s S t e r e o t y p e A p p l i e d (P r o p e r t y S p e c i f i c a t i o n)) −> f o r A l l (p |

p . c o n f i d e n l i t y −> f o r A l l (m _ c o n f i d e n t i a l |

2https://www.omg.org/spec/QVT

/ / There e x i s t s a component t h a t p r o d u c e s m _ c o n f i d e n t i a l

and an e c r y p t o r c o n n e c t e d t o t h i s component t h a t

e n c r y p t s m _ c o n f i d e n t i a l

s e l f . components −> e x i s t s (c1 |

c1 . p o r t s . msg_out = m c o n f i d e n t i a l

and

s e l f . components −> e x i s t s (enc |

enc . i sOc lKindOf (E n c r y p t o r)

and

c1 . p o r t s −> e x i s t s (c 1 _ i n | enc . p o r t s −> e x i s t s (e n c _ i n | c 1 _ i n .

communica t ion =

e n c _ i n . communcia t ion)))))

and

p . i n t e g r i t y −> f o r A l l (m _ i n t e g r i t y |

/ / There e x i s t s a component t h a t p r o d u c e s m _ i n t e g r i t y and a

s i g n e r c o n n e c t e d t o t h i s component t h a t s i g n s

m _ i n t e g r i t y

s e l f . components −> e x i s t s (c1 |

c1 . p o r t s . msg_out = m _ i n t e g r i t y

and

s e l f . components −> e x i s t s (s i g n e r |

s i g n e r . i sOc lKindOf (S i g n e r)

and

c1 . p o r t s −> e x i s t s (c 1 _ i n | s i g n e r . p o r t s −> e x i s t s (s i g n e r _ i n |

c 1 _ i n . communica t ion =

e n c _ i n . communica t ion))))))

Listing 4. OCL Queries for pattern property verification

V. TOOL SUPPORT

The proposed toolchain is designed to support the proposed

metamodels (ComponentUML and SepmUML) and Model-

To-Model transformations. To support our approach, tools

must fulfill the following key requirements:

• Allow the creation of a custom UML profile and UML

models.

• Support the implementation of a repository to store

pattern models and the related model libraries for classi-

fication and relationships.

• Support the access to the repository. Create views on the

repository according to its APIs, its organization, and the

needs of the targeted system engineering process.

• Enable transformations of the pattern models from the

repository format into the target-modeling environment.

• Enable the creation of System of Patterns configuration

models in the target-modeling environment.

• Enable the integration of patterns imported from the

model repository into application models.

In our case, the following support tools have been chosen:

• UML modeling environment: Papyrus3 (Existing)

• Model Repository : SEMCOMDT4 (SEMCO Model De-

velopment Tools, IRIT’s editor and platform plugins) is

used to support pattern repository (Existing).

• Selection, Instantiation, and Integration of Pattern Mod-

els: Semco4Papyrus (Implemented)

VI. CASE STUDY: SCADA SYSTEM

This section evaluates the applicability and efficacy of our

proposed methods through the study of a SCADA system.

SCADA systems diverge significantly from conventional IT

3https://eclipse.org/papyrus/
4http://www.semcomdt.org

ANAS MOTII, MAHMOUD EL HAMLAOUI: MBSPI—A MODEL-BASED SECURITY PATTERN INTEGRATION APPROACH 449

Fig. 5. New Application diagram

frameworks, including web applications, showcasing particular

and rigorous security demands. The purpose of this evaluation

is to illustrate the capability of our suggested approaches in

meeting the sophisticated security challenges that are funda-

mental to these vital infrastructure components.

Description and modeling: In our study, we explore a

simplified SCADA system tailored for smart grid applications.

This system is designed to perform essential functions such

as: (1) Perform control, (2) Poll Data, (3) System Start-

up/shutdown, (4) Adjust Parameter Settings, (5) Log Field

Data, (6) Archive Data, (7) Trigger Alarm, (8) Perform Trend-

ing (e.g., Select Parameters, Display Parameters, Zooming and

Scrolling). Fig. 6 depicts the software architecture model.

A set of patterns is selected from the model repository and

then instantiated in the modeling environment Papyrus5 (see

Fig. 7). The security patterns are:

• Secure Communication that ensures that data passing

across a network is secure. It can be refined by two

alternative patterns: SSL and IPSec.

• Firewall that restricts access to the internal network.

It can be refined by the following alternative patterns:

Packet Firewall and Stateful Firewall.

• Intrusion Detection System (IDS) in order to stop mali-

cious payloads.

• Authorization that ensures that only authorized users are

allowed access.

• RBAC (Role-Based Access Control) that allows the crae-

tion of a set of roles. Each role has a set of defined rights.

• Logger and Auditor. that allows the logging of actions.

Amongst the different Patterns, two have been selected: SSL

and Packet Firewall patterns and integrated into the SCADA

system software architecture. The integration aims at protect-

ing: (1) the communication between the SCADA server and

PLCs (Programmable Logic Controller) against information

disclosure and spoofing (e.g., Man-In-The middle attacks), (2)

the SCADA server and PLCs against Denial of Service attacks.

5https://eclipse.org/papyrus/

Assessment: For the assessment, we use MBTA [18]

which is a framework for detecting threats based on OCL. The

aim is to analyze the software architecture before and after

pattern integration. The approach and threat categories are

detailed in [18]. Fig. 8 presents a comparative analysis of the

frequency of threats categorized by type, before and following

the adoption of security patterns. The implementation of the

SSL pattern eradicates threats associated with Man-In-The-

Middle and Tampering (during transmission) by ensuring

the confidentiality and integrity of communications between

the SCADA server and the PLCs. However, vulnerabilities

to Denial of Service and Injection attacks persist, affecting

four software components: HMI (Human-Machine Interface),

Trending, LogDisplay, and AlarmDisplay; due to their exposed

public ports and the absence of Firewall and Authorization

safeguards.

VII. CONCLUSION

In this paper, we have proposed an approach and tool

support for integrating proper security patterns into soft-

ware architectures, aligning with OMG (Object Management

Group) standards such as UML, profile extension mechanism,

and OCL. Our process utilizes merging and OCL verification

strategies within an MDE based approach to facilitate the

integration of security patterns. The challenge of pattern

integration lies in seamlessly embedding all components of

a pattern into an application, ensuring system integrity and

quality are maintained, and affirming the enhancement of the

system with the new properties introduced by the pattern.

While the majority of research in this area concentrates on

utilizing merging techniques for the incorporation of patterns

into applications, our study emphasizes the Verification &

Validation phase to validate the integration. Through the exam-

ination of a case study and the conducted assessment, we have

pinpointed limitations in the current iteration of MBSPI. Our

future directions include the proposition of pattern bindings to

users, tailored according to the component types targeted for

pattern application. During the integration phase, our focus has

been predominantly on the structural aspects of architecture, as

450 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

«Application»

SCADA_system

«Component»

 + RT_Event_Manager: RT_Event

 + prt_ERM_HMI: HMI_RTEventMng_Int [1]

 + prt_ERM_Trn: Trend_RTEventMng_Int

 + prt__ERM_logDisplay: LogDisplay_RTEventMng_In

+ prt_ERM_AlrmD: AlarmDisplay_RTEventMng_In

+ ERTM_Log_prt: Log_Int [1]

 + ERTM_Archive_prt: Archive_Int [1]

+ ERTM_RprtGn_prt: ReportGen_Int

+ ERTM_Prcss_prt: RTEventMng_dataProcessing_In

+ ERTM_Alrm_prt: Alarm_Handler_Int

«Component»

 + HMI: HMI [1]

«Component»

+ Trending: Trending [1]

«Component»

 + LogDisplay: LogDisplay [1]

«Component»

+ AlarmDisplay: AlarmDisplay [1]

«Component»

 + alarm_Handler: Alarm_Handler

 + Alrm_DB_Prt: DBInt [1]

«Component»

+ log_Handler: Log_Handler [1]

 + Log_DB_Prt: DBInt [1]

«Component»

 + archive: Archive [1

+ Arch_DB_prt: DBInt [1]

«Component»

 + dataProcessing: DataProcessing + Prcss_RW_prt: data_RW_Int [1]

«Component»

 + report_Generation: Report_Generation

+ RprtGn_RTDB_prt: DBInt [1]

«Component»

 + data_R_W: Data_R_W [1]
+ RW_Prcss_prt: data_RW_Int [1]

 + RW_Driver_Prt: driverInt [1]

«Component»

 + driver1: Driver [1]

 + RW_driver1_Prt: driverInt [1]

+ driver1_plc1_Prt: PLC_Int [1]

«Component»

 + drive2: Driver2 [1]

 + RW_driver2_Prt: driverInt [1]

+ driver2_plc2_Prt: PLC_Int [1]

«Component»

+ driver3: Driver3 [1]

 + RW_driver3_Prt: driverInt [1]

 + driver3_plc3_Prt: PLC_Int [1]

 + Port1: <Undefined> [1]

«Component»

 + pLC1: PLC1 [1]

 + plc1_Prt: PLC_Int [1]

«Component»

 + pLC2: PLC2 [1]

+ plc2_Prt: PLC_Int [1]

«Component»

 + pLC3: PLC3 [1]

+ plc3_Prt: PLC_Int [1]

«Component»

 + alarmDB: AlarmDB [1]
 + AlrmDB_Prt: DBInt [1]

«Component»

+ logDB: LogDB [1]
 + LogDB_Prt: DBInt [1]

«Component»

 + archiveDB: ArchiveDB
 + ArchDB_prt: DBInt [1

«Component»

 + RTDB: RTDB [1]

+ RTDB_Prt: DBInt [1]

1
1

11

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

11

1

1 11

1

1

1

1

1
1

11

1

1

1
1

1

1

11

11

1

1

1

1

1

1

1

1

1
1

11

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

Fig. 6. SCADA software architecture model

«Pattern»

Secure_Communication

«Pattern»

Logger

«Pattern»

IntrusionDectectionSystem «Pattern»

Firewall

«Pattern»

Authenticator

«Pattern»

Authorization

«Pattern»

RBAC

«Pattern»

SecureChannel

PacketFirewall StatefulFirewall

«Pattern»

IPsec

«Pattern»

SSL

«Pattern»

SignatureBased_IDS

«Pattern»

BehaviorBased_IDS

<<uses>>

<<uses>>

<<isAlternative>>

<<refines>>
<<refines>>

<<refines>> <<refines>>

<<isAnAlternative>>

<<refines>> <<refines>>

<<isAnAlternative>>

Fig. 7. Selected Security Patterns

depicted in UML composite diagrams. Moving forward, it is

imperative to also account for behavioral considerations during

the integration process. Currently, messages are treated as

structural elements within our solution; however, to adequately

represent the sequencing and interaction of messages, we

propose the utilization of dedicated diagrams, such as the

UML sequence diagram, which better captures message order

and interaction dynamics.

REFERENCES

[1] E. Fernandez-Buglioni, Security patterns in practice: designing secure

architectures using software patterns. John Wiley & Sons, 2013.

[2] H. Washizaki, T. Xia, N. Kamata, Y. Fukazawa, H. Kanuka, T. Kato,
M. Yoshino, T. Okubo, S. Ogata, H. Kaiya, et al., “Systematic litera-
ture review of security pattern research.,” Information, vol. 12, no. 1,
pp. 2078–2489, 2021.

[3] D. Manolescu, W. Kozaczynski, A. Miller, and J. Hogg, “The Growing
Divide in the Patterns World,” IEEE Software, vol. 24, pp. 61–67, July
2007.

[4] D. Serrano, A. Mana, and A.-D. Sotirious, “Towards Precise and Certi-

ANAS MOTII, MAHMOUD EL HAMLAOUI: MBSPI—A MODEL-BASED SECURITY PATTERN INTEGRATION APPROACH 451

Fig. 8. Threats Counts Before and After Security Pattern Integration

fied Security Patterns,” in Proceedings of 2nd International Workshop on

Secure systems methodologies using patterns (Spattern 2008), pp. 287–
291, IEEE Computer Society, September 2008.

[5] J. F. Ruíz, M. Arjona, A. Maña, and N. Carstens, “Secure engineering
and modelling of a metering devices system,” in 2013 International

Conference on Availability, Reliability and Security, SecSE’13, pp. 418–
427, IEEE, 2013.

[6] A. Maña, E. Damiani, S. Gürgens, and G. Spanoudakis, “Extensions
to Pattern Formats for Cyber Physical Systems,” in Proceedings of the

31st Conference on Pattern Languages of Programs, no. 15 in PLoP’14,
pp. 15:1–15:8, ACM, 2014.

[7] P. H. Nguyen, K. Yskout, T. Heyman, J. Klein, R. Scandariato, and Y. L.
Traon, “SoSPa: A system of Security design Patterns for systematically
engineering secure systems,” in 2015 ACM/IEEE 18th International

Conference on Model Driven Engineering Languages and Systems

(MODELS), pp. 246–255, Sept. 2015.

[8] D. Mouheb, C. Talhi, M. Nouh, V. Lima, M. Debbabi, L. Wang, and
M. Pourzandi, “Aspect-Oriented Modeling for Representing and Inte-
grating Security Concerns in UML,” in Software Engineering Research,

Management and Applications, no. 296 in Studies in Computational
Intelligence, pp. 197–213, Springer Berlin Heidelberg, 2010.

[9] J. M. Horcas, M. Pinto, and L. Fuentes, “An Aspect-Oriented Model
transformation to weave security using CVL,” in 2014 2nd International

Conference on Model-Driven Engineering and Software Development

(MODELSWARD), pp. 138–150, Jan. 2014.

[10] G. Georg, I. Ray, K. Anastasakis, B. Bordbar, M. Toahchoodee, and
S. H. Houmb, “An aspect-oriented methodology for designing secure
applications,” Information and Software Technology, vol. 51, pp. 846–
864, May 2009.

[11] S. Peldszus, “Model-driven development of evolving secure software
systems,” in Combined Proceedings of the Workshops at Software

Engineering 2020 Co-located with the German Software Engineering

Conference 2020 (SE 2020) (R. Hebig and R. Heinrich, eds.).
[12] X. Zheng, D. Liu, H. Zhu, and I. Bayley, “Pattern-based approach to

modelling and verifying system security,” in 15th IEEE International

Conference on Service Oriented Systems Engineering (SOSE), pp. 92–
102, 2020.

[13] H. A. Alhamad and M. M. Hassan, “Aspect-oriented models-based
framework to secure intelligent systems,” in Proceedings of the 8th In-

ternational Conference on Computer Technology Applications (ICCTA),
pp. 249–262, 2022.

[14] A. Armoush, “Towards the integration of security and safety patterns
in the design of safety-critical embedded systems,” in 4th Interna-

tional Conference on Applied Automation and Industrial Diagnostics

(ICAAID), vol. 1, pp. 1–6, 2022.
[15] B. Hamid, C. Percebois, and D. Gouteux, “A Methodology for Integra-

tion of Patterns with Validation Purpose,” in Proceedings of the 17th

European Conference on Pattern Languages of Programs (EuroPLoP),
pp. 1–14, ACM, 2012.

[16] R. Abdallah, A. Motii, N. Yakymets, and A. Lanusse, “Using model
driven engineering to support multi-paradigms security analysis,” in
Model-Driven Engineering and Software Development: Third Interna-

tional Conference, MODELSWARD 2015, Angers, France, February 9-

11, 2015, Revised Selected Papers 3, pp. 278–292, Springer, 2015.
[17] A. Motii, B. Hamid, A. Lanusse, and J.-M. Bruel, “Towards the

integration of security patterns in UML component-based applications,”
in Joint Proceedings of the Second International Workshop on Patterns

in Model Engineering and the Fifth International Workshop on the

Verification of Model Transformation, vol. 1693 of PAME ’16, pp. 2–6,
CEUR-WS.org, 2016.

[18] A. Motii, “Mbta: A model-based threat analysis approach for software
architectures,” in 42nd International Conference on Computer Safety,

Reliability, and Security (SafeComp), pp. 121–134, 2023.
[19] A. Motii, B. Hamid, A. Lanusse, and J. M. Bruel, “Guiding the

selection of security patterns for real-time systems,” in 21st International

Conference on Engineering of Complex Computer Systems (ICECCS),
pp. 155–164, 2016.

452 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

