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Abstract—In multi-agent reinforcement learning scenarios,
independent learning, where agents learn independently based
on their observations, is often preferred for its scalability and
simplicity compared to centralized training. However, it faces
significant challenges due to the non-stationary nature of the
environment from each agent’s perspective.

We investigate if incorporating an environment model in
multi-agent reinforcement learning with decentralized training
can alleviate the non-stationarity effects caused by the adaptive
behaviors of other agents. To do this, we design and implement
a custom model-based algorithm and compare its performance
with the well-known model-free algorithm (Deep Q-Network).
Our algorithm uses an environment model to plan and select
actions. However, we do not require the model to be perfect for
action selection, allowing it to be learned and improved during
training. Our results suggest that integrating environment models
into MARL offers a viable solution to mitigate non-stationarity.

Keywords: reinforcement learning, multi-agent reinforcement
learning, model-based RL.

I. INTRODUCTION

I
N MULTI-AGENT reinforcement learning (MARL), agents
learn to make decisions in an environment where other

agents are also learning and adapting. A major challenge in
MARL is non-stationarity, where the perceived environment’s
dynamics change from the perspective of each agent due to the
adaptive behaviors of other agents. This non-stationarity can
significantly hinder the learning process, making it difficult for
agents to converge on optimal strategies.

Decentralized learning, where agents learn independently
based on their observations, is often preferred for its scalability
and simplicity. However, it faces significant challenges due
to the non-stationary nature of the environment from each
agent’s perspective. This article explores whether using an
environment model in MARL with independent learning can
mitigate the non-stationarity problem caused by other adaptive
agents.

To investigate this, we design and implement a custom
model-based method for MARL. We then compare the per-
formance of our model-based algorithm against a traditional
model-free algorithm to assess its effectiveness in reducing
non-stationarity.

Our experiments and results provide insights into the poten-
tial benefits of integrating environment models in decentralized

MARL, offering an alternative perspective on addressing the
non-stationarity challenge.

II. BACKGROUND

A. Problem Definition

We consider a sequential decision process with multiple
agents. We can define it as an n-agent stochastic game [1],
[2] consisting of:

• set of agents N = {1, . . . , n},
• state space S ,
• action space Ai for each agent i ∈ N ,
• reward function Ri for each agent i ∈ N , defined as
Ri : S ×A× S 7→ R, where A = A1 × · · · × An,

• state transition probability function T : S ×A 7→ ∆(S).
At each time step t, agents choose their actions ati according
to individual policies πi : S 7→ ∆(Ai) for state st. Based on
the joint action at = {ati}i∈N , state transits to st+1 and each
agent receives reward rti . In independent learning, goal of each
agent i is to find optimal policy π∗

i that maximizes expected
return defined as

Eπi,π−i

[

∞
∑

t=0

γtrti

]

,

where π−i =
∏

j∈N\{i} πj is joint (Cartesian product) policy
of other agents, and γ ∈ [0, 1) is a discount factor. This means,
that optimal policy of agent i also depends on how the other
agents act. Given this goal, the solution to a stochastic game
will be (ε-)Nash equilibrium, where no agent can improve its
performance by unilaterally changing its policy.

B. Independent Learning

In independent learning, each agent learns its policy πi

based solely on its own observations, actions and rewards,
while completely ignoring the existence of other agents [1].
This approach essentially reduces a multi-agent problem to
a series of single-agent problems, for which we can use single-
agent reinforcement learning algorithms.

From the perspective of agent i, the policies πj of other
agents become part of the state transition function:

Ti(s
t+1|st, ati) ∝

∑

a
−i∈A−i

T (st+1|st, ati, a−i)
∏

j ̸=i

πj(aj |s
t),
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where −i means “all agents other than i.” During learning,
each agent j will continue to update its policy πj , and
the action probabilities associated with πj in each state s

may change. Therefore, from the perspective of agent i, the
transition function Ti seems to be non-stationary. However,
this perceived non-stationarity is due solely to the evolving
policies πj of the other agents. Consequently, independent
learning approaches can lead to unstable learning and might
not converge to a stable solution in the game.

We can alleviate this problem by allowing some central-
ized information. For example, during training, the algorithm
can utilize the shared local information from all agents to
update their policies. One of the most noticeable algorithms
of centralized training and decentralized execution (CTDE)
paradigm is actor-critic method known as MADDPG [3],
which uses centralized action-value function as a critic. Access
to global information helps coordinate the actions of agents,
which can mitigate the effect of non-stationarity and contribute
to more stable learning. However, centralization introduces
issues with scalability, as the number of joint actions grows
exponentially relative to the number of agents.

III. INTEGRATION OF ENVIRONMENT MODEL

A model of the environment refers to anything that an agent
can utilize to predict the environment’s response to its ac-
tions [4]. Given a state and an action, the model provides
a forecast of the resulting next state and reward. In the case
of a stochastic model, there are many possible future states and
rewards, each with probabilities assigned to their occurrence.
These models can take two forms:

• distribution model, which provides the complete distribu-
tion of all possibilities and their probabilities,

• sample model, which generates a possible state and re-
ward by sampling according to the assigned probabilities.

In both cases, model is used to simulate the environment and
generate simulated experiences.

The term planning can have various meanings across differ-
ent fields. In our context, planning refers to any computational
process that uses a model as input to generate or refine a policy
for interacting with the modeled environment. Planning can
be integrated into reinforcement learning in two ways: 1) we
can use the model to generate simulated experiences and use
these experiences to improve the policy or value function
(background planning); and 2) we can use the model to plan
in predicted states in order to select actions (decision-time

planning) [4].
Based on how learning is used, we can distinguish three

main categories of planning-learning integration [5]:
• model-based RL with a learned model, where we learn

both model and policy/value function (e.g. Dyna-Q [6]),
• model-based RL with a known model, where we plan over

a known model, and only use learning for value function
(e.g. AlphaZero [7]),

• planning over a learned model, where we learn model,
and use it to plan locally, without learning policy or value
function (e.g. Embed2Control [8]).

Model Planning

Policy/Value
functionAct

Data

Fig. 1. Integration of planning and learning in Dyna architecture

Here, “planning over a learned model” may not be considered
model-based RL, since no policy or value function is learned.

A. Dyna Architecture

The Dyna [9] architecture is an integrated framework that
combines learning, planning, and reactive execution in the
context of reinforcement learning (Fig. 1). Real experience is
utilized by the planning agent to improve the model, making it
more accurately reflect the real environment, as well as being
used, similarly to model-free methods, for directly improving
the value function and policy. The model is used to generate
simulated experiences, which are then utilized to update the
policy/function. Planning is done incrementally and can utilize
world models often generated by learning processes, even
if they are sometimes incorrect. If the model is accurate,
planning significantly speeds up finding the optimal policy.
In small tasks, it has been demonstrated to be true, even if
the model also needs to be learned or if the environment
changes [6].

Recent progress in Dyna-style MARL methods in-
cludes Adaptive Opponent-wise Rollout Policy Optimization

(AORPO) [10]. AORPO explores ways to improve sample
efficiency in stochastic games, where agents independently
learn their policies but have the capacity to communicate with
each other. It utilizes opponent models to generate model
rollouts for a specific number of steps, determined by the
validation error of the opponent model. Subsequent steps of
the rollout involve requesting actions from the corresponding
opponent through communication. Improving policies with
data from environment models that predict joint agent actions
helps with non-stationarity, but opponent models need full
observability, which may not always be possible.

B. Heuristic Search

Classical decison-time planning methods are collectively
known as heuristic search [4]. In heuristic search, for each
encountered state, a large tree of possible future steps (based
on the model) is considered. An approximate value function
(typically designed by humans and never updated as a result
of the search) is applied to the nodes at the ends of branches,
and then these values are backed-up towards the current state,
which is the root of the tree. When we eventually compute
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Fig. 2. Algorithmic connections between planning and learning

values of action nodes for the current state, the best of them
is selected as current action. Greedy policies are like heuristic
search but on a smaller scale. For example, to select a greedy
action using the model and state value function, we need to
predict future states for each possible action, consider the
rewards and estimated values of those states, and then choose
the action that yields the best outcome. Heuristic search can
thus be understood as an extension of the greedy policy idea
beyond a single step. Here, we assume we have a perfect model
and an imperfect state value function. In such a scenario,
deeper search usually leads to a better policy — if the search
was carried out until the end of the episode, then indeed, the
impact of the imperfect value function would be eliminated,
and the action chosen in this way must be optimal. However,
the deeper the search, the more computations are required.

An interesting example is the TD-Gammon program [11],
created by Gerald Tesauro, which achieved a master-level
performance in the game of backgammon. It uses a form of
heuristic search to select moves and learns a value function
over multiple self-play games. As a model, TD-Gammon
utilized a priori knowledge about the probabilities of rolling
specific dice outcomes and the assumption that the opponent
always chose actions that TD-Gammon deemed best for it.

IV. DESIGNING THE ALGORITHM

In our experiments, we want to explore how the environment
model can affect the issue of non-stationarity in independent
learning. Specifically, we want to find out whether using
a model (even if imperfect) helps the agent reduce the sense of
environment non-stationarity caused by other learning agents.

According to [5], there are several possible algorithmic
connections between planning and learning, as shown in
Fig. 2: a) learning a policy/value function from real data,
b) learning the model from real data, c) planning using the
model, d) acting based on the outcome of planning, e) acting
based on the policy/value function, f) using the policy to
improve the planning procedure, g) using the planning result
to update the policy/value function. We need to consider how
to use the environment model in our algorithm.

Suppose we have an ideal environment model, which im-
plicitly must be in line with the policies of the other agents,
and a well-designed approximate value function. We could
use heuristic search to choose optimal actions in each state.

Algorithm 1 Designed model-based RL algorithm
// Algorithm controls agent i

1: Initialize predictive model T̂i and state-value function V πi

2: Repeat for every episode:
3: for t = 0, 1, 2, . . . do

4: Observe current state st

5: if explore with probability ε then

6: Choose random action ati ∈ Ai

7: else

8: for each action ai ∈ Ai do

9: Obtain predicted next state ŝt+1 and predicted
reward r̂ti from model T̂i using state st and action
ai

10: Calculate value of the action AV (ai) ← r̂ti +
γV πi(ŝt+1)

11: end for

12: Choose action ati = argmaxai
AV (ai)

13: end if

14: (meanwhile, other agents j ̸= i choose their actions atj)
15: Observe real reward rti and next state st+1

16: Update predictive model T̂i(st, ati) using st+1 and rti
17: V πi(st)← V πi(st) + α[rti + γV πi(st+1)− V πi(st)]
18: end for

A change in the environment dynamics (in this case, a change
in someone’s policy) would not affect an agent that relies
entirely on its own model (assuming the model is not updated).
This way, we would get rid of the non-stationarity problem.
However, the model wouldn’t be perfect anymore, so our
future actions could be suboptimal. However, if the other
agents also operate optimally, then there would be no change
in dynamics in the first place.

In a situation with multiple learning agents, we cannot
rely on a perfect environment model, and we must adjust it
to accommodate the changing behavior of the other agents.
Therefore, just like in the Dyna architecture, we need to update
the model during learning. Given the inherent imperfection of
the model, deep heuristic search is not feasible, as prediction
errors in subsequent states will quickly accumulate. Therefore,
we will plan only one step ahead.

We will approximate the values of future states using the
state value function V πi for the current policy πi of agent i
(which is conditioned on the agent’s environment model). This
means it can only be updated using on-policy data. To make
updates, we will apply one-step TD learning using experiences
from interactions with the real environment. Due to the imper-
fection of the model, using it to acquire simulated experiences
to improve V πi may be infeasible.

We hope that this way of integrating planning and learning
(also presented in Fig. 3) will, at least to some extent,
reduce the problem of non-stationarity. Algorithm 1 presents
pseudocode of the designed model-based RL method.

V. ARCHITECTURAL CHOICES

During the experiments, we use following hyperparameters:
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Fig. 3. Integration of planning and learning in the designed algorithm

• learning rate α = 0.0001,
• discount rate γ = 0.9.

To encourage exploration, we use the ε-greedy method. The
parameter ε will initially be εstart = 0.99, which will
gradually decrease to εend = 0.05 according to the formula:

ε = εend + (εstart − εend)e
(−k/1000)

where k is the total number of steps taken by the agent since
the beginning of the learning process.

A. Environment Model

The environment model is a sample model which, given
an input observation, returns the predicted next observations
for each possible action, the predicted rewards for taking those
actions, and information on whether each of these actions leads
to a terminal state. It is a simple feedforward neural network
with parameters θ composed of 2 hidden layers, each with 64
neuron units using the ReLU activation function.

The output layer predicting the next observations has a size
equal to the number of actions multiplied by the observation
size. The output layer predicting the rewards has a width equal
to the number of actions. Both of these output layers do not
use nonlinear activation functions.

The output layer predicting whether the next state will be
terminal has a size equal to the number of actions and uses
the sigmoid activation function to represent the probability,
where a value of 1 indicates that the model is certain it will
be a terminal state.

In the implementation, we use a memory buffer that stores
the history of the last 1000 steps of the agent. At each
step, a randomly selected batch of 32 experience tuples
(s, a, r, s′, final), is retrieved from the buffer, where final is
an indicator whether state s′ is a terminal state. Subsequently,
based on this batch, the parameters of the environment model
of this agent are updated using the mean squared error (MSE)
loss:

L(θ) = MSE(ŝ′, s′) +MSE(r̂, r) +MSE( ˆfinal, final)

For parameter updates, we employ the AdamW [12] optimizer
with a learning rate α.

Fig. 4. Simple Spread environment with 3 agents (blue circles represent
agents, and black dots are destination landmarks)

B. State-Value Function

The state-value function V πi or agent i’s policy πi is
approximated using a feedforward neural network with param-
eters ϕ. This network consists of two hidden layers, similar to
the environment model. It takes the state (observation) s as in-
put, and its output layer returns a single value — the predicted
state value V πi(s) under policy πi. The output layer does not
use a nonlinear activation function. The network is updated
at each timestep using the acquired tuple (s, a, r, s′, final) of
real experience, utilizing the mean squared error loss function:

L(ϕ) = MSE(V πi(s), yi)

where yi = r+γV πi(s′) if s′ is not a terminal state, or yi = r

otherwise. We use AdamW optimizer with a learning rate α

for parameter updates.

VI. EXPERIMENTAL SETUP

A. Environment

Multi-Particle Environments (MPE) [3] is a collection of
environments where agents (particles) are placed in a two-
dimensional space with designated landmarks. They can in-
teract with the environment and with each other to achieve
specific goals that require cooperation or competition.

One particular environment of interest is the navigation
with cooperation available in the PettingZoo [13] library under
the name Simple Spread. Fig. 4 illustrates this game, with
blue particles representing the agents. In this environment,
agents cooperate physically (without communication) to reach
multiple landmarks. They observe the positions of other agents
and points of interest, and their reward depends on how close
they are to these points. The goal is to cover all landmarks
while avoiding collisions, for which they are penalized. Agents
learn which landmark to head towards and navigate there while
avoiding other agents. In our experiments the game terminates
after 32 timesteps.
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B. Comparison Algorithm

We want to compare our model-based RL algorithm with
a model-free one. Since our designed algorithm resembles Q-
learning, we will compare it with the well-known Deep Q-
Network (DQN) algorithm [14].

In the implementation, we use experience memory to store
the agent’s experiences from the last 1000 time steps. The Q-
network is similar to the state-value network in our algorithm,
but instead of a single value, it outputs one value for each
possible action. It also uses AdamW optimizer with learning
rate α. The target network is updated in every step using soft
update:

θtarget ← τθcurrent + (1− τ)θtarget

where τ = 0.005, and θtarget and θcurrent represent the
parameters of the target network and the current network,
respectively.

VII. TESTS AND RESULTS

We trained our implemented algorithm and the DQN al-
gorithm in the Simple Spread environment with 3 agents for
150,000 episodes. We compared the performance of the DQN
algorithm with that of our model-based algorithm, illustrating
the learning trends over time. The rewards for both algorithms
were tracked and plotted to observe their respective improve-
ments in performance throughout the training process.

The plot in Fig. 5 presents a moving average of the total
rewards over 1000 episodes for these two algorithms. As
training progresses, the plot shows the smoothed trend of
the rewards received by each algorithm, highlighting their
performance improvements over time. The moving average
helps in reducing the noise in the reward signal, providing
a clearer picture of the algorithms’ learning behaviors.

In this test, our model-based method achieves better asymp-
totic performance than model-free DQN. DQN is an off-
policy algorithm (meaning it can use the experience generated
by policies other than the behavior policy to train its value
function, thus enabling the reuse of old experience, which
can significantly speed up the learning process) and is known
for its high sample efficiency in single-agent RL. The fact
that our on-policy algorithm (contrary to off-policy, it cannot
use the outer experience to improve value function) achieves
similar sample efficiency in the scenario with three agents
must, therefore, be attributed to its more effective handling
of the non-stationarity problem.

A. Single Agent

To demonstrate that DQN is indeed more sample efficient
in single-agent RL, we trained both algorithms in the same
environment but with only a single agent. Fig. 6 shows their
performance improvements during training (also using moving
average over 1000 episodes). In this test, both methods achieve
similar asymptotic performance, but DQN reaches it much
faster.
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Fig. 5. Comparsion of DQN’s and our model-based (MB) algorithm’s learning
performance in Simple Spread with 3 agents
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Fig. 6. Comparsion of DQN’s and our model-based (MB) algorithm’s learning
performance in Simple Spread with 1 agent

B. More Agents

To determine if our model-based algorithm helps reducing
non-stationarity, we compared it with DQN in Simple Spread
environment with 4 and 6 agents. The presence of additional
agents exacerbates the non-stationarity effect, allowing for
a more discernible assessment of our algorithm’s efficacy in
addressing it. Fig. 7 and Fig. 8 show comparison plots for
environments with 4 and 6 agents respectively. In both cases,
the DQN agents failed to make progress in solving the problem
due to the presence of non-stationarity, resulting in cyclic
behavior. In contrast, our method showed signs of improved
performance.

Conducted tests indicate that our model-based algorithm
outperforms similar model-free method in multi-agent se-
tups with decentralized learning. These setups are highly
affected by non-stationarities, wherein our model-based ap-
proach demonstrates superior adaptability and performance.

VIII. CONCLUSION

We created a custom model-based algorithm for multi-
agent reinforcement learning with decentralized training. Our
algorithm uses the environment model to plan in predicted
states in order to select actions. However we allow for the
actions to be selected based on an imperfect model, enabling
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Fig. 7. Comparsion of DQN’s and our model-based (MB) algorithm’s learning
performance in Simple Spread with 4 agent
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Fig. 8. Comparsion of DQN’s and our model-based (MB) algorithm’s learning
performance in Simple Spread with 6 agent

the model to be learned and improved throughout the training
process.

We tested our algorithm against the Deep Q-Network in
a sample environment. As the number of agents increased,
our model-based algorithm outperformed DQN. Therefore, it
is reasonable to assume that this trend will continue with
even more agents, although this needs to be confirmed with
additional tests.

Our experimental findings suggest that utilizing an environ-
ment model can effectively help agents in mitigating the effects
of non-stationarity induced by other adaptive agents. To con-
firm conclusively, additional experiments across a broader
range of environments are required. Nevertheless, this work
contributes to the understanding of how environment modeling
can improve the effectiveness of multi-agent reinforcement
learning algorithms. It presents an alternative approach to the
challenges present in the field compared to most currently
developed methods that rely on centralized training.

It may also be possible to use the model to generate simu-
lated experience for improving the value function (as indicated
by arrow g in Fig. 2) when the model is accurate enough
(e.g., when model loss is sufficiently small). This could be
the focus of further work.
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