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Abstract—In the literature one can find various methods for
solving full fuzzy linear programming problems. Very few of
them fully comply to the extension principle. In the current study
we extend an existing solution approach based on the extension
principle to derive fuzzy-set optimal results to full fuzzy linear
programming problems with L-R fuzzy parameters.

Our approach is a twofold extension of a procedure from
the literature: (i) it employs L-R membership functions in
the optimization models that derive fuzzy-set optimal objective
values; and (ii) it introduces new optimization models for deriving
fuzzy-set optimal solution values in accordance to the extension
principle and product operator. The employment of the product
operator makes the derived fuzzy-set results more thinner, thus
more appropriate to further decision making.

I. INTRODUCTION

F
UZZY SETS are currently used within the soft computing

field to handle uncertainties when modeling real systems.

Full fuzzy programming problems are widely addressed in the

recent literature. The majority of the solution approaches in-

volve cumbersome case analyses, and provide trivial solutions

as soon as the appropriate case is identified. Many times, such

solutions are non-consistent, since the applied methodologies

do not comply to the extension principle (EP) [1].

Particularly, procedures for solving full fuzzy linear pro-

gramming problems, that work in full accordance to the

extension principle, were reported in the literature. The α-cut

intervals were used in all these procedures to derive the fuzzy

set optimal solutions. The min operator firstly used within the

extension principle to aggregate the parameters was later on

replaced by the product operator in order to achieve thinner

fuzzy set optimal solutions to the same problems [2].

An extension-principle-based methodology is available only

for problems involving trapezoidal fuzzy parameters so far,

thus the purpose of this study is to provide one for prob-

lems involving general L-R fuzzy parameters. The proposed

methodology will extend the existing models for deriving the

fuzzy set optimal values of the objective functions, and provide

new optimization models to obtain the fuzzy set optimal

solution values of the decision variables.

Firstly, the paper contributes to the enlargement of the

class of full fuzzy optimization problems that can be solved

numerically. Secondly, it provides more detailed solutions, in

the sense of describing numerically the optimal values of the

decision variables, not only of the objective function. More-

over, the solution approach we propose can be widely used

to validate other methodologies capacity to derive solutions in

accordance to the extension principle. The results presented in

this paper have theoretical foundations proved mathematically,

and numerical illustrations.

The rest of the paper is organized as follows: Section II

briefly surveys the relevant literature; Section III explains all

necessary notation and provides the basic terminology; Section

IV presents our solution approach. An illustrative example is

offered in Section V; and the final remarks are included in

Section VI.

II. LITERATURE REVIEW

Zimmermann [3] was the first to apply the fuzzy set theory

to mathematical programming. A wide survey of the papers

from the literature providing various models and solutions to

fuzzy linear programming problems can be found in [4]. Perez-

Canedo, Verdegay and Concepcion-Morales [5] reviewed the

recent approaches to fuzzy linear programming based on

lexicographic methods.

Full fuzzy linear programming (FF-LP) problems refer to

linear-programming-shape problems having fuzzy parameters

and decision variables. Majority of papers addressing FF-

LP problems a priori impose the type of fuzzy sets used

for both parameters and variables; apply the fuzzy arithmetic

via the extension principle; and then optimize a single or

multiple crisp objective function to derive the final solution.

For instance Kumar, Kaur and Singh [6] imposed equality

constraints on the FF-LP model, and transformed it to a

crisp optimization problem using a ranking function. Later
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on, Ezzati, Khorram and Enayati [7] used a lexicographic

method to solve the multiple objective linear programming

problem attached to the original FF-LP problem. Liu and Kao

[8] introduced the solution concept to fuzzy transportation

problems based on extension principle. Their approach was

further adapted and improved in [9], [10].

Solutions to LP problems with trapezoidal fuzzy coefficients

and using score functions were provided by Suriyapriya, Mu-

rugan, and Nayagam in [11]; and some advanced techniques to

solving intuitionistic fuzzy multiple objective non-linear opti-

mization problems were introduced by Rani, Ebrahimnejad,

and Gupta in [12]. Perez-Canedo and Concepcion-Morales

[13] and [14] addressed FF-LP problems with L-R fuzzy

and intuitionistic fuzzy parameters and decision variables.

Both their mathematical models had inequality constraints.

In the second study unrestricted (free) variables were also

considered. Our approach do not involve any comparison of L-

R fuzzy numbers, thus avoiding any use of ranking functions

and being applicable to solve any FF-LP model including any

constraint types or variables. The first attempt to empirically

solve FF-LP problems based on the extension principle and

using the generalized ”min” operator was made by Stanojevic

and Nadaban [2]. They proved that by using the product

operator within the extension principle more narrow fuzzy set

solutions can be derived.

Summing up, the solving methods for full fuzzy opti-

mization problems use either scalar or vector defuzzification

approaches before optimization, or the extension principle

without any defuzzification. Ranking functions are used to

attain defuzzifications (see for instance [15] and [16]). Vec-

tor defuzzification methods use more ranking functions to

transform a fuzzy optimization problem into a crisp mul-

tiple objective optimization problem. The methods that do

not involve any defuzzification use α-cuts, α ∈ [0, 1], thus

numerically construct the final fuzzy set solution. A summary

of the literature review is provided in Table I.

III. PRELIMINARIES

The basic terminology indispensable to this study is related

to L-R fuzzy membership functions (introduced by Dubois and

Prade [20]) and the extension principle (introduced by Zadeh

[21]).

A fuzzy set Ã of a universe U is formally described by the

set of pairs
{(

x, µ
Ã
(x)
)
|x ∈ U

}
, where µ

Ã
: U → [0, 1] is

the membership function that applied on any element x ∈ U

provides its degree of fuzziness.

A fuzzy number is a special case of a convex, normalized

fuzzy set of the universe of real numbers. An L-R fuzzy

number w̃LR, also refered as quadruple
(
w1, w2, w3, w4

)
, has

a membership function of the following form:

µ
Ã
(x) =





L
(

w2
−x

w2
−w1

)
, x ≤ m,

R
(

x−w3

w4
−w3

)
, x ≥ n,

0, ,

where both L,R are defined on the set of real numbers

such that µ
Ã
(x) ∈ [0, 1]. For our numerical illustrations we

successively use max
{
0, 1− x2

}
and max {0, 1−√

x} to

define both L and R functions.

A general full fuzzy optimization problem

max {f (ã, x̃) |g (c̃, x̃) ≤ 0}

with ã and c̃ vectors of fuzzy parameters, and x̃ vector of fuzzy

decision variables can be solved via Zadeh’s extension princi-

ple using the solution concept that computes the membership

degree of the optimal solutions to the crisp optimization

problem

max {f (a, x) |g (c, x) ≤ 0} (1)

using the membership degree of the parameters. Let p denote

the vector obtained by concatenating the vectors a and c, i.e.

p = (a|c). Then, the membership degree of p is defined as

µ(p) = min
{
µ
p̃i
(pi) |i = 1, . . . ,m

}
, (2)

where m is the number of scalar parameters used in modeling

the original optimization problem. Then, the membership

degree µ
z̃
(z), of the crisp optimal value z in the fuzzy set

of the optimal values z̃ = max {f (ã, x̃) |g (c̃, x̃) ≤ 0} was

defined by

sup {µ (p) |p = (a|c) , z = max {f (a, x) |g (c, x) ≤ 0}} (3)

if there exist the parameter vectors a and c such that the

optimal value of Problem (1) equals to z, or µ
z̃
(z) = 0,

otherwise. Similarly, for each scalar decision variable x̃h the

membership degree µ
x̃h
(xh) is defined as

sup {µ (p) |p = (a|c) , xh = argh max {f (a, x) |g (c, x) ≤ 0}}
(4)

if there exist the parameter vectors a and c such that the h-th

component of the optimal solution to Problem (1) is xh, or

µ
x̃h
(xh) = 0, otherwise.

IV. PROPOSED METHODOLOGY

The mathematical model of a FF-LP problem with L-R

fuzzy parameters is given in (5).

max
n∑

j=1

c̃LR
j x̃j ,

s.t.

n∑

j=1

ãLR
ij x̃j ⪯ b̃LR

i , i = 1,m,

x̃j ⪰ 0, j = 1, n,

(5)

where 1, n stands for the set of natural numbers from 1 to

n, i.e. {1, 2, . . . , n}. This model has non-negative decision

variables and inequality constraints but it can be considered

general from the point of view of our solution approach: to

derive the final solutions, our approach collects the optimal

results of the crisp LP problems
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TABLE I
FEATURES OF OUR APPROACH AND SEVERAL APPROACHES FROM THE LITERATURE

References Coefficients Variables Constraints Optimization criterion / method

[17] Allahviranloo et al. (2008) L-R unrestricted inequality ranking function, scalar defuzzification

[6] Kumar et al. (2011) TFN restricted equality ranking function, scalar defuzzification

[7] Ezzati et al. (2015) TFN restricted equality lexicographic, vector defuzzification

[18] Kaur & Kumar (2016) L-R unrestricted equality lexicographic, vector defuzzification

[13] Perez-Canedo et al. (2019) L-R unrestricted inequality lexicographic, vector defuzzification

[19] Stanojevic & Stanojevic (2020) TFN unrestricted any EP based, “min” op., empiric z

[2] Stanojevic & Nadaban (2023) TFN unrestricted any EP based, “prod” op., empiric z

Current study L-R unrestricted any EP based, “prod” op., numeric x and z

max

n∑

j=1

cjxj ,

s.t.

n∑

j=1

aijxj ≤ bi, i = 1,m,

xj ≥ 0, j = 1, n.

(6)

Problem (6) is the crisp analog of (5) in the sense of having

the same shape but crisp parameters; and any crisp LP problem

can be converted to (6) without loosing its generality.

On the other side, Problem (5) cannot represent the general

form for other approaches that perform inconsistent fuzzy

arithmetic operations on its parameters and variables.

Let us denote by

XA,b =
{
x ∈ Rm|ATx ≤ bT , x ≥ 0

}
(7)

the feasible set of Problem (6), and by

UA,c =
{
u ∈ Rm|ATu ≥ cT , u ≥ 0

}
(8)

the feasible set of the dual of Problem (6).

The following Theorem 4.1 presents the theoretical founda-

tion of Algorithm 1.

Theorem 4.1: For any value α∗ arbitrary fixed in the inter-

val [0, 1], the left and right endpoints of the interval represent-

ing the α∗-cut of the fuzzy set of optimal values to Model (5)

are equal to the optimal values of Model (9)

max
n∑

j=1

cjxj ,

s.t. 


m∏

i=1

n∏

j=1

δij



(

m∏

i=1

βi

)


n∏

j=1

γj


 = α∗,

a3ijL
−1

ãLR
ij

(δij)− a1ij ≤ aij ≤ a4ijR
−1

ãLR
ij

(δij) + a2ij ,

b3iL
−1

b̃LR
i

(βi)− b1i ≤ bi ≤ b4iR
−1

b̃LR
i

(βi) + b2i ,

c3jL
−1

c̃LR
j

(γj)− c1j ≤ cj ≤ c4jR
−1

c̃LR
j

(γj) + c2j ,

δij , βi, γj ∈ [0, 1] , i = 1,m, j = 1, n,
x ∈ XA,b;

(9)

and Model (10)

min
m∑

i=1

biui,

s.t. 


m∏

i=1

n∏

j=1

δij



(

m∏

i=1

βi

)


n∏

j=1

γj


 = α∗,

a3ijL
−1

ãLR
ij

(δij)− a1ij ≤ aij ≤ a4ijR
−1

ãLR
ij

(δij) + a2ij ,

b3iL
−1

b̃LR
i

(βi)− b1i ≤ bi ≤ b4iR
−1

b̃LR
i

(βi) + b2i ,

c3jL
−1

c̃LR
j

(γj)− c1j ≤ cj ≤ c4jR
−1

c̃LR
j

(γj) + c2j ,

δij , βi, γj ∈ [0, 1] , i = 1,m, j = 1, n,
u ∈ UA,c,

(10)

respectively.

Within these models, the objective functions are optimized

over the variables aij , bi, cj , δij , βi, γj , i = 1,m, j = 1, n.

To derive the left (right) endpoints of the α∗-cut of the fuzzy-

set optimal solutions to Problem (5), for any fixed index j∗ ∈
{1, 2, . . . , n}, and α∗ ∈ [0, 1], we introduce Model (11)

min(max)xj∗ ,

s.t.

zmin

α∗ ≤
n∑

j=1

cjxj ≤ zmax

α∗ ,




m∏

i=1

n∏

j=1

δij



(

m∏

i=1

βi

)


n∏

j=1

γj


 = α∗,

a3ijL
−1

ãLR
ij

(δij)− a1ij ≤ aij ≤ a4ijR
−1

ãLR
ij

(δij) + a2ij ,

b3iL
−1

b̃LR
i

(βi)− b1i ≤ bi ≤ b4iR
−1

b̃LR
i

(βi) + b2i ,

c3jL
−1

c̃LR
j

(γj)− c1j ≤ cj ≤ c4jR
−1

c̃LR
j

(γj) + c2j ,

δij , βi, γj ∈ [0, 1] , i = 1,m, j = 1, n,
x ∈ XA,b,

(11)

where zmin

α∗ and zmax

α∗ are the optimal values obtained by

solving Models (9) and (10) for the given value α∗ ∈ [0, 1].

Algorithm 1 formally describes our solution approach. Gen-

erally, the predifined values α∗

1
, α∗

2
, . . . , α∗

q are chosen to be

equidistant in the interval [0, 1], α∗

1
= 0, α∗

q = 1.
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Algorithm 1 Deriving the fuzzy set solutions

Require: the predefined α-levels α∗

1
, α∗

2
, . . . , α∗

q , and the L-R

fuzzy-parameter matrices ÃLR, b̃LR, c̃LR.

Ensure: zmin, zmax, xmin, xmax.

for k = 1, q do

2: Set α∗ = α∗

k, and derive zmin

α∗

k
and zmax

α∗

k
by solving (9)

and (10), respectively.

for h = 1, n do

4: Derive xmin

α∗

k
(h∗) and xmax

α∗

k
(h∗) as minimal and

maximal values of the objective function in (11).

end for

6: Construct the vectors xmin

α∗

k
=
(
xmin

α∗

k
(h∗)

)

h∗=1,n
and

xmax

α∗

k
=
(
xmax

α∗

k
(h∗)

)

h∗=1,n
.

end for

8: Construct zmin =
(
zmin

α∗

k

)k=1,q

, zmax =
(
zmax

α∗

k

)k=1,q

,

xmin =
(
xmin

α∗

k

)k=1,q

, xmax =
(
xmax

α∗

k

)k=1,q

.

A. Particularities due to specific shapes of L-R functions

In what follows we discuss the particularities of Models

(9), (10) and (11) in certain cases, with respect to the L-R

functions that are commonly used. All particular models are

polynomial, or equivalent to polynomial models.

1) L (x) = R (x) = max {0, 1− x}: This particular case

corresponds to trapezoidal fuzzy numbers. The fuzzy set of

the optimal values of the objective functions were empirically

described in [19] using min operator; and numerically derived

in [2] using product operator. The new introduced Model (11)

adapted to the current case becomes

min(max) xj∗ ,

s.t.

zmin

α∗ ≤
n∑

j=1

cjxj ≤ zmax

α∗ ,




m∏

i=1

n∏

j=1

δij



(

m∏

i=1

βi

)


n∏

j=1

γj


 = α∗,

a3ij (1− δij)− a1ij ≤ aij ≤ a4ij (1− δij) + a2ij ,

b3i (1− βi)− b1i ≤ bi ≤ b4i (1− βi) + b2i ,

c3j (1− γj)− c1j ≤ cj ≤ c4j (1− γj) + c2j ,

δij , βi, γj ∈ [0, 1] , i = 1,m, j = 1, n,
x ∈ XA,b.

(12)

2) L (x) = R (x) = max {1−√
x}: In this case, the

inverse functions of L and R are L−1 (y) = R−1 (y) =
(1− y)

2
, and the constraints on variables aij , bi, cj , i = 1,m,

j = 1, n become quadratic, i.e.

a3ij (1− δij)
2 − a1ij ≤ aij ≤ a4ij (1− δij)

2
+ a2ij ,

b3i (1− βi)
2 − b1i ≤ bi ≤ b4i (1− βi)

2
+ b2i ,

c3j (1− γj)
2 − c1j ≤ cj ≤ c4j (1− γj)

2
+ c2j ,

(13)

3) L (x) = R (x) = max
{
1− x2

}
: In this case, the in-

verse functions of L and R are L−1 (y) = R−1 (y) =
√
1− y,

TABLE II
FUZZY PARAMETERS OF PROBLEM (15)

Objective function and RHS Constraints matrix

c̃1 = (6, 8, 8, 10) ã11 = (4.5, 5, 5, 5.5)

c̃2 = (10, 12, 12, 14) ã21 = (5.75, 6, 6, 6.25)

c̃3 = (0.75, 1, 1, 1.25) ã31 = (0.5, 1, 1, 1.25)

b̃1 = (105, 150, 155, 207) ã12 = (4.5, 5, 5, 5.5)

b̃2 = (102, 120, 125, 147) ã22 = (1.75, 2, 2, 2.25)

b̃3 = (58, 100, 110, 148) ã32 = (3.75, 4, 4, 4.5)

and the constraints on variables aij , bi, cj , i = 1,m, j = 1, n
become

a3ij
√

1− δij − a1ij ≤ aij ≤ a4ij
√
1− δij + a2ij ,

b3i
√
1− βi − b1i ≤ bi ≤ b4i

√
1− βi + b2i ,

c3j
√
1− γj − c1j ≤ cj ≤ c4j

√
1− γj + c2j .

(14)

With the help of the transformations

ηij =
√
1− δij , θi =

√
1− βi,

ϑj =
√
1− γj , i = 1,m, j = 1, n,

constraints (14) become linear, and the degree of the poly-

nomial in the second constraint of Models (9), (10) and (11)

is doubled. As a consequence, the final equivalent constraint

system

zmin

α∗ ≤
n∑

j=1

cjxj ≤ zmax

α∗ ,




m∏

i=1

n∏

j=1

(
1− η2ij

)


(

m∏

i=1

(
1− θ2i

)
)


n∏

j=1

(
1− ϑ2

j

)

 = α∗,

a3ijηij − a1ij ≤ aij ≤ a4ijηij + a2ij ,

b3i θi − b1i ≤ bi ≤ b4i θi + b2i ,

c3jϑj − c1j ≤ cj ≤ c4jϑj + c2j ,

ηij , θi, ϑj ∈ [0, 1] , i = 1,m, j = 1, n,
x ∈ XA,b,

is polynomial.

V. ILLUSTRATIVE EXAMPLE

Perez-Canedo et al. [13] used the following fuzzy optimiza-

tion problem (15) to illustrate their approach.

max c̃1x̃1 + c̃1x̃2 + c̃1x̃3

s.t. ã11x̃1 + ã12x̃2 + x̃3 = b̃1,

ã21x̃1 + ã22x̃2 ≤ b̃2,

ã31x̃1 + ã32x̃2 ≤ b̃3,

x̃1, x̃2 ≥ 0,
x̃3 free variable.

(15)

The fuzzy parameters of Problem (15) are given in Table II.

Problem (15) has both equality and inequality constraints; and

both bounded and unbounded variables. These characteristics

make it relevant to describe the generality of the solution

approaches.

Perez-Canedo et al. solved four variants of this problem

using: (i) L (x) = R (x) = 1−x; (ii) L (x) = R (x) = 1−x2;
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Fig. 1. Fuzzy set optimal values of the objective function

Fig. 2. Fuzzy set optimal values of variable x1

Fig. 3. Fuzzy set optimal values of variable x2

Fig. 4. Fuzzy set optimal values of variable x3
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(iii) L (x) = R (x) = 1 − √
x; (iv) L (x) = 1 − √

x and

R (x) = 1− x2.

The graphic representations obtained by applying our ap-

proach in comparison with the results obtained by Perez-

Canedo et al. [13] are shown in Figures 1, 2 and 3. Figure

1 presents the fuzzy sets of the optimal objective values for

both cases (ii) and (iii). Figures 2 and 3 present the fuzzy sets

of the optimal solutions for the cases (ii) and (iii), respectively.

There are several facts that are well illustrated by this re-

sults: (i) the support of the fuzzy sets results (optimal objective

and solution values) are not influenced by the operator “min”

or “prod” used to aggregate the fuzzy parameters within exten-

sion principle, since whenever one parameter has membership

degree 0, both “min” and “prod” operators provide the same

membership value 0 after aggregation (ii) the shapes of the

fuzzy set results (optimal objective and solution values) are

much thinner when “prod” operator is used within extension-

principle-based aggregation compared to “min” operator; (iii)

the results obtained by Perez-Canedo et al. [13] are L-R fuzzy

numbers and ours are not. Perez-Canedo et al. derived the

support of the fuzzy sets results, and then applied the a priori

imposed rule for obtaining the membership functions, while

we derived the left and right endpoints of each desired α-cut.

VI. CONCLUSION AND FURTHER RESEARCHES

By this study we aimed to provide a solution algorithm to

full fuzzy linear programming problems with L-R fuzzy de-

scriptions to uncertain parameters. Comparing to other studies

from the literature one of the advantages of our methodology

is that it fully complies to the extension principle. In addition

it uses the product operator to aggregate the L-R fuzzy

quantities, thus deriving more narrow fuzzy set solutions to the

original problem. Our approach introduced new optimization

models for deriving fuzzy-set optimal solution values, and

derives results that comply to the exstention principle. The

proposed methodology is illustrated on a numerical example

recalled from the literature. The class of fuzzy optimization

problems that can be solved using similar principles can be

further extended, e.g. nonlinear optimization problems in fuzzy

environment can be addressed. Based on the same solution

concept, an empiric variant of the new introduced approach -

that simulates the extension principle by choosing randomly

values of the parameters within their corresponding fuzzy sets

- can be employed to estimate the fuzzy set solutions in

accordance to the extension principle.
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