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Abstract—Animal farming has undergone significant trans-
formation and evolved from small-scale businesses to large-
scale commercial ventures. While maximizing productivity and
profitability has always been a major concern in animal farm-
ing, during recent years there has been an increasing rise of
concern regarding the welfare of the animals. In this context,
the integration of artificial intelligence (AI) technologies offers
immense potential for monitoring the well-being of chickens on
farms and optimizing revenue streams simultaneously. Several
works have integrated AI methodologies into everyday animal
farming activities. Still, very few (if any) have proposed efficient
and practical solutions that may facilitate farm owners in making
impactful decisions regarding their business profitability and the
welfare of the animals. In this direction, we propose a non-
invasive chicken farm monitoring system that relies on onfield
sound and video recordings integrated with sensory data acquired
from the farm. The system consists of hardware that handles
data acquisition and storage, a sensory data collection system
and audio/video processing AI models. The last component of
the system will be an inference engine that analyzes the collected
data and infers useful facts about the flock’s welfare and even
psychological state.

I. INTRODUCTION

E
nsuring the well-being of chickens on a farm is of

paramount importance for ethical, environmental, and

economic reasons. The welfare of chickens directly impacts

the quality of the final product, e.g., the number and the quality

of the daily produced eggs or the meat produced. Chicken

flocks living in a clean environment, being fed adequately,

having space to roam and being stress-free are less susceptible

to diseases and premature death [1]. In this work, we explore

monitoring the well-being of the chickens on the farm with

technology to understand whether the flock is under stress

and identify the source(s) of stress. This enables the farm

management to deal with potential stress-inducing factors,

keep the flock healthy and prevent catastrophic consequences.

AI-driven monitoring systems can play a crucial role in this

regard by continuously assessing implicit health or behavior

cues like the flock’s clucking or its daily motion index [12]

along with environmental conditions. By leveraging machine

learning algorithms, such systems can identify potential health

issues or disease outbreaks, enabling proactive measures to be

taken. Good, non-invasive information sources for inferring

the well-being of the animals on a chicken farm are audio

and video recordings of the chicken combined with the data

acquired by sensors measuring ambient pollutants and the

weather conditions on the farm. Chickens are especially vocal

birds and tend to express their psychological and physical state

through clucking to each other which enables the monitoring

of their welfare and the detection of stressful conditions.

Finally, the health and welfare of the birds on a farm rely on

the conditions they live in. For example, high concentrations of

ammonia on a farm [11], extreme (low or high) temperatures

and humidity affect the health of the chickens and should be

monitored carefully.

II. RELATED WORK

Many research works on AI-empowered chicken farm mon-

itoring use computer vision to detect individual animals and

track their motion on the farm. For example, [5] proposes

applying optical flow in video recordings of chickens for iden-

tifying early signs of infection by the pathogen Campylobacter.

Along similar lines, the authors of [9] identify early warnings

of footpad dermatitis and hockburn in broiler chicken flocks.

In the era of Deep Learning, several research works sug-

gest using popular Neural Network architectures to conduct

individual chicken detection from video footage collected in

the field. For example, in [3] the authors use Faster R-CNN

[15] architectures to develop object detection and instance

segmentation models that operate on edge devices installed

on the farm. They propose combining these models with

the monitoring of environmental parameters for early disease

detection which is the subject of future work in those papers. A

similar work [19] proposes the use of the YOLOv5 architecture
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[17] to detect cage-free chickens on the litter floor. Besides the

provision of the technology for non-invasive inference based

on video recordings, several researchers propose methodolo-

gies in the context of Precision Livestock Farming (PLF)

which involves wireless and Radio Frequency Identification

(RFID) sensors on the chickens. For example, the authors of

[4] detect the movements of each chicken with an RFID system

and classify them into active, normal, or sick, claiming they

can detect sick chickens at early sickness stages before the

whole flock is affected. Another interesting approach by [7]

involves automated monitoring and quantification of feeding

and nesting behaviors of individual hens.

Finally, animals’ vocalizations can be exploited as they

contain a wealth of biological information (e.g., reflecting

their social interactions, communicating alarm signals and

containing cues about their psychological state). In this con-

text, animals’ vocalization may be used as a welfare indicator

[10]. The clucking of chickens is a form of communication

within the flock; it conveys messages between the birds and

can be used as a warning signal or a means of conveying

messages of discomfort, stress, satisfaction and expressing

social interactions among the chicken.

Our paper differs from related work in that we employ

advanced AI techniques to combine multiple modalities of

sensory observations (i.e., audio and video recordings) from

the farm environment to enable the production of analytics.

III. TOOLS AND METHODOLOGY

A. Hardware

We employ audio and video recordings of the flock to

conduct inference on the condition of the animals on the farm.

For data acquisition, we set up a network of sensory devices

each equipped with a microphone, a camera, a speaker1 and a

local storage device (Solid State Drive-SSD) for temporarily

storing collected data. The heart of the system is a centralized

device that synchronizes the acquisition conducted by the sen-

sory devices over the network via Application Programming

Interface (API) calls. The centralized device also acts as a

Network Access Server (NAS) and Processing Engine (PE)

that runs the audio Neural Network (NN) and the motion

detection algorithm on the data (audio and video) captured

by the sensory devices and sent to the NAS. We designed the

hardware so that important configuration parameters (e.g., ac-

quisition interval and duration, external stimuli sound, network

configuration like sensors’ IP addresses, etc.) are configurable

on the centralized device. The centralized device will be

referred to as the Synchronization and Processing Engine

(SPE). The SPE performs the following:

• Implements API calls for conducting synchronization.

• Records status/error logging from sensors’ communica-

tion.

• Hosts the NAS service.

• Runs inference on the audio NN.

1The speakers will be used in the future for producing short sounds to
assess the flock’s response to external stimuli

Fig. 1. The communication flow between the SPE and the sensors in the
monitoring network. The SPE handles the administrative tasks and overall
coordination. Every message exchange is carried out via API calls.

• Runs the motion detection algorithm.

The sensor devices capture audio/video streams in response to

the synchronization messages sent by the SPE (the synchro-

nization messages also instruct the sensors of the duration of

the imminent video/audio acquisitions). For all devices in the

monitoring network, we use Raspberry Pi (RPi) [13] modules

because they are flexible, support audio/video acquisition and

provide a fair amount of processing power. Due to the more

demanding operations required by the SPE, it is built around

RPi model 5 while the sensor modules are built around RPi

model 4. The operational flow of the data acquisition hardware

is shown in Figure 1. To efficiently handle the role of the NAS,

the SPE is equipped with a 16TB Hard Disk Drive (HDD) to

store several weeks’ worth of data. It also supports a hot swap

operation i.e., another HDD can replace the working HDD

while the system is operational. This enables the operators of

the monitoring system to transport the data to other premises

and further process it. We will soon publish the audio/video

datasets for general public use.

B. Deployment

We built a small-scale monitoring system comprising one

SPE and two sensor modules and installed it on a chicken

farm located in a rural area in the district of Nicosia, Cyprus.

All monitoring system devices are placed in protective en-

closures (fabricated with 3D printers) to deal with the harsh

environmental conditions on the farm, i.e., large concentrations

of sand and particles in the air, high humidity and extreme

temperatures. Figure 2 shows images of the installation on

site.

We configured the system to acquire video and audio record-

ings of 58 seconds per minute and allow 2 seconds per minute
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Fig. 2. Photos of the monitoring system.

for system operations. We record audio data throughout the

day (24 hours) and video for 12 hours per day only (from 06:00

in the morning to 6:00 p.m.) because our cameras operate

in the visible light spectrum. Although chickens are mostly

quiet at night, we keep recording audio during night hours to

detect potential nocturnal predators’ attacks. To train/develop

our audio and video models, we gathered data for 50 days

which translates to a dataset comprising 75K audio and 37.5K
video datapoints.

C. Audio Anomaly Detection Model

We acknowledge the difficulty of creating an accurate

dataset containing chicken vocalizations annotated with their

psychological state, e.g., satisfied, calm, stressed, or panicked.

Developing such a dataset requires the contribution of several

experts and great effort. Alternatively, we use unsupervised

learning for training the model which is much cheaper and

faster and utilizes the acquired data more efficiently. Thus,

the data is used to create a benchmark for the vocalization of

chickens on a certain farm. Then, we exploit this benchmarked

vocalization database to infer anomalies in future chicken

vocalizations.

1) Data pre-processing: The collected audio streams are

transformed into Mel spectrograms [14] and then processed

by a Convolutional Denoising Autoencoder (Conv-DAE) [18].

Mel spectrograms apply a frequency-domain filter bank to

audio signals that are windowed in time. We use Mel spec-

trograms because they offer a more perceptually relevant rep-

resentation of audio signals being aligned with human sound

perception. Essentially, the audio streams are transformed into

frequency domain filter banks that describe the sound signal

in terms of its frequency content. Some examples of the Mel

spectrograms created from audio files acquired on the farm are

shown in Figure 3. The Mel spectrograms provide a signature

of the processed audio that reflects the psychological state of

the chicken and thus enable the efficient learning of audio

features in chicken clucking or any other sound made by

the birds. To learn these audio features, we use unsupervised

learning and thus no annotations are required. Specifically,

we apply a Conv-DAE that learns to reconstruct the Mel

spectrograms from their noisy versions.

Given a Mel spectrogram x sampled from a dataset X ,

the model accepts an input x′ = x + N (µ, σ2), with N
being a Gaussian noise process, and outputs x̂. The model

learns to minimize the Mean Squared Loss (MSE) between

Fig. 3. The Mel spectrograms of 2-second chunks of audio streams collected
on the farm. Each spectrogram shows a different frequency content in the
audio files. We use these frequency representations to learn the features of
the audio and infer the psychological condition of the chicken.

the reconstructed spectrogram and the original spectrogram.

Concretely, the optimization objective function is minL =
min

∑
i
1

2
(x̂i − xi)

2, i ∈ [0, |X|]. In our experiments, we use

µ = 0, σ2 = 0.25 and compute the Mel Spectrograms on

2-second chunks of audio data.

Since each sensor module records an audio sequence, we

concatenate all individual Mel spectrograms obtained from

the sensor modules into one data structure that has multiple

channels. The number of channels equals the number of

obtained spectrograms (the number of the system’s sensor

modules). This technique allows using a single NN that

accounts for all sound data recorded by the sensors. The

main advantage of processing all sound streams concurrently

instead of processing them separately is the inherent ability

to combine sounds from different locations on the farm that

represent the same event, i.e., the model gets recordings of the

same observation from different standpoints which, in certain

cases, may provide richer information. For example, a loud

sound made by a chicken may overtake the signal recorded

by a certain nearby microphone preventing the device from

representing any other equally important sounds sourced from

different locations inside the farm.

2) Modeling: By learning to restore the original spectro-

grams, the model learns the features of the problem domain

and thus becomes capable of identifying the peculiarities of

the data. In other words, the model learns the manifold of

the data and distills the low-level audio characteristics that

comprise the data [2]. To infer the flock’s psychological state

we observe the relative location of audio samples mapped to

the benchmarked feature space on the data manifold. Since

different positions on the manifold reflect different acoustic

characteristics, the psychological state of the chicken(s) ex-

pressed by certain vocal characteristics can be inferred based

on the mapping of the data. To create the Mel spectrograms,

we first split each 58-second audio recording into 2-second

chunks. We chose a 2-second audio interval because it is

a good fit for providing an audio signature: it is adequate

for providing sufficient vocal information while not being

big enough to cause severe audio frequency shifts that may

harm the processing. We process each chunk with 80 spectral

banks and fast Fourier transforms of size 2220 to produce

spectrograms of size 80×80.

The Conv-DAE is comprised of an encoder-decoder archi-

tecture. The encoder maps the input (noisy Mel spectrograms)

to a latent space and the decoder reconstructs the input. For
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Fig. 4. The architecture of the Convolutional Autoencoder used to learn the
features of the audio acquired on the farm. By learning to reconstruct noisy
Mel spectrograms of recorded audio, the model builds a knowledge of the
underlying elements of chickens’ vocal cues.

the encoder, we use a Residual Network [6] and specifically

the ResNet18 variant and for the decoder a sequence of

Convolutional and Up-sampling layers. The model contains

26M trainable parameters and is shown in Figure 4.

3) Training: The encoder compresses the 80X80 spectro-

grams into a 512-D representation and the decoder reconstructs

the original spectrogram by processing the 512-D vector. To

train the model, we split the acquired audio dataset into a

training and a testing set (80%-20% respectively) and the latter

is used for assessing the model. The model training achieves

a mean absolute error (MSE) of 0.126 while the test set error

is 0.141. To evaluate the quality of the embeddings produced

by the encoder we reduce the dimensionality of the test set

embeddings from 512-D to 3-D with Principal Components

Analysis (PCA) by projecting the data onto a much smaller

subspace. This allows the visualization of the embedding space

for evaluation purposes. We further identify the top 100 points

with the highest reconstruction error and perceive them as

anomalous cases: these are the data points that the model

cannot adequately reconstruct which means that they are either

outside the high probability regions of the distribution or they

are under-represented in the dataset.

4) Visualizations: We exploit the low-dimensional (3-D)

representations of the test set calculated by PCA to link the

audio semantics of the data points with their distribution in

space (left image in Figure 5). Interestingly, the data points in

the test set are distributed in the 3-D latent space in such a

way that data points with similar semantics are feature-mapped

close to each other. For example, most of the audio data points

that contain very soft clucking are mapped close to each other

at a certain region of the latent space. Likewise, most of the

audio data points that contain the clucking of rather stressed

chicken are mapped close to each other in a certain region of

the feature space. Most importantly, most of the anomalous

points (data points with the highest reconstruction error)

contain sounds of panicked birds that make distinct sounds of

despair. Still, this 3-D feature mapping is imperfect because it

does not distinguish between the data points in a definite and

clear manner mostly because of the information loss during

the dimensionality reduction and the confusing mix-up of

chicken sounds and environmental noises (especially noises

from machinery and feeding/watering equipment).

5) Clustering: We further cluster the 3-D embeddings with

the k-means algorithm [8] into 5 regions. The choice of

using 5 regions lies with the way the embeddings are spread

onto the feature space. Figure 5 (right image) shows the 3-D

Fig. 5. Left: The 3-D embeddings of the test dataset after applying di-
mensionality reduction for visualization purposes. The points shown in red
are perceived as anomalous points because they have high reconstruction
errors. Right: The 3-D embeddings are clustered with the k-means algorithm.
The resulting clusters shown with various colors represent different sound
semantics.

embeddings of the test set and the clustering obtained with the

k-means algorithm.

The clusters calculated by the k-means contain semantically

different sounds:

• Red cluster: Low-intensity sounds (flock resting and

being very calm).

• Blue cluster: Normal soft clucking.

• Yellow cluster: Calm clucking and ambient noises (like

food-delivery-machinery).

• Black cluster: Flock noises ranging from clucking of

medium intensity to extremely loud flock sounds (panic

sounds).

• Green cluster: Very soft clucking and ambient noise

(mainly fans blowing air in the farm to cool down the

flock)

Most importantly, we observe that the anomalous points

(the ones with the highest reconstruction loss, shown in

red color in the left image of Figure 5) are located at the

extremities of the black cluster (medium to extreme noises).

We provide a video that demonstrates this analysis with sound

to show the different sound semantics of the various clusters

at https://sworld.cyens.org.cy.

D. Motion Detection

Similar to the case of audio recordings, video can also be

used to detect whether the chickens in a farm are calm or

under stress. The primary indicator of the stress level in video

recordings is the chickens’ motion: stressed chickens make

rapid movements, wander around loudly and become very

jerky. We detect chickens’ motion with an algorithm based

on background removal. Background removal or subtraction

is commonly used to segment moving parts from static scenes

(background and foreground). The motion is detected by sub-

tracting the current frame of the video from a reference static

background calculated by a background modeling technique

which is continuously updated. One of the most popular

background subtraction algorithms is the Mixture of Gaussians

(MOG). According to MOG [16], for each background pixel,
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Fig. 6. Left: A single frame from a video recording from the farm. Right:
The motion mask produced by MOG2.

a mixture of Gaussian distributions and a weighting parameter

are utilized to "save the lifetime of pixels in the scene". Pixels

with a long lifetime are interpreted as background pixels while

the rest are characterized as foreground or pixels belonging to

objects that move around. An improved version of MOG is

called MOG2 [20] and determines the appropriate number of

distributions for the modeling.

We apply MOG2 on the video streams we acquired from

the sensor modules, to obtain the motion masks (images

showing where motion is detected) of the frames comprising

the videos. We use a relatively high video frame rate (30

frames per second) to facilitate MOG2 in detecting subtle

chicken movements. Figure 6 shows the output of the motion

detection process applied on a single random frame.

The motion masks produced by the MOG2 algorithm are

binary images indicating whether there is motion at a certain

pixel of the input frame. To generate a meaningful metric that

reflects chickens’ motion, we aggregate the masks by adding

them together and thus compute a single number representing

the magnitude of the flock’s motion during the interval of the

processed recording: a higher value means a more active flock.

A video demonstration of the motion detection of the chicken

can be found at https://sworld.cyens.org.cy.

Quantifying the flock’s motion makes it possible to set

an activity threshold which, when exceeded, could indicate

that the flock is reacting to a threat or stressful condition.

Symmetrically, another activity threshold could be set which,

when it is not reached, could indicate that the flock is indolent

and may suffer from a disease or being stressed by abnormal

environmental conditions or underfeeding. Furthermore, the

flock motion could be used to calculate motion statistics at

different intervals (hourly, daily, weekly, etc.) and thus infer

the activity level and the stress of the chicken on the farm

from different perspectives.

IV. DISCUSSION-CONCLUSIONS

This paper introduced two methods for chicken flock mon-

itoring, which could potentially lead to animal welfare indica-

tors. Both the audio-based anomaly detection and the video-

based motion detection methods directly provide the means to

generate alerts to the farm personnel regarding the status of the

flock. Besides the real-time detection of unpleasant situations,

the combination of multi-modal data (audio streams, video

streams and sensory data) into a unified system can be utilized

to assess the welfare of the chicken. By combining the data

originating from multiple modalities and collaborating with

experts in the field, we expect to get reliable indicators that

can then be exploited by farm owners to manage their farms

better, improving the welfare of their flock, increasing revenue

and preventing catastrophic events.

Analyzing the outputs of our proposed system would pro-

vide powerful analytics that humans cannot easily observe

while managing the farm. To our knowledge, those analytics

are not available by any commercial system to date. Some

examples of the analytics we aspire to provide to the farm

managers/owners in the future are the following:

• The average flock motion this week was 30% less than

the average daily flock motion during last week. This

may be a sign of underfeeding, extreme temperature, or

environmental pollution like high ammonia.

• The average flock motion during the last three days was

70% less than last month’s average. This may indicate a

serious condition like illness. Immediate action needs to

be taken.

• Average flock motion during feeding time is 140% higher

than usual. Maybe, this is a sign of underfeeding.

These examples reflect our reasoning that the outputs of our

system need to be translated into domain-specific analytics by

experts in poultry farming.
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