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Abstract—Comparison of two survival functions, which de-
scribe the probability of not experiencing an event of interest by
a given time point in two different groups, is a typical task in
survival analysis. There are several well-established methods for
comparing survival functions, such as the log-rank test and its
variants. However, these methods often come with rigid statis-
tical assumptions. In this work, we introduce a non-parametric
alternative for comparing survival functions that is nearly free
of assumptions. Unlike the log-rank test, which requires the
estimation of hazard functions derived from (or facilitating
the derivation of) survival functions and assumes a minimum
number of observations to ensure asymptotic properties, our
method models all possible scenarios based on observed data.
These scenarios include those in which the compared survival
functions differ in the same way or even more significantly,
thus allowing us to calculate the p-value directly. Individuals
in these groups may experience an event of interest at specific
time points or may be censored, i.e., they might experience
the event outside the observed time points. Focusing on all
scenarios where survival probabilities differ at least as much as
observed usually requires computationally intensive calculations.
Censoring is treated as a form of noise, increasing the range of
scenarios that need to be calculated and evaluated. Therefore, to
estimate the p-value, we compare a computationally exhaustive
approach that computes all possible scenarios in which groups’
survival functions differ as observed or more, with a Monte Carlo
simulation of these scenarios, alongside a traditional approach
based on the log-rank test. Our proposed method reduces the first
type error rate, enhancing its utility in studies where robustness
against false positives is critical. We also analyze the asymptotic
time complexity of both proposed approaches.

I. INTRODUCTION

S
URVIVAL analysis encompasses the study of various
time-to-event data, not limited to historical focuses such as

death or disease occurrence what could be primarily indicated

by its name. This statistical field characterizes when an event
of interest happens or, alternatively, when it does not occur
which leads to censoring. The dual nature of the data –
combining both the timing of events and their occurrence (or
non-occurrence) – distinguishes survival analysis from other
statistical methods. Typically, we describe time to an event
of interest occurrence for a given individual or a group of
individuals using a survival function, which is a function that
returns a probability of non-experiencing the event of interest
before a given time point.

When comparing two distinct time-to-event survival curves
from separate groups, the log-rank test is commonly employed
to evaluate the differences, as suggeted by Mantel (1966) [1].
The use of the log-rank test is particularly challenged when
comparing non-crossing time-event survival curves with un-
even censoring between the groups. To enhance the test’s
efficiency and its robustness against assumptions, various
modifications have been proposed. Kong (1997) optimized
the log-rank test by adjusting the hazard functions [2], while
Song et al. (2007) explored covariate matrix decomposition to
establish minimal sample sizes that validate the use of the
log-rank test [3]. Additionally, weighted observations have
been utilized to correct the test’s accuracy, with weights
typically greater for earlier events which have more numerous
observations, as suggested Peto and Peto (1972) [4], Yang and
Prentice (2009) [5], and Li (2018) [6].

Our proposed non-parametric method challenges these lim-
itations by avoiding the estimation of hazard functions and
the use of weighting schemes. It explores every conceivable
scenario, including those affected by censoring, thus offering
a comprehensive approach that traditional methods often can-
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not handle due to their computational demands and reliance
on strict assumptions. By setting potential event time points
for individuals observed as censored, as Štěpánek initially
suggested in [7] and [8], we remove data noise and improve
the estimation of the survival function for each time point,
making our method more adaptable to real-world data.

This approach rigorously evaluates whether the observed
differences in survival functions are statistically significant,
thereby reducing false positive rates and enhancing method-
ological robustness. We have developed and applied two
computational strategies to estimate p-values: a detailed, com-
putationally intensive approach, and a Monte Carlo simulation,
both designed to handle the complexity of evaluating multiple
scenarios. For both approaches, we analyzed their asymptotic
time complexities.

The manuscript firstly revisits the principles of the log-rank
test and its limitations, then introduces our method which
involves intensive computational modeling of all potential
event scenarios, including censored cases. We provide a rela-
tively detailed analysis of the proposed method’s asymptotic
time complexity, particularly its p-value calculation using the
computationally exhaustive approach and Monte Carlo estima-
tion. The effectiveness of our method is demonstrated through
simulation studies comparing p-values calculated using both
the log-rank test and our proposed approaches, focusing on
their ability to maintain low first type error rates.

II. TRADITIONAL METHODS FOR COMPARISON OF

SURVIVAL FUNCTIONS

Firstly, we revisit the log-rank test, examining its principles,
assumptions, and limitations.

A. Foundations, assumptions, and limitations of the log-rank

test

Foundations of the log-rank test. Assume there are k distinct
time points where an event of interest could occur, denoted as
tj for j ∈ {1, 2, 3, . . . , k}, and arranged in an ordered tuple
(t1, t2, . . . , tk)

T . Consider two groups of subjects, labeled
as group 1 and 2, g ∈ {1, 2}. At each time point tj ,
there are r1,j and r2,j individuals at risk (who have not yet
experienced the event or have been censored) in groups 1
and 2, respectively, and d1,j and d2,j individuals in each
group who have experienced the event. This setup leads to
the construction of the contingency table in Table I.

TABLE I
NUMBERS OF INDIVIDUALS EXPERIENCING THE EVENT OF INTEREST IN

BOTH GROUPS (1 AND 2) AT TIME POINT tj .

event of interest at time tj
group yes no total

1 d1,j r1,j − d1,j r1,j
2 d2,j r2,j − d2,j r2,j

total dj rj − dj rj

The log-rank test evaluates the null hypothesis H0 that both
groups experience identical event rates over time, conditional
on fixed rates in the past being the same. Under H0, the

observed numbers of events, D1,j and D2,j , are modeled as
random variables following a hypergeometric distribution with
parameters (rj , rg,j , dj) for both g ∈ {1, 2}. The expected
value of Dg,j is E(Dg,j) = rg,j

dj

rj
, and the variance is

var(Dg,j) =
r1,jr2,jdj

r2
j

(
rj−dj

rj−1

)

. We then compare the ob-

served numbers of events, dg,j , for all j, to their expected
values. The test statistic for both groups is computed as
follows,

χ2
log-rank =

(
∑k

j=1(dg,j − E(Dg,j))
)2

∑k

j=1 var(Dg,j)
∼ χ2(1),

where g ∈ {1, 2}. Under H0, the test statistic follows a χ2

distribution with one degree of freedom. For sufficiently large
rj (at least 30),

√

χ2
log-rank approximates a standard normal

distribution. Since χ2
log-rank ∼ χ2(1), the test statistic can be

uniquely transformed into a p-value, representing the condi-
tional probability of observing a test statistic as extreme as or
more extreme than the one observed, assuming H0 is true.

Assumptions and limitations of the log-rank test. It is crucial
that right censoring does not differentially affect the event
occurrences in both groups. The proportions of censored
observations should be nearly equal in both groups; otherwise,
the test statistic χ2

log-rank could be biased for either group.
Moreover, both the initial total number of individuals at risk

and the initial number not experiencing the event should be
large enough to meet the Cochrane criteria for minimal sample
size for χ2 tests. If these conditions are not met, the χ2

log-rank
statistic may not fulfill its asymptotic properties, making the
estimate numerically unstable.

Additionally, the robustness and statistical power of the
log-rank test can be compromised if the proportions r1,j

rj
and

r2,j
rj

are not constant across all time points. Significant changes
in the survival curves’ trends, mutual distances, or crossings
can decrease the test’s power, making it less likely to reject
H0 when the survival curves actually differ.

III. THE PROPOSED METHOD FOR COMPARISON OF

SURVIVAL FUNCTIONS

This section explores our non-parametric approach, which
examines all conceivable scenarios where an event could occur
at different feasible times for each individual, including those
unobserved due to censoring. By adopting all time points for
events that come from observed data and calculating a number
of all possible scenarios how the the events could be registered
by individuals in time, we estimate the survival function based
on the proportion of individuals who have not experienced
the event. We then assess whether the survival functions
of the compared groups statistically differ by evaluating the
sum of group-based mutual differences across all time points.
Theoretically, the proportion of scenarios where the differ-
ences are as large or larger than observed corresponds to
the p-value, indicating the probability of these findings under
the null hypothesis that the survival functions are equivalent.
Through this approach, we calculate a range of p-values and
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determine whether to reject the null hypothesis based on
a predefined confidence level, thus assessing if the survival
functions statistically differ.

A. Foundations of the proposed method for comparison of

survival functions

We assume two groups of individuals we want to com-
pare so that for each of them we know the same amount
of information, coming from data on input. We assume
k ∈ N distinct time points, denoted t1, t2, . . . , tk. For each
individual of both groups, we know two pieces of infor-
mation (Υi, Ei), where Υi ∈ {t1, t2, . . . , tk} and Ei ∈
{event occured, event did not occur}. While Υi indicates in
which time point an event of interest happened to i-th in-
dividual, Ei describes if it was in fact the event of interest, or
rather censoring. Having such information for each individual
in a group of n ∈ N individuals at all, we can transform pairs
(Υi, Ei) for ∀i ∈ {1, 2, . . . , n} into grid as in Fig. 1. In lines
of the grid in Fig. 1, there are individuals ordered from the
one who experienced the event of interest or censoring as first.
Thus, if Υ = (Υ1,Υ2, . . . ,Υn)

T = (τ1, τ2, . . . , τn)
T where

∀τi ∈ {t1, t2, . . . , tk}, it is τ1 ≤ τ2 ≤ · · · ≤ τn. While the
black dots stand for time points where individuals have not
register the event yet including the last point in a row, when
the event is experienced, gray dots indicate that an individual
was censored at some time point, thus, in theory, the gray
dots could be in changed in black if we would know when
the event happened (when individual is not censored). White
squares stand for time points where an individual experienced
neither the event nor censoring.

time points
︷ ︸︸ ︷

1 2 3 4 5 · · · k

1

2

3

...

n︷
︸
︸

︷

individuals

Fig. 1. The grid of k time points displays n individuals ordered by the timing
of their event of interest or censoring. Black dots represent time points where
the event has not yet occurred up to the last black point in a row standing
for the event, while gray dots indicate censoring, suggesting that these could
become black if the event timing were known. White squares denote time
points where neither the event nor censoring has occurred.

We want to test the following null hypothesis H0 against
the alternative H1 as follows,

H0 : survival functions do not differ between the groups,

H1 : survival functions differ between the groups.

For purposes of statistical inference, we need to calculate
p-value as a probability of observing data the same way or

even more contrary the hypothesis H0 that the survival func-
tions do not differ between the groups. Addressing the p-value
calculation in a non-parametric fashion, we have to calculate
a number of all scenarios that favor the p-value’s definition
meaning. The number of scenarios in contradiction to H0

depends on when censoring happen to censored individuals.
Let C ⊆ {1, 2, . . . , n} be a subset of individuals’ indices that

have been censored. Considering the censoring arrangement,
for each such arrangement of values τi ∈ {t1, t2, . . . , tk}
where i ∈ C, we can calculate a unique p-value, since the entry
grids as in Fig. 1 differ as τi vary. To do this, we need updated
times of events with respect to censoring for all individuals,
denoted as Υ

′ = (Υ′
1,Υ

′
2, . . . ,Υ

′
n)

T = (τ ′1, τ
′
2, . . . , τ

′
n)

T

where {
τ ′i ≥ τi, ∀i ∈ C,
τ ′i = τi, ∀i ∈ {1, 2, . . . , n} \ C.

(1)

As an illustration, we can compare Fig. 2 and Fig. 3. In both
figures, there is n = 6 and time points t ∈ {1, 2, . . . , 8}. Using
previous notations, obviously it is (τ1, τ2, τ3, τ4, τ5, τ6)

T =
(1, 1, 2, 2, 3, 4)T and C = (2, 4)T in Fig. 2. In Fig. 3,
we set time points of possible event registrations for cen-
sored individuals as follows, τ2 = 2 and τ4 = 6, thus,
(τ ′1, τ

′
2, τ

′
3, τ

′
4, τ

′
5, τ

′
6)

T = (1, 2, 2, 6, 3, 4)T .

t
︷ ︸︸ ︷

1 2 3 4 5 6 7 8

1

2

3

4

5

6︷
︸
︸

︷

n

Fig. 2. A grid for an initial dataset with n = 6 individuals
across t ∈ {1, 2, . . . , 8} time points, where (τ1, τ2, τ3, τ4, τ5, τ6)T =
(1, 1, 2, 2, 3, 4)T and censored times C = (2, 4)T .

t
︷ ︸︸ ︷

1 2 3 4 5 6 7 8

1

2

3

5

6

4︷
︸
︸

︷

n

Fig. 3. A grid for the initial dataset with n = 6 individuals across
t ∈ {1, 2, . . . , 8} time points from Fig. 2, where the time points for
censored events are adjusted, setting τ2 = 2 and τ4 = 6 and getting
(τ ′

1
, τ ′

2
, τ ′

3
, τ ′

4
, τ ′

5
, τ ′

6
)T = (1, 2, 2, 6, 3, 4)T , to hypothesize the potential

event registrations if not censored.

Once the censoring is arranged and we set Υ′
i for ∀i ∈

{1, 2, . . . , n}, we can enumerate a survival function for the
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given group of n individuals (and the given censoring ar-
rangement) using an expected survival E(S′) for the group,
i.e., a "surface" below a curve enveloping black dots in grid
as we defined before and plot in Fig. 1. To be more specific,

Ê(S′) =
1

n

n∑

i=1

τ ′i , (2)

using the same notation as so far. Let’s assume two groups
with indices 1 and 2 and observed expected survivals, follow-
ing formula (2), as Ê(S′

1) and Ê(S′
2). Now, we can finally

calculate p-value, conditional of the given censoring and
enabling any further statistical inference, as follows,

p-valuecensoring =

= {p-value | censoring} =

= P

(
getting data at least as extreme
as the observed

∣
∣
∣
∣
H0, censoring

)

=

= P
(

|E(S1)− E(S2)| ≥ |Ê(S1)− Ê(S2)|
∣
∣
∣ censoring

)

=

= P
(

|E(S′
1)− E(S′

2)| ≥ |Ê(S
′
1)− Ê(S′

2)|
)

, (3)

thus, in other words, we calculate p-value for a given censor-
ing, denoted as p-valuecensoring, as a probability of observing
a scenario with an absolute difference between expected
survivals as least as extreme as the observed absolute differ-
ence of survivals. Since censoring arrangements may differ,
we get various p-values from formula (3) stored in vector
p-valuecensoring, that may create an interval of p-values as
follows,

p-value ∈
〈
min{p-valuecensoring},

max{p-valuecensoring}
〉
.

(4)

Assuming a confidence level α ∈ (0, 1) as an acceptable
probability of first type error rate, i.e., false rejection of null
hypothesis H0 which is in fact true, there are two cases crucial
for statistical inference, either

max{p-valuecensoring} ≤ α,

resulting in a strong null hypothesis H0 rejection, and

min{p-valuecensoring} ≤ α,

leading to a weak null hypothesis H0 rejection.

B. Approaches to p-value calculation for the proposed method

of survival functions’ comparison

In this section, we introduce a computationally exhaustive
approach and Monte Carlo simulation-based approach on
calculation of p-value following formula (3), and discuss their
asymptotic time complexity.

Computationally exhaustive approach for p-value calcu-

lation. Within the computationally intensive approach, we
work out formula (3) for p-value calculation. Firstly, we
realize that the censoring arrangement for an entry grid of

n individuals and k time points is fully defined by Υ
′ =

(Υ′
1,Υ

′
2, . . . ,Υ

′
n)

T = (τ ′1, τ
′
2, . . . , τ

′
n)

T as comes from for-
mula (1). Assuming the total numbers of all scenarios for both
groups, including all possible censoring arrangements Υ

′
1 and

Υ
′
2, are on grids n1 × k and n2 × k finite, respectively, we

can work out formula (3) as follows,

p-valuecensoring =

= {p-value | censoring} =

= P

(
getting data at least as extreme
as the observed

∣
∣
∣
∣
H0, censoring

)

=

= P

(
getting data at least as extreme
as the observed

∣
∣
∣
∣
H0,Υ

′
1,Υ

′
2

)

=

= P
(

|E(S1)− E(S2)| ≥ |Ê(S1)− Ê(S2)|
∣
∣
∣Υ

′
1,Υ

′
2

)

=

= P
(

|E(S′
1)− E(S′

2)| ≥ |Ê(S
′
1)− Ê(S′

2)|
)

=

=
1

|{S1}| · |{S2}|
·

·
∑

∀s∈{S1}

∑

∀σ∈{S2}

1{|E(S′

1
)−E(S′

2
)|≥|Ê(S′

1
)−Ê(S′

2
)|}, (5)

where {S1} and {S2} are sets of all possible scenarios for
first and second group, respectively, and 1{β} is an identifier
function, so

1{β} =

{
1, if β is true,
0, if β is false.

(6)

The numbers of all scenarios, |{S1}| and |{S2}| are
straightforward and can be assessed using stars-and-bars the-
orem. Assuming grids containing n1 and n2 individuals,
respectively, and k time points as in Fig. 1, and a fact that
for increasing index i, time τi ∈ {0, 1, . . . , k} of event or
censoring forms a non-decreasing sequence as in Fig. 3, it is

|{Sg}| =

(
ng + k

k

)

=

(
ng + k

ng

)

=
(ng + k)!

ng! k!
, (7)

where g ∈ {1, 2}. Formula (7) enables us to investigate
asymptotic time complexity of p-value from formula (5). As
we can see in Algorithm 1, total counts of scenarios |{S1}|
and |{S2}| (in the fraction part of formula (5)) are calculated
asynchronously (line 1 in Algorithm 1), so an asymptotic time
complexity of their calculation with respect to formula (7),
using Bachmann–Landau logic [9] and unit time steps for basic
arithmetic operations, is

Θ(ng+k−1+ng−1+k−1) ≈ Θ(2ng+2k) ≈ Θ(ng+k), (8)

thus, in total, the fraction part of formula (5) has got asymp-
totic time complexity Θ(†) where

Θ(†)
(8)
≈ Θ(n1 + k) + Θ(n2 + k) ≈ Θ(n1 + n2 + 2k). (9)

On the other hand, the count of scenarios with absolute
difference of expected survivals greater than or equal to the
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observed difference is examined in the summation part of
formula (5) exhaustively step by step, considering the total
number of combinations of scenarios equal to |{S1}| · |{S2}|
(lines 2–9 in Algorithm 1). Within each step, condition
|E(S′

1) − E(S′
2)| ≥ |Ê(S

′
1) − Ê(S′

2)| is checked (lines 5–7
in Algorithm 1) – while the part |Ê(S′

1)− Ê(S′
2)| is once pre-

calculated (so we can ignore its complexity within the loop of
steps), the difference |E(S′

1)−E(S′
2)| takes n1+n2 unit times

per each check, i.e., per each step, as comes from formula (2).
Thus, asymptotic time complexity Θ(‡) of the summation part
of formula (5) is

Θ(‡)
(7)
≈ Θ

{(
n1 + k

k

)(
n2 + k

k

)

(n1 + n2)

}

≤

≤ Θ

{(
n1 + k
n1+k

2

)(
n2 + k
n2+k

2

)

(n1 + n2)

}

≈

≈ Θ

{

(n1 + k)!
n1+k

2 ! n1+k
2 !

(n2 + k)!
n2+k

2 ! n2+k
2 !

(n1 + n2)

}

≈

≈ Θ

{

(n1 + k)! (n2 + k)!
(
n1+k

2 !
)2 (n2+k

2 !
)2 (n1 + n2)

}

≈

≈ Θ







(
n1+k

2

)n1+k (n2+k
2

)n2+k

(
(
n1+k

4

)n1+k

2

)2 (
(
n2+k

4

)n2+k

2

)2 (n1 + n2)







≈

≈ Θ

{(
n1+k

2

)n1+k (n2+k
2

)n2+k

(
n1+k

4

)n1+k (n2+k
4

)n2+k
(n1 + n2)

}

≈

≈ Θ
{
2n1+k · 2n2+k · (n1 + n2)

}
≈

≈ Θ
{
2n1+n2+2k · (n1 + n2)

}
. (10)

Algorithm 1: Calculation of p-valuecensoring using for-
mula (5)

Result: Calculation of p-valuecensoring based on
scenario sets S1 and S2

1 calculate |{S1}| and |{S2}| using formula (7);
2 initialize count c = 0;
3 forall s ∈ {S1} do

4 forall σ ∈ {S2} do

5 if |E(S′
1)− E(S′

2)| ≥ |Ê(S
′
1)− Ê(S′

2)| then

6 c = c+ 1;
7 end

8 end

9 end

10 p-valuecensoring = c
|{S1}|·|{S2}|

;
11 return p-valuecensoring

Putting things together, calculation p-valuecensoring from for-
mula (5) takes the following time Θ(•),

Θ(•) ≈ Θ(†) + Θ(‡)
(9,10)
≈

(9,10)
≈ Θ

{

n1 + n2 + 2k +

(
n1 + k

k

)(
n2 + k

k

)

(n1 + n2)

}

,

(11)

and also

Θ(•) ≈ Θ(†) + Θ(‡)
(9,10)

≤

(9,10)

≤ Θ
{
n1 + n2 + 2k + 2n1+n2+2k · (n1 + n2)

}
.

(12)

Considering formula (1) a |C| individuals that are censored,
in theory, in any time point {t1, t2, . . . , tk}, the calculation
of p-valuecensoring using formula (5) might be repeated at
maximum k|C|, thus the asymptotic time complexity could be
at maximally

Θ(•)
(12)

≤ k|C| ·Θ
{
n1 + n2 + 2k + 2n1+n2+2k · (n1 + n2)

}
.

(13)
Monte Carlo approach for p-value calculation. Using for-

mula (5), we cannot necessary consider every possible sce-
nario, but can randomly select a subsetM of a joint scenarios’
set {S1 ∪S2}, so M⊆ {S1 ∪S2}. Then, assuming the same
conditions, p-value considering a given censoring setting can
be estimated similarly as in formula (5),

p̂-valuecensoring =
1

|M|
·

∑

∀m∈M

1{|E(S′

1
)−E(S′

2
)|≥|Ê(S′

1
)−Ê(S′

2
)|},

(14)

using the same mathematical notation as above. Investigating
Algorithm 2, asymptotic time complexity of Monte Carlo
approach could be straightforwardly estimated. The condition
|E(S′

1)−E(S′
2)| ≥ |Ê(S

′
1)− Ê(S′

2)|, which takes n1+n2 time
units, is checked M times, thus,

Θ(•) ≈ |M| · (n1 + n2), (15)

and considering the censoring, it is

Θ(•) ≤ k|C| · |M| · (n1 + n2). (16)

IV. SIMULATION STUDY

In this simulation study, we compared the traditional
log-rank test with our proposed method, using both exhaustive
and Monte Carlo approaches for p-value calculation. The
methods were tested on numerous pairs of survival curves
assumed to be equivalent to assess the first type error rate, i.e.,
the frequency of falsely rejecting the null hypothesis. Since the
proposed method is non-parametric and robust, we focused on
evaluating its first type error rate rather than its power. All
computations were performed in R statistical language [10].
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Algorithm 2: Calculation of p̂-valuecensoring using for-
mula (14)

Result: Estimate of p̂-valuecensoring using a Monte
Carlo approach based on a subset M of
scenarios

1 M← randomly select a subset from {S1 ∪ S2};
2 initialize count c = 0;
3 forall m ∈M do

4 if |E(S′
1)− E(S′

2)| ≥ |Ê(S
′
1)− Ê(S′

2)| then

5 c = c+ 1;
6 end

7 end

8 p̂-valuecensoring = c
|M| ;

9 return p̂-valuecensoring

We generated pairs of groups of varying size of n ∈
{10, 11, . . . , 100} individuals so that their survival functions
follow a negatively exponential survival function,

S(t) = P (T ≤ t) = e−λt, (17)

where λ varied in range of ⟨0.04, 0.06⟩. Sizes of the groups
randomly differed between the repetitions of the simulation.
A total of m = 1000 pairs of groups with survival functions
were generated, and each pair was analyzed under different
levels of censoring, set at 10 %, 20 %, 30 %, and 40 %. The
occurrence of p-values as intervals, which comes from the
present censoring and formula (4), either containing or does
not containing the significance level α = 0.05 was recorded,
summarizing the first type error rates as frequencies when the
p-value interval’s maximum is below α = 0.05, see Table II.

TABLE II
FIRST TYPE ERROR RATES FOR THE LOG-RANK TEST AND PROPOSED

METHODS AT VARYING LEVELS OF CENSORING.

proposed method
censoring level log-rank test exhaustive approach Monte Carlo

10 % 0.055 0.041 0.040
20 % 0.053 0.039 0.042
30 % 0.052 0.043 0.041
40 % 0.050 0.038 0.039

Simulations show that the first type error rate is consistently
lower for the proposed method, whether using exhaustive
or Monte Carlo p-value calculations. This reduction persists

across all levels of censoring, highlighting the method’s ro-
bustness compared to the log-rank test, especially at higher
censoring levels.

V. CONCLUSION

This study introduces a novel, assumption-minimal, non-
parametric method for comparing survival functions. Utilizing
computationally exhaustive and Monte Carlo simulations for
p-value calculation, the method consistently shows lower first
type error rates than the log-rank test across various levels
of censoring (10 % to 40 %). While the approach involves
high asymptotic time complexity during p-value estimation,
especially with exhaustive calculations, its reduced first type
error rate offers an alternative for survival data analysis,
potentially suitable for integration into statistical software.
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