
LeAF: Leveraging Deep Learning for Agricultural
Pest Detection and Classification for Farmers

Aditya Sengupta
Email: adityasngpta@gmail.com

Abstract—Farmers face many challenges while growing crops
such as monitoring and maintaining plant health. Key indicators
of poor plant health are plant anomalies such as pests, plant
disease, and weeds, which can decrease crop yield. Over 40%
of global crop production is lost to plant anomalies, costing
$220 billion annually. As the global population and demand for
food increases, farmers will have to grow more food, making
manual surveying for plant anomalies increasingly difficult. This
forces farmers to excessively and indiscriminately apply more
fertilizers and pesticides across their whole fields, often to both
healthy and unhealthy plants, unnecessarily wasting acres worth
of chemicals and increasing chemical contamination of food
and environmental footprint of agriculture as the chemicals
release greenhouse gases after their application and leak into
ecosystems. Recent advances in deep learning with Convolutional
Neural Networks (CNNs) allow using imaging data to solve this
problem. LeAF aims to provide farmers with an end-to-end
system to survey crops on the field and take targeted actions
to maintain plant health. By focusing on agricultural pests,
this paper demonstrates the following capabilities for the visual
perception sub-system of LeAF: (1) use CNNs on field images
to get plant-specific data with bounding box based detection
and classification about plant anomalies at human-level accuracy
and (2) combine detection and classification functionality into a
single compact distilled model that can run on farmer accessible
mobile phones or in embedded devices in agricultural tractors
and robots with low latency and high throughput to enable real-
time processing on video feeds. With lightweight and accurate
plant anomaly detection and classification, LeAF addresses plant
health management challenges faced by farmers, empowering
them with actionable insights to enhance productivity while
minimizing chemical usage and its environmental impact.

I. INTRODUCTION

Modern day agriculture has an enormous environmental

footprint. In 2022, agriculture accounted for approximately

26% of global greenhouse gas emissions, used 50% of global

inhabitable land, and accounted for 70% of all freshwater

usage. [1]. This means the agriculture industry has one of

the largest impacts on climate change. Over the next few

decades, agriculture’s environmental footprint will only get

larger because about 60% more food needs to be grown to feed

the increasing world population [2]. This means immediate and

effective steps need to be taken to increase the efficiency of

agriculture to improve yields, conserve resources, and reduce

the environmental impacts.

A. Problem

Farmers face challenges with continuously monitoring and

maintaining plant health. Key indicators of poor plant health

are plant anomalies such as pests, plant disease, and weeds,

which can decrease crop yield. Over 40% of global crop

production is lost to plant anomalies, costing $220 billion

annually [3], [4].

Farmers often use chemicals to treat plant anomalies and

ensure healthy crops, high yields, and good quality food for

consumers. However, a lot of the emissions from agriculture

come from the use of these chemicals (pesticides, herbicides,

and fertilizers) to maintain plant health and treat plant anoma-

lies (pests, weeds, and plant disease, respectively). Chemical-

related greenhouse gas emissions such as nitrous oxide and

methane can have up to a 300x higher global warming impact

than carbon dioxide [5]. The chemicals emit greenhouse gases

in their manufacturing process (creating harmful ground-level

ozone), transportation to farms (fuel emissions from trucks),

and even after they are applied to crops as they stimulate

the production of nitrous oxide and methane in the soil. Fur-

thermore, chemicals often leak into environments surrounding

farms and into the ocean, harming wildlife and disrupting food

chains.

These chemicals also have further downstream harmful

impact. For example, on top of yield losses from pests, an

additional $60 billion dollars is spent on 1 billion pounds of

pesticides annually in the US alone [6]. Furthermore, pesticide

residues on food lead to 20,000+ new cases of cancer every

year and contamination in nature from pesticides results in

80+ million fish and bird deaths annually [7]. However, with

more infestations of invasive pests and the cultivation of more

crops, the use of chemicals is only increasing [8].

The use of chemicals also increases production costs for

farmers, increasing the cost of food for consumers. Not only

are 78% of the world’s poor people farmers [9], their income is

also declining because of falling crop prices since 2014 despite

inflation [10]. Reducing chemical costs can help farmers keep

up with decreasing crop sales revenue.

Most farmers are forced to apply chemicals across their

whole field to both healthy and unhealthy crops because

they have no data on where the pest infestations are. This

wastes acres worth of chemicals. In order to reduce the

use of chemicals, they need to be used more efficiently to

still counteract plant anomalies and allow for healthy yield.

A farmer could survey their crops themselves and analyze

plant anomalies manually, but they might not have enough

knowledge about the types of plant anomalies, whether they

are helpful, benign, or malignant to the farm ecosystem, or

which chemicals to use in order to treat them. In addition,

many farmers have acres of land which makes self-surveying

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 525–530

DOI: 10.15439/2024F2492

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 525 Thematic Session: AI in Agriculture

unfeasible due to the shortage of time and labor to make

accurate observations on a daily or weekly basis. With such a

lack of data on plant anomalies in their field, farmers are less

aware of the efficacy of their techniques, which may lead to

bad yields despite the use of chemicals.

This highlights the need for automation in the agricultural

industry to detect and identify plant anomalies and help

farmers with treatment strategies that minimize the use of

chemicals, cost, and harm to the environment. A solution

which can provide farmers with such data will pave the

way for better quality yields while using less chemicals in

a more efficient and effective manner and minimizing costs

and environmental impact.

B. Related Work

There is limited work on using machine learning to identify

plant anomalies; these also have gaps that are addressed by

LeAF. The IP102 pest classification dataset [11] is used in

the same paper to train a classification model with accuracy

significantly below human level (49.4% with ResNet-50).

IP102 also contains more than 100 classes, which requires

a larger model to achieve this accuracy while trading off

inference latency. Since there are thousands of pests that need

larger model to classify accurately, it is instead more effective

to use a smaller, lightweight model tuned specifically for local

pests, as in LeAF, since farmers only deal with a few major

pests in their area.

For plant disease classification, AMaizeD focuses on corn

diseases [12]. For weed classification, recent work is limited

to weeds that impact bell peppers [13].

The problem with these models is that they have low accu-

racy and are not generalizable to different types of anomalies

for other plants. For example, if you give AMaizeD a non-

corn disease image, it will still classify it as a specific corn

disease. This is especially dangerous for pests because the

model might classify an unknown but helpful insect as a pest,

leading to the farmer applying useless pesticides. Moreover,

these models focus on classification, not detection, so they

don’t provide bounding boxes to pinpoint the anomalies. When

dealing with multiple anomalies and surveying multiple crops,

knowing where the anomaly is in the image is necessary for

explainability, to keep a count of anomalies, and avoid both

over and under counting.

LeAF, on the other hand, uses transfer learning to quickly

customize for regional and local scenarios with small datasets,

provides human level classification and detection accuracy

for plant anomalies, classifies unseen pests as “unknown” to

avoid incorrect treatment, and is also amenable to expanding

supported types of anomalies with incremental retraining.

C. Goals & Benefits of LeAF

LeAF advances plant anomaly detection and mapping for

farmers, offering an end-to-end solution that enhances effi-

ciency and minimizes chemical usage. By leveraging emerging

agricultural robots or tractors equipped with cameras, LeAF

captures and analyzes crop images, initially focusing on pests

while designing to expand to diseases and weeds. By con-

solidating various plant anomaly detection tasks into a single

lightweight model per anomaly type, the solution can run

effectively on embedded devices in the edge, such as the

EarthSense TerraSentia robot [14]. This streamlined approach

not only ensures accuracy but also enables rapid tuning to

different farming regions.

The ultimate objective of the LeAF end-to-end system [15]

is to provide farmers with actionable insights, including treat-

ment suggestions and cost-effectiveness estimates, through

a user-friendly natural language based multimodal interface.

By correlating plant anomaly data with mapped field arrays,

LeAF enables farmers to monitor anomalies on a day-to-day

basis and track the efficacy of their interventions, facilitating

informed decision-making and optimizing crop yield.

To achieve this, LeAF utilizes precise yet lightweight model

architectures like ResNet-18 [16] and YOLOv8 [17], trained

on agricultural images sourced from the iNaturalist library

[18]. The camera feed obtained while surveying the field (with

robots or tractors, for example) is processed for anomaly detec-

tion and classification, with anomalies tracked with location

awareness across the field. This individual plant level data

is then mapped to a field array, facilitating analysis by an

agriculture domain adapted Large Language Model (LLM) for

treatment suggestions and Q&A support.

By empowering farmers with real-time insights and opti-

mized chemical application strategies, LeAF aims to minimize

environmental impact and maximizes crop yield, ultimately

enhancing agricultural practices for a sustainable future. This

paper covers the visual perception component of LeAF, involv-

ing plant anomaly detection and classification, and focuses on

pests for concrete model development and evaluation.

II. PEST DETECTION AND CLASSIFICATION

The visual perception component of LeAF detects and

classifies pests based on a given number of pest classes. The

classes that LeAF aims to detect depend on the crop being

grown and the geographical region of the world. For the

prototype, I target ten main types of pests for corn and soybean

crops grown in the midwestern region of the United States.

A. Initial Pipeline Overview

The solution comprises two stages: pest detection and

classification. Initially, I develop a pipeline using foundation

models for pest detection (with bounding box), evaluate its

performance, and refine it. Subsequently, I focus on gathering

datasets for training and evaluating a specialized pest classifi-

cation model.

Given the challenge of obtaining large labeled datasets, I

leverage foundation models like GroundingDINO [19] for pest

detection. Although these models provide bounding boxes for

pests, they lack fine-tuned classification accuracy for diverse

agricultural pests. To address this, I utilize cropped images

from GroundingDINO to feed into a specialized, more efficient

classification model like ResNet-18. This two-stage pipeline,

depicted in Figure 1, first localizes potential pests using

526 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Fig. 1. Initial Pipeline with GroundingDINO and ResNet-18

GroundingDINO and then classifies them using ResNet-18.

This approach mitigates data scarcity and enables recognition

of unseen pest classes through an ‘unknown’ class.

Further exploration involves distilling this pipeline into a

single, lightweight YOLOv8n model for mobile and edge

deployment, as discussed in Section III.

B. Datasets & Training Prerequisites

After figuring out what the ML pipeline needs to input and

output, building the initial pipeline, testing it, and coming up

with a more refined solution, the next step is to train a custom

model to classify pests. For training this and the eventual

tweaking of the final pipeline, I first need to establish a dataset

containing images of pests and their labels.

1) Identifying Pest Classes: LeAF focuses on the 10 most

harmful pests affecting corn and soybean crops in the Mid-

western United States, as identified by an UIUC entomol-

ogy study [20]. These classes include Bean Leaf Beetle,

Grape Colaspis, Japanese Beetle, Northern Corn Rootworm

(CRW), Southern CRW, Western CRW, Grasshopper, Clover-

worm/Looper, Stink Bug, and Dectes Stem Borer. This se-

lection prioritizes the needs of farmers in this agriculturally

significant region.

2) Curating Initial Dataset: Training machine learning

models requires substantial data, which is often scarce for

specific pest classes. LeAF leverages iNaturalist [18], a crowd-

sourced platform with hundreds of millions of images of

various species, to curate a dataset of relevant pest images

for model training.

The iNaturalist dataset includes images of all 10 of the

above pest classes, so I created the training dataset by down-

loading images from iNaturalist. Utilizing iNaturalist’s export

tool, I filtered images meeting research-grade standards and

consensus thresholds. I ensured a balanced distribution, with

around 1,000 images per class (total 10,000 images across

all classes), and split them into 80% for training, 10% for

validation, and 10% for test.

3) Device Platform: For training and inference, I use

Python 3.10 and the PyTorch ML framework on multiple

hardware platforms, including Google Colab with Nvidia T4

GPUs, on-prem cluster of Nvidia A100 GPUs, and M1 Mac

Mini desktop.

C. Training

With this pipeline structure of GroundingDINO feeding into

a smaller CNN, it was now time to select the CNN model

structure and custom train it on the pest dataset. Initially, I

started with a ResNet-18 model [21], which is the smallest in

ResNet family with one of the most simple CNN structures.

1) Initial Training Process: I initialized a ResNet-18 model

pre-trained on ImageNet and replaced its last layer with a

10-class fully connected layer for pest classification [21].

Leveraging transfer learning, I utilized previously learned

features to expedite training with less data. This approach

also enables selective training of the final layer, conserving

computational resources and accelerating training.

2) Enhancing Accuracy: Training ResNet-18 on the dataset

for 100 epochs yielded a stagnant accuracy around 60%.

Despite comparable training and validation accuracy, both

were below human accuracy levels (which are above 90%),

indicating underfitting. Experimenting with a larger model,

ResNet-101, raised accuracy to nearly 80%, but extended

training time and inference cost and latency beyond feasibility.

Opting for computational efficiency, I retained the smaller

ResNet-18 model and focused on the following optimizations

to reach target accuracy of 90%+.

3) Adjusting/Augmenting Data to Increase Accuracy: After

reassessing the pipeline based use case, I realized that ResNet-

18 only needed to do inference on already cropped pest images

from GroundingDINO’s output bounding boxes. Instead of

the initial pest images, using cropped images addresses un-

derfitting because the model will get less confused about the

distracting image backgrounds and more focused on the pest

and its features, since the image is essentially more zoomed

in to the pest after cropping. Therefore, for the training and

validation data, I fed all the images through GroundingDINO

and cropped them to the bounding boxes for pests in the image.

This made the input images for the ResNet-18 smaller and

more focused, allowing the model to pick up on the features

of the pest, therefore increasing accuracy.

Dataset Train Accuracy Validation Accuracy
Original 66.67% 65.71%
Cropped 82.60% 81.29%

TABLE I
RESNET-18 MODEL ACCURACY AFTER 10 EPOCHS OF TRAINING ON

ORIGINAL AND CROPPED PEST DATASETS.

This change increased accuracy from 60% to 80% as shown

in Table I. After this, I made smaller improvements to the

training procedure by adjusting hyperparameters to further

increase accuracy as follows.

ADITYA SENGUPTA: LEAF: LEVERAGING DEEP LEARNING FOR AGRICULTURAL PEST DETECTION AND CLASSIFICATION FOR FARMERS 527

4) Adjusting Training Hyperparameters: To further in-

crease the accuracy from 80% to human levels (90%+) and

speed up training, I adjusted many of the training hyperparam-

eters for the ResNet-18 model. The adjustments in this section

are incremental and cumulative. For example, if the optimizer

was changed to Adam, then all future testing includes this

change. In addition, all results were achieved by training

for 10 epochs (unless otherwise specified). Training accuracy

was evaluated based on correct/incorrect classifications on

the training dataset and validation accuracy is based on the

validation dataset. Here are the hyperparameters that were

tuned:
Optimizer and Learning Rate: I started by using the

Stochastic Gradient Descent (SGD) training optimizer. In ad-

dition to the other optimizations, this was giving about an 85%

accuracy. However, when experimenting with other optimizers,

I found the Adam Optimizer to work best. Next, I tuned the

learning rate. While the learning rate is less important with

the presence of optimizers which can adapt the learning rate

based on the change in loss, it still plays an important role

in providing an estimate or range. I found the perfect balance

of decrease in loss to optimal end-accuracy at a learning rate

of 0.001. Specifically, using the Adam optimizer helped the

model jump to 91% accuracy, which now met the threshold

of human performance. These optimizer results are shown in

Table II and the learning rate results are shown in Table III.

Optimizer Train Validation
Accuracy Accuracy

SGD 82.60% 81.29%
Adam 89.26% 88.97%

TABLE II
RESNET-18 MODEL ACCURACY USING SGD AND ADAM OPTIMIZERS.

Learning Rate Train Validation
Accuracy Accuracy

0.01 89.26% 88.97%
0.001 91.60% 90.96%

0.0001 90.51% 90.18%
TABLE III

RESNET-18 MODEL ACCURACY USING DIFFERENT LEARNING RATES FOR

ADAM OPTIMIZER.

Batch Size: Batch size is an important training hyperparam-

eter to adjust. On one hand, increasing batch size improves

training throughput (by increasing compute utilization) but

requires more memory. On the other hand, increasing batch

size may have negative effects on regularization, training

convergence, and model quality. I found that a batch size of

32 was optimal as it maximized CPU and GPU utilization

for the amount of RAM available, allowing for fast training.

This batch size was also favorable for obtaining high accuracy.

These results are shown in Table IV.
Layers to Train: As mentioned before, larger models like

the ResNet-101 took more time and resources to train than

smaller models like ResNet-18. One way to make the training

process even faster is to train only the last (fully connected)

layer of the model. This works because with a pre-trained

Fig. 2. Training and validation loss over 25 epochs. The validation loss
flattens out after 10 epochs.

ResNet-18, the previous pre-training on ImageNet still helped

tune the earlier layers to classify features present in any image

like edges, contours, texture, and color. The only thing new is

the classification of pests rather than everyday objects.

Training only the last layer decreases training time by 8x

and produces almost identical accuracy results (within 1%),

allowing to train for more epochs and tune other hyperparam-

eters faster. The results are shown in Table V.

Number of Epochs: I found that 10 epochs were optimal for

training this model by looking at the graphs plotting train and

validation loss from 10 epochs (see Figure 2). Even though

initial epochs allow bigger decreases in loss, this flattens out

over time. After 10 epochs, the validation loss oscillates and

does not decrease noticeably. While the training loss still

decreases slowly, it is not necessary to train beyond this

point because this means the model starts to overfit and make

changes to weights that don’t generalize well with new data.

5) Summary: Table VI summarizes the key milestones in

the journey from 60% to 91%+ accuracy.

6) Other Model Architectures: I experimented with other

model architectures like EfficientNet, MobileNet, ViT, and

SqueezeNet. However, since this model is being deployed on

the edge, it must be as lightweight as possible while still

maintaining 90+% accuracy. Therefore, I had to decide on the

tradeoff between accuracy and computational resources. The

accuracy and inference times for the different models are in

Table VII.

ResNet-18 exhibits the best efficiency-to-accuracy ratio

among tested architectures, striking an optimal balance. De-

spite having more parameters than MobileNet, ResNet-18’s

performance speed remains comparable, indicating additional

optimizations beyond parameter count. Post training, ResNet-

18 achieved a 91.43% classification accuracy on the validation

set comprising 1,000 cropped images.

In summary, the initial model pipeline (depicted in Figure

1) employs GroundingDINO to generate bounding box detec-

528 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Batch Size Average Training Time Per Epoch Train Accuracy Validation Accuracy
16 52.35 seconds 87.91% 87.56%
32 36.40 seconds 91.73% 91.43%
64 38.50 seconds 91.32% 90.87%

TABLE IV
RESNET-18 MODEL ACCURACY USING DIFFERENT BATCH SIZES.

Layer to Train Train Validation Average Training Time
Accuracy Accuracy Per Epoch

Train Only Last Layer 91.32% 90.87% 36.35 seconds
Train All Layers 91.45% 90.66% 273.46 seconds

TABLE V
RESNET-18 MODEL ACCURACY WHEN TRAINING LAST VS ALL LAYERS.

Tuning Technique Validation
Accuracy

Original Accuracy 65.71%
Data Filtering/Augmentation 81.29%

Adam Optimizer 88.97%
Learning Rate 0.001 90.96%

Batch Size 32 91.29%
Train 10 Epochs (Last Layer) 91.43%

TABLE VI
IMPACT OF TUNING TECHNIQUE ON VALIDATION ACCURACY (AFTER 10

EPOCHS OF TRAINING).

Model Validation Inference Time
Accuracy per 1K images (sec)

ResNet-18 91.29% 36.35
MobileNetV2 S 87.65% 32.47

EfficientNetV2 L 93.32% 79.73
ViT B16 95.53% 126.82

SqueezeNet 89.96% 50.34
TABLE VII

PERFORMANCE OF DIFFERENT MODEL ARCHITECTURES.

tions, followed by ResNet-18 for pest classification, obtaining

an accuracy of 90%+.

D. Example Detection Results

Figure 3 shows some sample results for detection and clas-

sification. The pipeline even performs well on tough examples

like a brown grasshopper camouflaged in brown leaves, and

a Corn Rootworm (CRW) camouflaged in a leaf and flower.

In addition, for images where there is no pest, the pipeline

works correctly because those images are filtered by the

GroundingDINO model (which is why there wasn’t a need

to train a separate class for "no pests in image" scenarios on

the ResNet-18).

III. DISTILLED LIGHTWEIGHT MODEL FOR

MOBILE AND EDGE DEVICES

While the GroundingDINO and ResNet-18 based model

pipeline has good accuracy, it is slow and takes 3 seconds per

image on an Nvidia T4 GPU in Google Colab. To enable this

to run in real time on an embedded device like a Raspberry

Pi or Nvidia Jetson Nano, the pipeline needs to be shrunk

drastically.

Fig. 3. Sample detection and classification results on test images with
GroundingDINO and ResNet-18 pipeline

A. YOLOv8n instead of GroundingDINO and ResNet-18

The main bottleneck is the GroundingDINO model, which

has 172M parameters compared to ResNet-18 which has only

11M parameters. One efficient model that can replace both is

YOLO [17], which is an efficient one-shot computer vision

model that can output bounding boxes and classifications.

I will use YOLOv8n (Nano), latest lightweight version of

YOLO with only 3.2M parameters (0.17% of the initial

pipeline), which also enables huge increase in speed.

B. Model Distillation

Integrating YOLOv8n into the refined pipeline may chal-

lenge accuracy due to its smaller size. However, Ground-

ingDINO’s comprehensive bounding box training exceeds

our need for pest classification alone. To transfer Ground-

ingDINO’s bounding box knowledge to YOLOv8n, I employ

model distillation. This entails a larger foundation model

annotating a task-specific dataset, from which a smaller student

model learns. The previously annotated iNaturalist dataset

using GroundingDINO, containing cropped images based on

their bounding box coordinates to isolate pests with class

labels, is used to train YOLOv8n. I used the PyTorch based

Ultralytics API [22] to train the model for 10 epochs in about

30 minutes on a Mac Mini M1.

ADITYA SENGUPTA: LEAF: LEVERAGING DEEP LEARNING FOR AGRICULTURAL PEST DETECTION AND CLASSIFICATION FOR FARMERS 529

Fig. 4. Sample Detections and Classifications from YOLO Model (with
confidence scores)

C. Evaluation on Pest Images

Testing the output of this YOLO model on some sample

pest images yielded accurate bounding box results, shown in

Figure 4. The model now takes only about 10 milliseconds per

image on a mobile phone, compared to 3 seconds per image in

initial pipeline on Nvidia T4 GPU, which is a 300x reduction

in inference latency. This allows YOLO to perform real-time

inference on video at 30 fps even on a mobile phone. The

corresponding decrease in model size is 600x.

The model size and inference latency reduction benefits of

the distilled model come with accuracy preservation compa-

rable to that of the initial pipeline with GroundingDINO and

ResNet-18 (as per the mAP metric). The distilled model has

mAP50 of 0.81 (computed over IoU ≥ 50%). For the original

pipeline, since GroundingDINO is a foundation model trained

on vast amounts of data, it outputs perfect bounding boxes, so

all of the detections satisfy the 50% overlap requirement of

mAP50. Hence, the mAP calculation for initial pipeline simpli-

fies to mAP = 1

n

∑
n

i=1
Precisioni ∗Recalli (n = #classes).

This gives an mAP of 0.82 for the original pipeline, hence

mAP of the distilled model is very close, thus successfully

preserving accuracy.

D. Handling Unknown Pest Classes

The initially trained YOLO struggled to classify out-of-

distribution (OOD) pests, often misclassifying them as the

most similar trained class. Detecting unknown pests becomes

challenging, as class probabilities tend to dominate a single

class rather than being spread across multiple classes.

Given the vast number of pest species globally, training

YOLO to classify every pest is impractical, especially for edge

deployment. I explored various techniques to detect unknown

pests, ultimately settling on augmenting the original YOLO

model with an ‘unknown’ pest class and trained it using a

random distribution of pest images from the IP102 dataset.

This enhancement prevents misclassification of beneficial

insects like ladybugs as harmful pests by assigning them to

the unknown class. Farmers can then manually review these

images to determine their relevance. If numerous unknown

pests emerge during deployment, the YOLO model can be

extended to include additional pest classes, by incrementally

expanding the last fully connected layer and retraining.

IV. CONCLUSION

LeAF offers lightweight, accurate pest detection and clas-

sification on mobile devices by distilling YOLO based model

from Internet scale datasets using GroundingDINO founda-

tional model for bounding box labeling and custom trained

Resnet-18 model for classification. This visual perception

capability for agricultural pests is part of the end-to-end

LeAF system [15] that includes field level mapping for plant-

by-plant analysis combined with LLM-powered analysis and

recommendations to empower farmers with actionable insights

for efficient plant health management. Informed by ongoing

deployments and farmer feedback, LeAF is being further re-

fined to ensure its effectiveness in promoting environmentally

sustainable and productive agriculture.

REFERENCES

[1] H. Ritchie, P. Rosado, and M. Roser, “Environmental impacts of food
production,” Our World in Data, 2022.

[2] J. G. D. Silva, “Feeding the world sustainably,” United Nations Chron-

icle, 2012.
[3] “Invasive pest spread another fallout from climate change, UN-backed

study finds,” United Nations, 2021.
[4] N. Bhalla, “40% of global crop production is lost to pests. and it’s

getting worse,” World Economic Forum, 2021.
[5] J. Garthwaite, “Why laughing gas is a growing climate problem,”

Stanford News, 2020.
[6] S. LaMotte, “Reducing pesticides in food: Major food manufacturers

earn an F grade,” CNN, 2023.
[7] A. Pariona, “Top pesticide using countries,” WorldAtlas, 2017.
[8] M. Tudi, H. D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu,

and D. T. Phung, “Agriculture development, pesticide application and
its impact on the environment,” National Library of Medicine, 2021.

[9] “For Up to 800 Million Rural Poor, a Strong World Bank Commitment
to Agriculture,” World Bank, 2019.

[10] W. A. Reinsch, T. Denamiel, and E. Kerstens, “Climate change and U.S.
agricultural exports,” CSIS, 2023.

[11] X. Wu and et al., “IP102: A Large-Scale Benchmark Dataset for Insect
Pest Recognition,” IEEE CVPR, 2019.

[12] A. Mall, S. Kabra, A. Lhila, and P. Ajmera, “AMaizeD: an end to end
pipeline for automatic maize disease detection,” ICST, 2023.

[13] A. Subeesh and et al., “Deep Convolutional Neural Network Models
for Weed Detection in Polyhouse Grown Bell Peppers,” Artificial Intel-

ligence in Agriculture, 2022.
[14] “EarthSense TerraSentia,” https://www.earthsense.co/robotics.
[15] A. Sengupta, “LeAF: Leveraging Deep Learning for Plant Anomaly De-

tection and Classification for Farmers with Large Language Models for
Natural Language Interaction & BRANCH Robot-Based Deployment,”
IEEE CVPR Computer Vision for Science, June 2024.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” IEEE CVPR, 2016.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” IEEE CVPR, 2016.

[18] “iNaturalist,” https://www.inaturalist.org/.
[19] S. Liu and et al., “Grounding DINO: Marrying DINO with Grounded

Pre-Training for Open-Set Object Detection,” arXiv.org, 2024.
[20] A. Decker and et al., “2022 applied research results field crop disease

and insect management,” UIUC Technical Report, 2022.
[21] “ResNet18 - Torchvision main documentation,” https://pytorch.org/

vision/main/models/generated/torchvision.models.resnet18.html.
[22] “Ultralytics YOLO,” https://docs.ultralytics.com/.

530 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

