
Pareto Optimal Solutions of the Biobjective

Minimum Length Minimum Risk Spanning Trees

Problem

Lasko M. Laskov

0000-0003-1833-818

Informatics Department

New Bulgarian University

21 Montevideo Str., 1618 Sofia, Bulgaria

Email: llaskov@nbu.bg

Marin L. Marinov

0009-0003-9544-819X

Informatics Department

New Bulgarian University

21 Montevideo Str., 1618 Sofia, Bulgaria

Email: mlmarinov@nbu.bg

Abstract—We propose an exact method that finds the complete
Pareto front of the biobjective minimum length minimum risk
spanning trees problem. The proposed method consists of the
solution of two problems. The first problem is to compute a list of
all minimum spanning trees with respect of the length criterion.
The second problem is to construct the complete Pareto front
itself, based on the list of all minimum spanning trees, found
using the solution of the first problem.

We prove mathematically the correctness of all proposed
algorithms, and we discuss their computational complexity. We
also illustrate the presented solution with detailed numerical
examples.

I. INTRODUCTION

T
HE minimum spanning tree problem is a classical prob-

lem in combinatorial optimization and graph theory. It

is considered important because its numerous applications

in telecommunication, electronics, clustering algorithms and

pattern recognition. The classical well-known algorithms that

solve this problem are proposed by Kriskal [1], Prim [2] and

Dijkstra [3]. Since then, many algorithms have been published

that solve the fundamental version of the problem [4] and its

generalization [5].

Even though the solution of the single-criterion problem

is essential for the field, many problems in practice require

the construction of minimum spanning trees in networks with

multiple objective functions, and in particular networks with

two objective functions. Both exact and heuristic methods are

developed to address the problem of biobjective minimum

spanning trees.

In [6] authors propose a method that finds all Pareto optimal

solutions of a biobjective minimum spanning trees problem

that is based on computation of extreme efficient solutions and

then the computation of the remaining non-extreme solutions.

The second phase of the method is based on k-best algorithm

that is sped up using heuristic enhancement.

In [7] is proposed a multi-objective metaheuristic approach

to solve biobjective spanning trees with minimum total cost

and minimum diameter problem. The described method is

based on multi-objective evolutionary algorithm and on a

nondominated sorting genetic algorithm. Solution of the same

version of the problem is proposed by [8], but this time the

proposed method is exact, with both correctness and running

time verified experimentally.

In this paper we propose an exact method that finds the

complete Pareto optimal front of the biobjective minimum

length minimum risk spanning trees problem. Our solution

is based on the solution of two problems: (i) construct the

list of all minimum spanning trees with respect of the length

criterion; (ii) construct the complete list of all Pareto optimal

solutions. Our algorithm that solves the first problem is an

extension of the Prim’s algorithm [2]. It finds a single min-

imum spanning tree according to the length criterion, with

simultaneously completing a list of subproblems that define

all the remaining minimum spanning trees in the network. The

solution of the second problem is based on an algorithm that

composes a list of all Pareto optimal trees that have minimum

length.

Even though the classical minimum spanning tree problem

is solved in polynomial computational complexity time (see

for example [9]), the problem of calculation of the complete

Pareto optimal front of the biobjective minimum spanning

trees has exponential complexity and is classified as an NP-

hard problem [6]. The exact solution that we propose in this

paper depends on the number of classes of Pareto optimal

solutions and on the number of minimum spanning trees with

respect to the length criterion.

This paper is organized as follows. In Sec. II we provide

basic notations and definitions used in the paper. In Sec. III we

describe the algorithm that computes the list of all minimum

spanning trees with respect to the length criterion. In Sec. IV

we give the solution of the main problem of this paper and

we describe the algorithm that constructs the complete Pareto

front. Finally, in Sec. V we provide our conclusions.

II. BASIC NOTATIONS AND DEFINITIONS

Let G = (V,E) is a connected undirected graph with

n = |V | number of vertices, and m = |E| number of

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 405–416

DOI: 10.15439/2024F2913

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 405 Thematic Session: Computational Optimization

edges. Without loss of generality we will assume that V =
{1, 2, . . . , n} and E ⊆ V 2.

We define the following two objective functions: f : E →
R+ and g : E → R+.

The function f : E → R+ assigns to each edge (u, v) ∈ E
the positive real number f(u, v), which we will call length of

the edge e = (u, v). The function g : E → R+ assigns to each

edge (u, v) ∈ E the positive real number g(u, v), which we

will call risk of the edge e = (u, v).
With N we denote the network N = (V,E, f, g). We

assume that the network N is given using the adjacency lists

Adj (see Eq. (1)). We will treat the adjacency lists of the

network as its attribute and we adopt the notation N.Adj.

N.Adj = [⟨(v, f(u, v), g(u, v)), . . .⟩, . . .]. (1)

The adjacency lists are represented as an array of lists, where

each element of the array N.Adj[u] corresponds to a vertex

u ∈ V of the network and it stores a list composed of ordered

triples of the type (v, f(u, v), g(u, v), where v ∈ V is an

adjacent vertex, f(u, v) is the length and g(u, v) is the risk of

the edge (u, v).
For each subset of edges A ⊆ E, where

A = {(u1, v1), . . . , (uk, vk)}, (2)

we define the following two numbers x(A) and y(A).

x(A) =
k

∑

i=1

f(ui, vi) (3)

y(A) = max{g(ui, vi) : i ∈ {1, 2, . . . , k}} (4)

We call the number x(A) length of the subset of edges A, and

we call the number y(A) risk of the subset of edges A.

Also, if the set A given in (2) is acyclic and if it contains

all the vertices of the network N , we will call it a spanning

tree of N .

With W we denote the set of all spanning trees of the

network N .

Definition 1. We call the tree t′ ∈ W Pareto optimal when

there does not exist another tree t ∈W , for which any of the

following two conditions is fulfilled:

• x(t) < x(t′) and y(t) ≤ y(t′);
• x(t) ≤ x(t′) and y(t) < y(t′).

Definition 2. We will say that the tree t′ and t are equivalent

and we will denote it with t′ ∼ t, when x(t′) = x(t) and

y(t′) = y(t).

Definition 3. We will say that the tree t is dominated by the

tree t′ denoted t ≺ t′, when x(t′) < x(t) and y(t′) ≤ y(t) or

x(t′) ≤ x(t) and y(t′) < y(t).

We denote with P the set of Pareto optimal trees in the

network N . It is clear that

P =
K
⋃

i=1

Pi, (5)

where Pi are the classes of Pareto equivalent optimal trees,

and K is the number of such classes.

III. LIST OF ALL MINIMUM LENGTH SPANNING TREES

In this section we present the method to construct all

minimum spanning trees with respect of the length criterion,

without actually constructing other spanning trees. The main

part of the method is an inductive procedure that traverses

a single minimum spanning tree A, starting from its root

(Procedure 2). Each iteration of the procedure discovers all

the possibilities by which the so far traversed part of A can be

completed to another spanning tree of minimum length. These

possibilities are called subproblems below. The procedure

stops when the entire minimum spanning tree A is constructed.

In other words, we solve the following Problem 1.

Problem 1. Given the network N = (V,E, f, g), find one

minimum spanning tree A and compose a list of the subprob-

lems that define the remaining minimum spanning trees in the

network N .

We give the solution of the above Problem 1 with the

Algorithm 3 which is an extension of the classical Prim’s

algorithm [2] that finds a single minimum spanning tree

in a connected, undirected, weighted graph. The proposed

Algorithm 3 simultaneously constructs the minimum spanning

tree and composes the list of the subproblems that define the

remaining minimum spanning trees in the network N . This

strategy is possible because for the minimum spanning tree

problem a strong version of the greedy principle, known as

greedy-choice property [9], is fulfilled, or in other words, the

Theorem 2 hods.

In analogy to the Prim’s algorithm, using an inductive

procedure we discover the edges of a minimum spanning tree

and we include them consecutively into a set A. Initially, the

set A is the empty set. In Algorithm 3, instead of the set A
itself, we explicitly maintain only its storage using the vector

tree. When A = ∅, then tree is the zero vector with n
components. The inclusion of an edge (u, v) into A we store in

tree by tree[v] = u. In this case we say that for the currently

visited vertex v the vertex u is its parent. We determine the

edges that we will include into the set A by traversing the set

of vertices V . With Q we denote the set of vertices which are

not yet visited by the algorithm. In the initial state, Q = V .

With U we denote the set of vertices that are already visited.

Apparently, U = V \Q.

We choose an arbitrary vertex r for the root vertex of the

spanning trees. Without loss of generality, we can select r = 1.

With the selected root r we define U = {r} and Q = V \ U .

Then, one minimum spanning tree can be discovered using the

following Procedure 1.

Procedure 1. Inductive procedure to construct single mini-

mum spanning tree.

I. Base step.

1) Discover a vertex v1 from the set Q for which

f(r, v1) = min{f(r, v) : v ∈ Q}. (6)

2) Move the vertex v1 from Q into the set U resulting in

the new U and Q after the visiting of the vertex v1.

406 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

II. Inductive step.

1) Discover the vertices v1 and v2, for which the conditions

(7) and (8) are fulfilled.

v1 ∈ Q and u1 ∈ U (7)

f(u1, v1) = min{f(u, v) : u ∈ U and v ∈ Q} (8)

2) Move the vertex v1 from Q into the set U resulting in

the new U and Q after the visiting of the vertex v1.

3) Include the vertex (u1, v1) in A, which we record with

tree[v1] = u1.

4) If Q ̸= ∅, go to step II.1. Otherwise, stop.

It is clear that the inductive Procedure 1 terminates after

n− 2 iterations of the inductive step. After the termination of

the procedure, in A are contained n−1 edges, and each vertex

of the network N is incident with at least one edge of A.

The following theorem holds.

Theorem 1. The set A that is constructed by the Procedure

1 is a minimum spanning tree.

Proof: In the proof we follow [9]. Since the empty set

is a subset of every spanning tree, we can assume that in

the beginning of Procedure 1 the set A is a subset of some

minimum spanning tree T . In the execution of step II.1 of

the procedure, we find an edge (u1, v1), such that it satisfies

(7) and (8), which means that the edge (u1, v1) is a light

edge that crosses the cut (U,Q). By the definition of the set

U , it contains all endpoints of the edges in A, and therefore

(u1, v1) is not contained in A. Then, from Theorem 23.1 from

[9] it follows that there exists a minimum spanning tree T ′

that contains the set A ∪ {(u1, v1)}. It is clear that the set A
expanded in this way does not contain cycles because it is a

subset of a tree. After the termination of the Procedure 1 the

set A contains n− 1 edges and therefore it coincides with the

minimum spanning tree T ′ in which it is contained.

Besides Theorem 1, each minimum spanning tree can be

constructed using an appropriate implementation of the Pro-

cedure 1. The following theorem holds.

Theorem 2. Let T0 be a minimum spanning tree. Then, the

tree T0 can be constructed using the Procedure 1.

Proof: Without loss of generality, we assume that the root

r is the vertex 1.

I. Base step. We calculate:

d = min{f(1, v) : v ∈ G.Adg[1]}, (9)

d0 = min{f(1, v) : (1, v) ∈ T0}. (10)

Apparently, d ≤ d0. We will prove that d = d0. For the

purpose of contradiction, we assume that d < d0.

With v and v0 we denote two vertices for which the equal-

ities are fulfilled: f(1, v) = d, f(1, v0) = d0, (1, v0) ∈ T0

and v ∈ N.Adj[1]. Then, in the minimum spanning tree

T0 there is a unique path α that has end vertices v0 and

v. Therefore, β = {(1, v0)} ∪ α ∪ {(1, v)} is a cycle, and

T1 = (T0 \ {(1, v0)}) ∪ {(1, v)} is a spanning tree. It is

calculated directly that

x(T0)− x(T1) = f(1, v0)− f(1, v) = d0 − d > 0.

Then x(T0) > x(T1) which contradicts the condition that T0

is a minimum spanning tree. Therefore, d = d0. This allows

Procedure 1 to transfer the vertex v0 from Q into U and to

define A = {(1, v0)}. The cut (U, V) respects the set A that

is constructed by the above steps, and A is contained in the

minimum spanning tree T0.

II. Inductive step. We assume that the set A ⊆ T0 is

constructed using Procedure 1 and that the cut (U,Q) is

defined. The set U contains the vertices that are endpoints

of the edges that belong to A and Q = V \ U is the set of

vertices that are not yet visited. Besides that, we will assume

that Q ̸= ∅, because otherwise the theorem is proved.

We calculate

d1 = min{f(u, v) : u ∈ U and v ∈ Q}, (11)

d0 = min{f(u, v) : u ∈ U, v ∈ Q and (u, v) ∈ T0}. (12)

For i ∈ {0, 1} we select vertices ui and vi, such that ui ∈
U , vi ∈ V , f(ui, vi) = di and (u0, v0) ∈ T0. Apparently,

d1 ≤ d0. We will prove that d1 = d0. For the purpose of

contradiction we assume that d1 < d0.

Since T0 is a spanning tree, in T0 exists a single path γ
with end vertices u1 and v1. Then there exists at least one

edge (u, v) ∈ γ, such that u ∈ U and v ∈ V . From (12) it

follows that d0 ≤ f(u, v). From the assumption d1 < d0 it

follows that:

f(u1, v1) = d1 < d0 ≤ f(u, v). (13)

It is cleat that δ = γ ∪ {(u1, v1)} is a cycle and T1 =
(T0 \ {(u, v)}) ∪ {(u1, v1)} is a spanning tree. Therefore,

d1 = d0. This allows Procedure 1 to include into A exactly

the edge (u0, v0). Following Procedure 1, we move the vertex

v0 from Q into U . Then it is obvious that the new set A is

a subset of T0, the set U contains the vertices of the edges

that belong to A, and the number of the vertices that are not

visited is decremented with one. After n− 2 iterations of the

inductive step of Procedure 1 we get the set A that coincides

with T0 and the theorem is proved.

Theorem 2 allows us to complement Procedure 1 in such a

way that, simultaneously with the construction of the minimum

spanning tree A, we can also form the list of subproblems with

the help of which we can obtain all the remaining minimum

spanning trees. We present this extension using Procedure 2.

For this purpose, we use the fact that Procedure 1 builds the

minimum spanning tree by processing in a standard way the

current states of the sets A and Q. This allows us to preserve

all possibilities for completing A to a minimum spanning tree

that are different from the currently implemented completion.

We will store the discovered possibilities in the list S. Such

possibilities may appear both in the base step of the procedure

and in the inductive step of the procedure.

LASKO LASKOV, MARIN MARINOV: PARETO OPTIMAL SOLUTIONS OF THE BIOBJECTIVE MINIMUM LENGTH MINIMUM RISK 407

In Procedure 2 we are not going to use explicitly the set

A, but we are going to use its record using the vector tree.

Besides that, instead of the explicit notation of the sets U
and Q, we will store them using the n-components vector

bypassed.

bypassed[v] =

{

false, if v ∈ Q

true, if v ∈ U
(14)

In this way, we will store each subproblem with the pair

(bypassed, tree).
When Procedure 2 starts, the vector tree is the n-component

zero vector. Since the vertex r is chosen for the root, all ele-

ments of the vector bypassed are false, except bypassed[r]
which is set to true. Thus, the initial problem is stored with

the so defined pair of vectors (bypassed, tree), and also the

list S is initialized with the empty set.

Procedure 2. Inductive procedure to construct a minimum

spanning tree and all subproblems that define the remaining

minimum spanning trees.

I. Base step.

1) For each vertex v1, for which

f(r, v1) = min{f(r, v) : v ̸= r} (15)

define:

b1 = bypassed and b1[v1] = true, (16)

t1 = tree and t1[v1] = r, (17)

S = {(b1, t1)} ∪ S. (18)

2) We choose one element from S and we denote it

with (bypassed, tree). This is the subproblem which

the procedure will use in its calculations. We remove

(bypassed, tree) from S and proceed to the next step.

3) If at least one of the components of bypassed is false,

go to the inductive step. Otherwise, stop.

II. Inductive step.

1) For each pair of vertices u1 and v1 that satisfy the

conditions:

bypassed[u1] = true and bypassed[v1] = false,
(19)

f(u1, v1) = min{f(u, v) : bypassed[u] = true

and bypassed[v] = false},
(20)

define

b1 = bypassed and b1[v1] = true, (21)

t1 = tree and t1[v1] = u1, (22)

S = {(b1, t1)} ∪ S. (23)

2) We denote the latest subproblem (b1, t1) that is in-

cluded in S with (bypassed, tree) and the calculations

of the procedure will continue with it. We remove

(bypassed, tree) from S and proceed to the next step.

3) If at least one of the components of the vector bypassed
is false, go back for next iteration in step II.1. Other-

wise, stop.

We will follow the calculations of Procedure 2.

In step I.1 we discover all vertices v1, for which the

condition (15) is fulfilled. Each such v1 satisfies the step I.1

of Procedure 1. With equality (16) we define the vector b1
that stores the new sets U and Q, if the vertex v1 is visited,

which implements step I.2 of Procedure 1. Also, with equality

(17) we record the fact that by traversing the vertex v1 the

tree A being built is augmented with the edge (r, v1), which

implements step I.3 of Procedure 1. In equality (18), we store

in the list S all the subproblems that are obtainable by the

base step of Procedure 1.

In step I.2 of Procedure 2 we separate from S the subprob-

lem with which the computations continue.

In step II.1 of Procedure 2 we discover all the pairs of

vertices u1, v1 that satisfy the conditions of step II.1 of

Procedure 1. Also, in equality (21) we store the new sets U
and Q, which are defined in step II.2 of Procedure 1. In t1,

defined by (22), we store the new set A, that would be the

result of step II.3 of Procedure 1. We store all subproblems

found in this way in the list S with equality (23).

In step II.2 of Procedure 2 we select from S a subproblem

that does not violate the logic of Procedure 1.

The inductive step of Procedure 2 is repeated until the main

tree tree is constructed. We will emphasize that in such a

way the main tree tree is built by implementing Procedure 1.

According to Theorem 1, the tree tree is a minimum spanning

tree.

The following theorem holds.

Theorem 3. Let tree and S are constructed by Procedure 2.

Then the following two statements hold.

1) The vector tree defines one minimum spanning tree A.

2) Each minimum spanning tree T that is different from A
is represented by a subproblem stored in S using the

inductive step of Procedure 2.

Proof: The proof of the theorem follows from Theorem 1

and Theorem 2. Above we have discussed the second statement

of the theorem. We only note that applying the inductive step

to a subproblem from S computes the next minimum spanning

tree and simultaneously completes the set of subproblems S.

Theorem 3 allows us to solve Problem 1 by following

Procedure 2. Since Procedure 2 is an extension of the Prim’s

algorithm [2], as in the case of Dijkstra’s algorithm [3], we

can adopt the implementation of the abstract data type min-

priority queue based on Fibonacci heap data structure [10] to

significantly speed up the running time of the algorithm. In

the case of the Prim’s algorithm implemented with Fibonacci

heap, the running time achieved is O(m+n lg n) [11]. In our

case, Fibonacci heap is used to implement the min-priority

queue Q that stores the set of vertices that is not yet traversed

by the algorithm. The vertices that are stored in Q are keyed

408 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

by an attribute d, which we will represent as an n-component

vector. In the initialization of the algorithm, the components

of the vector d are set to ∞. At that stage, the set U of the

traversed vertices is the empty set. Each change of the set U
leads to a change in the min-priority queue Q together with

the components of the vector d, for which it holds:

d[v] =

{

min{f(u, v) : u ∈ U}, if v ∈ Q

∞, otherwise
(24)

In this way, for a vertex v that is not yet traversed, d[v] is the

distance of v to the set of traversed vertices.

The implementation of Procedure 2 manages also the at-

tribute vector p with n components, which stores for each

vertex v ∈ Q all the vertices that are in U for which f(u, v)
equals the estimated distance of v to the set U .

p[v] =

{

{u : u ∈ U, f(u, v) = d[v]}, if v ∈ Q, d[v] <∞

{∅}, otherwise

We will store each subproblem with the ordered six-tuple:

(Q, tree, p, d, bypassed, v), (25)

where v is the vertex that was last visited.

In this paper we assume that the network N is given with

adjacency lists N.Adj, and one of the vertices is selected as

the root of the resulting trees. We define a helper function

START(N.Adj, r) that takes as input the adjacency lists N.Adj
and the selected vertex r for the root of the minimum spanning

trees. The function returns the record of the initial problem and

the selected root r with the ordered six-tuple of the type (25),

where Q = V \ {r} is min-priority queue keyed by the d
attribute vector of the vertices that has components

d[w] =

{

f(r, w), if w ∈ N.Adj[r]

∞, otherwise
(26)

Also, tree is the zero vector, v = r, and

p[w] =

{

{r}, if w ∈ N.Adj[r]

{∅}, otherwise
(27)

bypassed[w] =

{

true, if w = r

false, if w ̸= r
(28)

Function START(N.Adj, r) can be implemented, following

Algorithm 1 that correctly stores the initial problem with

running time complexity that cannot exceed O(n+m).

Example 1. We denote with N1 the network given on Fig.

1. It is composed of 5 vertices and 10 edges. On the figure,

the weights of each edge are given as ordered pair next to it,

where the first element is the length and the second is the risk.

The network is defined with the following adjacency lists:

N1.Adj = [⟨(2, 7, 10), (3, 7, 6), (4, 9, 4), (5, 15, 8)⟩,

⟨(1, 7, 10), (3, 15, 4), (4, 7, 8), (5, 9, 6)⟩,

⟨(1, 7, 6), (2, 15, 4), (4, 7, 8), (5, 9, 4)⟩,

⟨(1, 9, 4), (2, 7, 8), (3, 7, 8), (5, 9, 6)⟩,

⟨(1, 15, 8), (2, 9, 6), (3, 9, 4), (4, 9, 6)⟩].

(29)

Algorithm 1 Function START(N.Adj, r)

Input: adjacency lists N.Adj and root vertex r
Output: the record of the initial problem

1: Q← V \ {r}
2: for i← 1 to |N.V | do

3: d[i]←∞
4: p[i]← {∅}
5: tree[i]← 0
6: if i ̸= r then

7: bypassed[i]← false
8: else

9: bypassed[i]← true
10: end if

11: end for

12: for i← 1 to |N.Adj[r]| do

13: (w, y, z)← N.Adj[r][i]
14: d[w]← y
15: p[w]← {r}
16: end for

17: return (Q, tree, p, d, bypassed, r)

1

2 3

5 4

(7, 10)

(15, 8) (9, 4)

(7, 6)

(15, 4)
(7, 8)

(9, 6) (7, 8)

(9, 4)

(9, 6)

Fig. 1. Example network N1 composed of five vertices with length and risk
of each edge given next to it

We choose for root the vertex r = 1, and find the record of

the initial problem.

Solution. Algorithm 1 determines:

Q = {2, 3, 4, 5}, tree = (0, 0, 0, 0, 0),

p = ({∅}, {∅}, {∅}, {∅}, {∅}),

d = (∞,∞,∞,∞,∞),

bypassed = (true, false, talse, false, false).

The adjacency list of the root vertex is N.Adj[r] =
⟨(2, 7, 10), (3, 7, 6), (4, 9, 4), (5, 15, 8)⟩.

The second for loop edits the vectors d and p. We get: d =
(∞, 7, 7, 9, 15) and p = ({∅}, {1}, {1}, {1}, {1}). As a result,

the function START(N1.Adj, r) stores the initial problem for

the selected root r = 1 as the ordered six-tuple:

X = (Q, tree, p, d, bypassed, v), (30)

LASKO LASKOV, MARIN MARINOV: PARETO OPTIMAL SOLUTIONS OF THE BIOBJECTIVE MINIMUM LENGTH MINIMUM RISK 409

Algorithm 2 Function BRANCHING(V1, S1)

Input: element V1 ∈ D and queue S1

Output: the modified queue S1

1: (v1, Q1)← V1

2: b1 ← bypassed, b1[v1]← true
3: d1 ← d, d1[v1]←∞
4: p1 ← p, p1[v1]← {∅}
5: for i← 1 to |N.Adj[v1]| do

6: (w, l, ·)← N.Adj[v1][i]
7: if b1[w] = false then

8: if d1[w] > l then

9: d1[w]← l, p1[w]← {v1}
10: else if d1[w] = l then

11: p1[w]← p1[w] ∪ {v1}
12: end if

13: end if

14: end for

15: U ← p[v1] {u ∈ U exactly when u /∈ Q
and f(u, v1) = d[v1]}

16: for i← 1 to |U | do

17: u← U [i]
18: t1 ← tree, t1[v1]← u
19: S1 ← S1 ∪ {(Q1, t1, p1, d1, b1, v1)}
20: end for

21: return S1

where

Q = {2, 3, 4, 5}, tree = (0, 0, 0, 0, 0),

p = ({∅}, {1}, {1}, {1}, {1}), d = (∞, 7, 7, 9, 15),

bypassed = (true, false, talse, false, false), v = 1.

■

To implement Procedure 2 we will use the following three

helper functions: EXTRACT(Q), BRANCHING(V1, S1) and

OPEN-PRIM(X,S), with which we will analyze the current

subproblem (Q, tree, p, d, bypassed, v).
The function EXTRACT(Q) discovers all elements vj in the

priority queue Q for which d[vj] = min{d[v] : v ∈ Q}
and composes a deque (double-ended queue) D with elements

(vj , Qj), where Qj = Q \ {vj}. In the beginning of D are

stored the elements for which v ∈ p[vj].
To each element V1 of the deque D we apply the helper

function BRANCHING(V1, S1). It adds to a predefined queue

S1 all subproblems that can complete the current tree tree
if an element V1 of D is selected. The function BRANCH-

ING(V1, S1) can be implemented following Algorithm 2, in

which we suppose that the queue S1 is defined, and an element

V1 ∈ D is chosen.

We will analyze the execution of Algorithm 2. In lines 2

and 3 the algorithm marks the vertex v1 as traversed. Then it

calculates the new values of d1 and p1. Initially, it records that

v1 is not an element of Q. Then it changes the values of the

estimated distance d and list of parents p when v1 becomes

a traversed vertex. For the resulting d1 and p1 the following

equalities hold.

Algorithm 3 Function OPEN-PRIM(X,S)

Input: subproblem X and the stack of subproblems S
Output: minimum spanning tree tree and modified S

1: (Q, tree, p, d, bypassed, v)← X
2: while Q ̸= ∅ do

3: D ← EXTRACT(Q)
4: let S1 be an empty queue

5: while D ̸= ∅ do

6: V1 ← FRONT(D)
7: POPFRONT(D)
8: S1 ← BRANCHING(V1, S1)
9: end while

10: S ← S1 ∪ S {preserve the order of elements in S1}

11: (Q, tree, p, d, bypassed, v)← S.top
12: POP(S)
13: end while

14: return tree, S

1) If w belongs to the set Q1 ∩N.Adj(v1), then

d1[w] =

{

d[w], if f(v1, w) = d[w]

f(v, w), if f(v1, w) < d[w]
(31)

p1[w] =











p[w] ∪ {v1}, if f(v1, w) = d[w]

{v1}, if f(v1, w) < d[w]

p[w], if f(v1, w) > d[w]

(32)

2) If w belongs to the set (Q1 \ N.Adj[v1]) ∪ U , then

d1[w] = d[w] and p1[w] = p[w].
3) d1[v1] =∞ and p1[v1] = {∅}.

Therefore, Algorithm 2 correctly separates all resulting sub-

problems, if the element V1 is selected from the deque D.

Using functions EXTRACT(Q) and BRANCHING(V1, S1)
we define the function OPEN-PRIM(X,S) in Algorithm 3 that

implements the inductive step of Procedure 2. We assume that

are defined the subproblem X = (Q, tree, p, d, bypassed, v)
with Q ̸= ∅ and the stack S of subproblems of the initial

problem. The input of the function OPEN-PRIM(X,S) is the

subproblem X and the stack S, and its output is a minimum

spanning tree stored in the vector tree and the modified

stack S. During its execution the function can push new

subproblems into S.

Algorithm 3 correctly implements the inductive step of

Procedure 2, more precisely, lines from 3 to 10 implement

step II.1, and lines 11, 12 implement step II.2.

Indeed, the function EXTRACT(Q) in line 3 of the algorithm

finds all vertices v1 for which there exists such vertex u1 for

which Eq. (19) and (20) hold. In the inner while loop the

algorithm determines the queue S1 of all subproblems that

can complete the tree tree if v1 is chosen to be traversed. In

this case, we use the correctness of the function BRANCH-

ING(V1, S1). This, in particular, guarantees the fulfillment of

Eq. (19), (20), (21) and (22). With line 10, the algorithm stores

the elements of S1 in the top of the stack S, preserving their

410 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

order, and thus the implementation of step II.2 of Procedure

2 is completed.

The running time of Algorithm 3 depends on the efficiency

of the functions of the min-priority queue Q abstract data type.

In the case in which Fibonacci heap data structure is used

for the implementation of Q, the running time complexity of

Algorithm 3 is O(m + n lg n) (see [11] and also [9]). This

is true, because the proposed algorithm is an extension of the

Prims’s algorithm [2] and differs from it in a constant factor.

We note that the computations in step I.1 of Procedure 2 are

a special case of the computations in step II.1. This enables

the computations in step 1 to be implemented with the OPEN-

PRIM(X,S) function as well.

We will illustrate the above with the following Example

2. In Example 1 we already proved that Problem 1 for the

network N1 when r = 1 is written with the ordered six-tuple

X defined with Eq. (30). We denote by S an empty stack.

Example 2. For the subproblem X and stack S defined above,

we will prove that the first iteration of the outer while loop of

Algorithm 3 implements the base step of Procedure 2.

Solution. From the definition of X given in Eq. (30)

we know that Q = [2, 3, 4, 5] and d = (∞, 7, 7, 9, 15).
Then, the function EXTRACT(Q) defines the deque D =
[⟨3, (2, 4, 5)⟩, ⟨2, (3, 4, 5)⟩].

In this case, the inner while loop of Algorithm 3 executes

two iterations. Each iteration, using the BRANCHING(V1, S1)
function, defines a subproblem with which the current tree

stored in the vector tree can be completed. The first iteration

defines the subproblem

X1 = (Q1, t1, p1, d1, b1, 3), (33)

where

Q1 = [2, 4, 5], t1 = (0, 0, 1, 0, 0),

p1 = ({∅}, {1}, {∅}, {3}, {3}),

d1 = (∞, 7,∞, 7, 9), b1 = (true, false, true, false, false).

The second iteration defines the subproblem

X2 = (Q2, t2, p2, d2, b2, 2), (34)

where

Q2 = [3, 4, 5], t2 = (0, 1, 0, 0, 0),

p2 = ({∅}, {∅}, {1}, {2}, {2}),

d2 = (∞,∞, 7, 7, 9), b2 = (true, true, false, false, false).

In this way, step I.1 of Procedure 2 is implemented, which

is verified directly. Lines 10, 11 and 12 of Algorithm 3

implement step I.2 of Procedure 2. Thus, the first iteration of

the outer while loop of the algorithm implements the base step

of the procedure. Moreover, following the depth-first search

principle, subproblem X1 remains as the current problem, and

only subproblem X2 remains in the stack S.

Example 2 clearly demonstrates that Algorithm 3 imple-

ments Procedure 2. In this case, the outer while loop will

perform n−1 iterations. The first iteration will implement the

Algorithm 4 Function SUBPROBLEMS(N)

Input: the network N
Output: minimum spanning tree tree and subproblems S

1: let S be an empty stack

2: X ← START(N.Adj, r)
3: (tree, S)← OPEN-PRIM(X,S)
4: return tree, S

initial step of the procedure, and the remaining n−2 iterations

will implement the inductive steps. This allows the solution of

Problem 1 to be obtained with Algorithm 4.

Example 3. We will find a single minimum spanning tree and

compile a list S of the subproblems that can be used to find

the remaining minimum spanning trees of the network N1 from

Example 1 using Algorithm 4.

Solution. In lines 1 and 2 the algorithm defines an empty

stack S and stores the initial problem in the ordered six-

tuple X = (Q, tree, p, d, bypassed, 1). In Example 1 we have

proved that X is defined with equality (30).

The computations in line 3 are implemented using Algo-

rithm 3. We will follow these calculations for the given case.

In Example 2, we found that the first iteration of the outer

while loop implements the base step of Procedure 2 and

defines as the current subproblem X1, which is given by

equality (33). Additionally, the S stack is also defined, and

it contains only the subproblem X2 which is given by (34).

Since the current Q = [2, 4, 5], the outer while loop executes

its second iteration, and thus we execute the first iteration of

the inductive step of Procedure 2. At that stage, the attribute

vector d, that is used as min-priority queue keys, stores d =
(∞, 7,∞, 7, 9). The function EXTRACT(Q) determines that

D = [⟨4, (2, 5)⟩, ⟨2, (4, 5)⟩].
The inner while loop of Algorithm 3 executes two iterations.

On each iteration, using the function BRANCHING(V1, S1), it

defines a subproblem with which the tree stored in tree can

be completed. In line 10 these two subproblems are stored on

the top of the stack S. We get S = [X11, X12, X2], where the

subproblem X2 is defined by (34), and

X11 = ((2, 5), (0, 0, 1, 3, 0), ({∅}, {1, 4},

{∅}, {∅}, {3, 4}), (∞, 7,∞,∞, 9),

(true, false, true, true, false), 4),

(35)

X12 = ((4, 5), (0, 1, 1, 0, 0), ({∅}, {∅},

{∅}, {3, 2}, {3, 2}), (∞,∞,∞, 7, 9),

(true, true, true, false, false), 2).

(36)

In line 11, we set the new current subproblem to be X11,

and then in line 12 we pop from S the top element.

Now, the new queue Q has two elements and Q = [2, 5].
Therefore, the outer while loop implements a third iter-

ation and simultaneously starts the execution of the next

iteration of the inductive step of Procedure 2. After the

execution of the third iteration, line 11 defines the new

LASKO LASKOV, MARIN MARINOV: PARETO OPTIMAL SOLUTIONS OF THE BIOBJECTIVE MINIMUM LENGTH MINIMUM RISK 411

current subproblem with Q = [5], tree = (0, 1, 1, 3, 0),
p = ({∅}, {∅}, {∅}, {∅}, {3, 4, 2}), d = (∞,∞,∞,∞, 9),
bypassed = (true, true, true, true, false) and v = 2.

Besides that, in line 12, the new stack S is defined, which

differs from the stack S defined in the previous iteration in

that the subproblem is pushed:

X112 = ((5), (0, 4, 1, 3, 0), ({∅}, {∅},

{∅}, {∅}, {3, 4, 2})(∞,∞,∞,∞, 9),

(true, true, true, true, false), 2).

(37)

In this way, S = [X112, X12, X2].
Since the current Q ̸= ∅, the outer loop of the algorithm

executes its fourth iteration and thus the next iteration of the

inductive step of Procedure 2. This time, in line 11 the current

Q = {∅}, tree = (0, 1, 1, 3, 3), every element of p is the

empty set, every element of d is infinity, every element of

bypassed is true and v = 1.

Besides that, in the stack S of the previous iteration are

pushed two new subproblems:

X1112 = ((∅), (0, 1, 1, 3, 4), ({∅}, {∅},

{∅}, {∅}, {∅}), (∞,∞,∞,∞,∞),

(true, true, true, true, true), 5),

(38)

X1113 = ((∅), (0, 1, 1, 3, 2), ({∅}, {∅},

{∅}, {∅}, {∅}), (∞,∞,∞,∞,∞),

(true, true, true, true, true), 5).

(39)

At the end of the fourth iteration, the queue Q is the empty

set. Therefore, no further iterations of the outer while loop

of the algorithm are executed and, moreover, the iterations of

the inductive step of Procedure 2 also stop. In this way, the

calculations in line 3 of Algorithm 4 stop and it returns:

tree = (0, 1, 1, 3, 3) and

S = [X1112, X1113, X112, X12, X2],
(40)

where the elements of the stack S are defined by Eq. (38),

(39), (37), (36) and (34).

From Theorem 3 it follows that the tree tree = (0, 1, 1, 3, 3)
is a minimum spanning tree. It can be directly computed

that the weight according to the length objective function

of that tree is 30, and it can be stored as the set of edges

A = {(1, 2), (1, 3), (3, 4), (3, 5)}.
Also, from Theorem 3 follows that that any other minimum

spanning tree can be obtained from the stack of subproblems

S. In the particular case, directly from Eq. (38) and (39) we

establish that the first subproblem defines a tree (0, 1, 1, 3, 4)
and the second subproblem defines a tree (0, 1, 1, 3, 2). We can

directly verify that the two new spanning trees have length 30
again.

We will note that the correctness of Algorithm 4 follows

from the correctness of Algorithm 3 and the fact that the first

iteration of the outer while loop of Algorithm 3 implements

the initial step of Procedure 2. Moreover, the running time

complexity of Algorithm 4 coincides with the complexity of

Algorithm 3.

Corollary 1. Algorithm 4 can be edited in such a way that it

returns a list of all minimum spanning trees.

For example, using the algorithm from Corollary 1 we get

that the network N1 from Example 1 has exactly 12 minimum

spanning trees. These are the trees given in the list S:

S = {(0, 1, 1, 3, 3), (0, 1, 1, 3, 4), (0, 1, 1, 3, 2),

(0, 4, 1, 3, 3), (0, 4, 1, 3, 4), (0, 4, 1, 3, 2),

(0, 1, 1, 2, 3), (0, 1, 1, 2, 2), (0, 1, 1, 2, 4),

(0, 1, 4, 2, 2), (0, 1, 4, 2, 4), (0, 1, 4, 2, 3)}.

(41)

IV. COMPLETE PARETO FRONT ALGORITHM

In this section we will give the solution of the main problem

considered in this paper.

Problem 2 (Main problem). Let N be a connected network

given with its adjacency lists N.Adj. Compose a list P of all

classes of equivalent, Pareto optimal trees.

We will solve Problem 2 using the following Procedure 3.

Procedure 3. Compose a list of all classes of equivalent,

Pareto optimal trees.

1) Calculate the minimum length l of a spanning tree, l =
min{x(t) : t ∈W}.

2) Calculate the minimum risk r for the minimum spanning

trees, r = min{y(t) : t ∈W and x(t) = l}.
3) Define the set T of all spanning trees t for which x(t) =

l and y(t) = r.

4) Define the sets P = P ∪ T and W1 = {t : t ∈
W and y(t) < r}.

5) If W1 ̸= ∅, set W = W1 and go to step 1. Otherwise,

stop.

After the termination of Procedure 3 in P are stored all

equivalent, Pareto optimal trees.

The following lemma holds.

Lemma 1. Procedure 3 correctly computes the list P of the

classes of equivalent Pareto optimal trees of the network N .

Proof: It is sufficient to prove that the invariant given

in Procedure 3 correctly separates the consecutive class of

equivalent Pareto optimal trees.

With steps 1, 2 and 3 we define:

l1 = max{x(t) : t ∈W},

X1 = {t : t ∈W and x(t) = l1},

r1 = max{y(t) : t ∈ X1},

T1 = {t : t ∈ X1 and y(t) = r1}.

(42)

We denote W1 = {t : t ∈ W and y(t) < r} and Z1 = W \
(W1 ∪ T1).

Let t1 be an arbitrary tree from the set T1. If Z1 ̸= ∅, then

for each t ∈ Z1 one of the cases (43) or (44) holds.

x(t) ≥ x(t1) and y(t) > y(t1) (43)

x(t) > x(t1) and y(t) = y(t1) (44)

412 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Therefore, the tree t is dominated by the tree t1, written t ≺ t1.

If W1 ̸= ∅, then for each t ∈W1 the inequalities (45) hold.

x(t) > x(t1) and y(t) < y(t1) (45)

Therefore, in this case, t and t1 are not comparable.

As a result, the first iteration of Procedure 3 partitions the

set of all minimum spanning trees W into three disjoint subsets

T1, Z1, and W1.

If W1 is the empty set, then Procedure 3 stops and the

problem has single class of equivalent, Pareto optimal trees:

the class T1.

If W1 is not the empty set, then again T1 is a class of

equivalent, Pareto optimal trees, because the elements of W1

and T1 are not comparable. Then Procedure 3 returns to step

1 for the next iteration. The next iteration partitions the set

W1 into three disjoint subsets T2, Z2, and W2. In this case:

• T2 is a class of equivalent, Pareto optimal trees;

• Z2 contains the elements of W1 that are dominated by

the elements of T2;

• W2 contains the elements of W1 that are not comparable

to the elements of T2.

Since W is a finite set, the procedure stops after finite number

of iterations. At the end of the proof, we will emphasize that

the procedure makes exactly as many iterations as there are

different classes of equivalent, Pareto optimal trees.

In the implementation of Procedure 3, besides helper func-

tions START(N.Adj, r) and OPEN-PRIM(X,S) given in Sec.

III, we will use the helper functions CONNECTED(N.Adj),
RESTRICT(N.Adj, c), NEW(t, T, c) and MPOT(N.Adj, r).

The function CONNECTED(N.Adj) is a predicate function

that performs depth-first search in the network, and returns

true if N is connected, and false if N is not connected.

The function RESTRICT(N.Adj, c) separates a subnetwork

from the network N . The subnetwork contains only those

edges of N that have risk strictly less than c. The function

returns the adjacency lists of the separated subnetwork.

The function NEW(t, T, c) separates the trees with minimum

risk. We assume that T is a list of trees that have risk c.
We further assume that c is the minimum currently detected

risk. The function NEW(t, T, c) checks whether t can improve

the currently minimum c. If this is the case, then we define

T = {t} and c = risk(t). Also, if risk(t) = c and t /∈ T ,

then the function NEW(t, T, c) also adds to the list T the tree

t. The function NEW(t, T, c) can be implemented based on the

Algorithm 5.

Problem 3. Let N be a connected network represented by its

adjacency lists N.Adj. Compose a list T of all Pareto optimal

trees that have minimum length.

The function MPOT(N.Adj, r) given in Algorithm 6 solves

Problem 3.

The correctness of the Algorithm 6 follows directly from

Lemma 1 and the correctness of Algorithm 3 and Algorithm

5. It is easy to verify that the running time complexity of

Algorithm 6 is evaluated to O(L(m+n lg n)), where L is the

Algorithm 5 Function NEW(t, T, c)

Input: a tree t, list of trees T with risk c
Output: updated list of trees T with risk c

1: if risk(t) < c then

2: T ← {t}
3: c← risk(t)
4: else if risk(t) = c and t /∈ T then

5: T ← T ∪ {t}
6: end if

7: return T , c

Algorithm 6 Function MPOT(N.Adj, r)

Input: adjacency lists N.Adj and root vertex r
Output: all minimum length Pareto optimal trees T , risk c

1: let T be an empty list, S be an empty stack

2: c←∞
3: PUSH(S, START(N.Adj, r))
4: while S ̸= ∅ do

5: X ← S.top
6: POP(S)
7: (t, S1)← OPEN-PRIM(X,S)
8: (T, c)← NEW(t, T, c)
9: while S1 ̸= ∅ and S1[1, 1] = ∅ do

10: (Q, t, p, d, b, v)← S1.top
11: POP(S1)
12: (T, c)← NEW(t, T, c)
13: end while

14: S ← S1 ∪ S {preserve the order of elements in S1}

15: end while

16: return T , c

number of minimum spanning trees and O(m+ n lg n) is the

complexity of the function OPEN-PRIM(X,S).

Example 4. Compose a list of all minimum spanning trees

that are Pareto optimal for the network N1 in Example 1.

Solution. We will trace the calculations of the outer while

loop of Algorithm 6.

First iteration of the loop, in lines 5 and 6 stores the

initial problem with the six-tuple X defined with Eq. (30) and

empties the stack S. In line 7 the call to the function OPEN-

PRIM(X,S) calculates (t, S1). In Example 3 we provided a

detailed proof that t = tree and S1 = S, where tree and S
are defined by Eq. (40).

After that, in line 8 the function NEW(t, T, c) edits the

current record and we get c = 10 and T = {(0, 1, 1, 3, 3)}.
In lines from 9 to 13, the inner while loop performs two

iterations and completes the set T . The current record is given

in Eq. (46).

c = 10, T = {(0, 1, 1, 3, 3), (0, 1, 1, 3, 4), (0, 1, 1, 3, 2)} (46)

The elements of the stack S1 are stored on the top of

the stack S preserving the order of the elements in S1 and

S = [X112, X12, X2], where the elements of S are defined

LASKO LASKOV, MARIN MARINOV: PARETO OPTIMAL SOLUTIONS OF THE BIOBJECTIVE MINIMUM LENGTH MINIMUM RISK 413

respectively by Eq. (37), (36), and (34). Since S ̸= ∅, the

loop proceeds to its second iteration.

Second iteration of the loop applies the function OPEN-

PRIM(X,S) to the subproblem X112 and the stack S =
[X12, X2]. It calculates the minimum spanning tree t =
(0, 4, 1, 3, 3) and the stack

S1 = [⟨Q1, (0, 4, 1, 3, 4), p1, d1, b1, 5⟩, ⟨Q2, (0, 4, 1, 3, 2),

p2, d2, b2, 5⟩],

where

Q1 = Q2 = [∅], p1 = p2 = ({∅}, {∅}, {∅}, {∅}, {∅}),

d1 = d2 = (∞,∞,∞,∞,∞),

b1 = b2 = (true, true, true, true, true).

In line 8 the function NEW(t, T, c) improves the current record

and we get c = 8 and T = {(0, 4, 1, 3, 3)}.
In lines from 9 to 13, the inner while loop again performs

two iterations and completes the set T . The resulting current

record is:

c = 8, T = {(0, 1, 1, 3, 3), (0, 4, 1, 3, 4), (0, 4, 1, 3, 2)}. (47)

Since the stack S = [X12, X2] is not empty, the loop proceeds

to its next iteration.

The outer while loop executes six more iterations. The

minimum spanning trees that are discovered by these iterations

have a risk greater than c = 8. Therefore, the current record

does not change. The function MPOT(N.Adj, r) returns the

set T and the risk c which are defined by Eq. (47).

From the correctness of the function OPEN-PRIM(X,S) it

follows that the function MPOT(N.Adj, r) has traversed all

minimum spanning trees. From the correctness of the function

NEW(t, T, c) it follows that in T are separated the minimum

spanning trees that have minimum risk.

It is easy to observe that in such a way the function

MPOT(N.Adj, r) implements the first iteration of Procedure

3. Then, from Lemma 1, in particular, it follows that T is a

class of equivalent, Pareto optimal spanning trees.

Corollary 2. Let the network N2 be obtained from the network

N with the risk of each edge changed to 1. Then the function

call MPOT(N2.Adj, r) composes the list T1 of all minimum

spanning trees of the network N .

For example, for the network N1 of Example 1, we get that

T1 = S, where S is given by Eq. (41).

Corollary 3. Let the network N3 be obtained from the network

N with both risk and length of each edge changed to 1. Then

the function call MPOT(N3.Adj, r) composes the list T2 of all

spanning trees of the network N .

Using the helper functions defined above, we will solve the

main Problem 2. The proposed solution is Algorithm 7.

The list P that results from Algorithm 7 is a solution of the

main Problem 2. This follows directly from Lemma 1 and the

fact that Algorithm 7 implements Procedure 3.

Indeed, let us denote with W the set of all spanning trees of

the network N . The first iteration of the algorithm separates

Algorithm 7 Function CPOT(N.Adj, r)

Input: adjacency lists N.Adj and root vertex r
Output: all classes of equivalent, Pareto optimal trees P

1: let P be an empty list

2: ind← true
3: while ind = true do

4: (T, c)← MPOT(N.Adj, r)
5: P ← P ∪ {T}
6: N.Adj ← RESTRICT(N.Adj, c)
7: ind← CONNECTED(N.Adj)
8: end while

9: return P

the set T from those minimum spanning trees that have

minimum risk. We denote with c the risk and with l the length

of an arbitrary tree of T .

In line 5 of Algorithm 7 the set T is included into the list

P . Then we denote W1 = {t : t ∈ W and y(t) < c}. This

implements steps from 1 to 4 of Procedure 3.

In line 6 of Algorithm 7 the function RESTRICT(N.Adj, c)
separates the subnetwork N ′ that contains only those edges of

the network N that have a risk strictly less than c. We note

that a tree t belongs to W1 if and only if it is a spanning

tree of the subnetwork N ′. Therefore, W1 ̸= ∅ if and only if

the subnetwork N ′ is connected. This proves that Algorithm 7

will execute next iteration exactly when Procedure 3 executes

its next iteration.

The while loop terminates when the subnetwork N ′ is not

connected and all K number of classes of Pareto equiva-

lent trees are discovered. Therefore, from the computational

complexity of the function MPOT(N.Adj, r) it follows that

Algorithm 7 has running time O(KL(m+ n lg n)).

The following Example 5 clarifies the proof of the correct-

ness of Algorithm 7.

Example 5. We will examine the network N5 that is composed

by 9 vertices and 14 edges, and is defined by the adjacency

lists given in (48).

N5.Adj = [⟨(2, 4, 2), (3, 8, 2)⟩,

⟨(1, 4, 2), (3, 11, 6), (4, 8, 2)⟩,

⟨(1, 8, 2), (2, 11, 6), (5, 7, 6), (6, 1, 2)⟩,

⟨(2, 8, 2), (5, 2, 6), (7, 4, 4), (8, 7, 8)⟩,

⟨(3, 7, 6), (4, 2, 6), (6, 6, 4)⟩,

⟨(3, 1, 2), (5, 6, 4), (7, 2, 4)⟩,

⟨(4, 4, 4), (6, 2, 4), (8, 14, 2), (9, 10, 4)⟩,

⟨(4, 7, 8), (7, 14, 2), (9, 9, 8)⟩,

⟨(7, 10, 4), (8, 9, 8)⟩]

(48)

Using Algorithm 7 we will compose a list of all classes of

equivalent Pareto optimal trees.

Solution. We set r = 1 and denote with W the set of all

spanning trees of the network N5.

414 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

First iteration of the while loop of the algorithm, using the

function MPOT(N.Adj, r) in line 4 calculates

T1 = {{(0, 1, 6, 2, 4, 7, 4, 4, 8),

(0, 1, 1, 7, 4, 3, 6, 4, 8)}} and c1 = 8.
(49)

We define the sets

W1 = {t : t ∈W and y(t) < c1},

Z1 = {t : t ∈W, y(t) ≥ c1 and t /∈ T1}.

Then, obviously, the three sets T1, Z1, and W1 have no

common elements and

W = T1 ∪ Z1 ∪W1. (50)

Let t0 ∈ T1 and t ∈ Z1 ∪ W1. From the correctness of

the function MPOT(N.Adj, r) it follows that x(t0) ≤ x(t).
Moreover, if t ∈ Z1, then the following two cases are possible:

• x(t0) < x(t) and y(t0) = c1 = y(t);
• x(t0) ≤ x(t) and y(t0) = c1 < y(t).

Therefore, t ≺ t0.

If t ∈ W1, then y(t0) = c1 > y(t). From the correctness

of the function MPOT(N.Adj, r) it follows that x(t0) < x(t).
Then, t0 and t are not comparable. Therefore, every tree t0 ∈
T1 is Pareto optimal, and in line 5 of the algorithm T1 is

correctly included in the list P .

We denote with l1 the length of any tree t0 ∈ T1. In the

considered example l1 = x(t0) = 37.

In line 6 the subnetwork N ′ is defined that contains only

those edges of N that have risk strictly less than c1 = 8. We

get

N ′.Adj = [⟨(2, 4, 2), (3, 8, 2)⟩,

⟨(1, 4, 2), (3, 11, 6), (4, 8, 2)⟩,

⟨(1, 8, 2), (2, 11, 6), (5, 7, 6), (6, 1, 2)⟩,

⟨(2, 8, 2), (5, 2, 6), (7, 4, 4)⟩,

⟨(3, 7, 6), (4, 2, 6), (6, 6, 4)⟩,

⟨(3, 1, 2), (5, 6, 4), (7, 2, 4)⟩,

⟨(4, 4, 4), (6, 2, 4), (8, 14, 2), (9, 10, 4)⟩,

⟨(7, 14, 2)⟩, ⟨(7, 10, 4)⟩].

(51)

We note that W1 is the set of all spanning trees of the

subnetwork N ′. This fact can be verified directly by proving

that a tree t ∈W1 if and only if t is a spanning tree of N ′.

Let t ∈ W1. Then t is a spanning tree of N and, in

particular, every vertex of N ′ is incident to an edge of t.
Furthermore, every edge of t, by the definition of W1 , has a

risk strictly less than c1 . Therefore, t is a spanning tree of

N ′. Analogously, it is verified that if t is a spanning tree of

N ′, then t ∈W1.

In line 7 it is verified that the network N ′ is connected, and

the loop proceeds to its second iteration. In particular, this

means that W1 ̸= ∅.

Second iteration of the while loop, using function call

MPOT(N ′.Adj, r) calculates

T2 = {{(0, 1, 6, 2, 4, 7, 4, 7, 7),

(0, 1, 1, 7, 4, 3, 6, 7, 7)}} and c2 = 6.
(52)

We denote with l2 the length of any tree t0 ∈ T2. In the

considered example, l2 = x(t0) = 45. Then we define the sets

W2 = {t : t ∈W1 and y(t) < c2},

Z2 = {t : t ∈W1, y(t) ≥ c2 and t /∈ T2}.

Then apparently the three sets T2, Z2 and W2 have no common

elements and

W1 = T2 ∪ Z2 ∪W2. (53)

Then the equality (50) is written in the form

W = T1 ∪ Z1 ∪ T2 ∪ Z2 ∪W2. (54)

Let t0 ∈ T2. We will prove that t0 is a Pareto optimal tree.

Let t be an arbitrary tree from the set W\T2. Then obviously

the following four cases are possible: 1) t ∈ W2; 2) t ∈ Z2;

3) t ∈ Z1 and 4) t ∈ T1. Repeating the reasoning from the

first iteration of the loop, we immediately find the following.

1) If t ∈W2, then t and t0 cannot be compared.

2) If t ∈ Z2, then t ≺ t0.

3) If t ∈ Z1 two subcases are possible:

• x(t) < l2 and then t and t0 cannot be compared;

• x(t) ≥ l2 and then t ≺ t0.

4) If t ∈ T1, then t and t0 cannot be compared because

t0 ∈W1.

Therefore, every tree t0 ∈ T2 is Pareto optimal, and in line 5
of the algorithm T2 is correctly included in the list P .

In line 6 the subnetwork N ′′ is defined that contains only

those edges of N that have risk strictly less than c2 = 6. The

resulting adjacency lists of the network N ′′ is:

N ′′.Adj = [⟨(2, 4, 2), (3, 8, 2)⟩, ⟨(1, 4, 2), (4, 8, 2)⟩,

⟨(1, 8, 2), (6, 1, 2)⟩, ⟨(2, 8, 2), (7, 4, 4)⟩,

⟨(6, 6, 4)⟩, ⟨(3, 1, 2), (5, 6, 4), (7, 2, 4)⟩,

⟨(4, 4, 4), (6, 2, 4), (8, 14, 2), (9, 10, 4)⟩,

⟨(7, 14, 2)⟩, ⟨(7, 10, 4)⟩].

(55)

As above, we find that W2 is the set of all spanning trees of

the subnetwork N ′′. In line 7 of the algorithm we find that

N ′′ is connected and the loop proceeds to its third iteration.

Third iteration of the while loop calls MPOT(N ′′.Adj, r)
and calculates

T3 = {{(0, 1, 6, 2, 6, 7, 4, 7, 7),

(0, 1, 1, 7, 6, 3, 6, 7, 7)}} and c3 = 4.
(56)

We denote with l3 the length of any tree t0 ∈ T3. In the

considered example l3 = x(t0) = 49. Then we define the sets

W3 = {t : t ∈W2 and y(t) < c3},

Z3 = {t : t ∈W1, y(t) ≥ c3 and t /∈ T3}.

Then, apparently, the three sets T3, Z3 and W3 have no

common elements and

W = T1 ∪ Z1 ∪ T2 ∪ Z2 ∪ T3 ∪ Z3 ∪W3. (57)

Every tree t0 of T3 is Pareto optimal. The proof is completely

analogous to the proof that T2 contains only Pareto optimal

trees. Therefore, T3 is correctly included in the list P .

LASKO LASKOV, MARIN MARINOV: PARETO OPTIMAL SOLUTIONS OF THE BIOBJECTIVE MINIMUM LENGTH MINIMUM RISK 415

TABLE I
CLASSES OF PARETO OPTIMAL TREES OF THE NETWORK N5

P Class Pareto optimal spanning trees (l, c)
T1 {(0, 1, 6, 2, 4, 7, 4, 4, 8) , (0, 1, 1, 7, 4, 3, 6, 4, 8)} (37, 8)
T2 {(0, 1, 6, 2, 4, 7, 4, 7, 7) , (0, 1, 1, 7, 4, 3, 6, 7, 7)} (45, 6)
T3 {(0, 1, 6, 2, 6, 7, 4, 7, 7) , (0, 1, 1, 7, 6, 3, 6, 7, 7)} (49, 4)

30 40

4

6

5

7

8

9

50 60 70

Fig. 2. The Pareto front of the biobjective spanning trees of Example 5

In line 6 is defined the subnetwork N ′′′ that contains only

those edges of N that have a risk strictly less than c3 = 4.

We get

N ′′′.Adj = [⟨(2, 4, 2), (3, 8, 2)⟩, ⟨(1, 4, 2), (4, 8, 2)⟩,

⟨(1, 8, 2), (6, 1, 2)⟩, ⟨(2, 8, 2)⟩, ⟨∅⟩,

⟨(3, 1, 2)⟩, ⟨(8, 14, 2)⟩, ⟨(7, 14, 2)⟩, ⟨∅⟩].

(58)

As above, we find that t ∈ W3 if and only if t is a spanning

tree of N ′′′. In line 7 we find that N ′′′ is not connected and

therefore W3 = ∅. Also, the algorithm stops.

In this way, it is proved that the list P contains all classes

of Pareto optimal trees.

The classes of Pareto optimal trees of the network N5 are

given in Table I. In the examined case, each class of equivalent

Pareto optimal trees has two elements.

In order to illustrate graphically the obtained result in

Example 5, we compose the list W of all spanning trees of

the network N5. In this case their number is 662 which can

be easily achieved using the incidence matrix. The list W can

be composed using Corollary 3. To each spanning tree t we

correspond a point At with Cartesian coordinates (x(t), y(t)).
In the plane is obtained the set

Γ = {A(x(t), y(t)) : t ∈W}.

The set Γ has 58 points because the equivalent spanning trees

are mapped to the same point on the plane.

In Figure 2, the points that illustrate the classes of equivalent

Pareto optimal trees are in gray color, and the rest are in

black color. More precisely, the points A(37, 8), B(45, 6), and

C(49, 4) are in gray, and the remaining points of Γ are in

black.

V. CONCLUSION

In this paper we propose an exact method that constructs

the complete Pareto front of the minimum length minimum

risk spanning trees problem. It is composed of the solution

of two problems. For the solution of the first problem, the

method calculates the list of all minimum spanning trees with

respect of the length criterion. For the solution of the second

(main) problem, it constructs the complete Pareto front itself,

using the solution of the first problem to compose each of the

classes of equivalent Pareto optimal trees.

The Algorithm 3 proposes an extension of the Prim’s algo-

rithm that allows us simultaneously to find a single minimum

spanning tree and the complete list of all remaining minimum

spanning trees, defined by their corresponding subproblems.

This modification also uses Algorithm 2 that defines a branch-

ing that adds to a queue all subproblems that can complete the

current tree. Because of the Fibonacci heap implementation of

the min-priority queue abstract data type, the complexity of the

algorithm that solves the first problem is O(m+ n lg n).

In order to solve the main problem considered, we use

the solution of the helper problem that gives us Algorithm

6 that composes a list of all Pareto optimal trees that have

minimum length. The computational complexity of the final

solution given in Algorithm 7 is O(KL(m + n lg n)), where

K is the number of classes of Pareto optimal trees and L is

the number of minimum spanning trees with respect to the

length criterion.

REFERENCES

[1] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical

society, vol. 7, no. 1, pp. 48–50, 1956.
[2] R. C. Prim, “Shortest connection networks and some generalizations,”

The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.
doi: 10.1002/j.1538-7305.1957.tb01515.x

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. doi: 10.1007
/ bf01386390

[4] C. F. Bazlamaçcı and K. S. Hindi, “Minimum-weight spanning tree
algorithms a survey and empirical study,” Computers & Operations

Research, vol. 28, no. 8, pp. 767–785, 2001. doi: 10.1016/S0305-
0548(00)00007-1

[5] P. C. Pop, “The generalized minimum spanning tree problem: An
overview of formulations, solution procedures and latest advances,”
European Journal of Operational Research, vol. 283, no. 1, pp. 1–15,
2020. doi: 10.1016/j.ejor.2019.05.017

[6] S. Steiner and T. Radzik, “Computing all efficient solutions of the biob-
jective minimum spanning tree problem,” Computers & Operations Re-

search, vol. 35, no. 1, pp. 198–211, 2008. doi: 10.1016/j.cor.2006.02.023
[7] A. C. Santos, D. R. Lima, and D. J. Aloise, “Modeling and solving the

bi-objective minimum diameter-cost spanning tree problem,” Journal of

Global Optimization, vol. 60, pp. 195–216, 2014. doi: 10.1007/s10898-
013-0124-4

[8] de Sousa, Ernando Gomes, Santos, Andréa Cynthia, and Aloise, Dario
José, “An exact method for solving the bi-objective minimum diameter-
cost spanning tree problem,” RAIRO-Oper. Res., vol. 49, no. 1, pp. 143–
160, 2014. doi: 10.1051/ro/2014029

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms, 3rd ed. Cambridge, Massachusetts: The MIT Press,
2009. doi: 10.5555/1614191

[10] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 596–615, July 1987. doi: 10.1145/28869.28874

[11] B. Korte and J. Vygen, Spanning Trees and Arborescences. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2018, pp. 133–157. ISBN 978-
3-662-56039-6

416 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

