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Abstract—During the COVID-19 pandemic, traditional de-
mand prediction models drastically failed mostly due to altered
consumption patterns. Accurate forecasts are essential for ensur-
ing grid stability.

This paper analyzes the performance of the Temporal Fusion
Transformer (TFT) model during the COVID-19 pandemic aim-
ing to build resilient demand prediction models. Through detailed
analysis, we identify which features may contribute to improved
performance during large-scale events such as pandemics. During
lockdowns, consumption patterns change significantly, leading to
substantial errors in existing demand prediction models.

We explore the impact of features such as mobility and special
day considerations (e.g., lockdown days) on enhancing model
performance. We demonstrate that periodic updates on a monthly
basis make the model more resilient to changes in consumption
patterns during future pandemics.

Moreover, we show how improvements in prediction accuracy
translate to real-world benefits, such as enhanced grid stability
and economic advantages, including reduced energy waste. Ad-
ditionally, we discuss the implications for energy-critical infras-
tructure, considering disruptive scenarios like future pandemics.

I. INTRODUCTION

A
s the integration of renewable energy sources into power
grids intensifies, and the accuracy of energy demand

predictions becomes increasingly crucial. Effective energy
management requires that energy production aligns closely
with demand to minimize the losses often associated with over-
production. Therefore, reliable and precise demand forecasts
are essential for optimally adjusting production levels.

Moreover, extreme situations like global pandemics can
drastically change consumption patterns overnight, underscor-
ing the importance of having adaptable and responsive demand
prediction models. These models must quickly incorporate
new data and adjust to shifting consumption dynamics to
ensure energy efficiency and grid stability. By doing so, they
help maintain a balance between production and demand,
preventing inefficiencies and promoting sustainable energy
use. Moreover, the discussion on the trustworthiness and cer-
tification of AI systems and, in particular, of neural networks
as in [1] is essential to move forward with a fast changing
technological landscape.

Maintaining the alignment between production and demand
is critical for grid stability, as deviations can lead to significant
issues, including a drop in the grid frequency below 50 Hz,
potentially causing grid collapse or separation. In scenarios
where demand exceeds supply, gas-powered peaker plants are
typically utilized to provide the necessary additional capac-
ity. However, some of this demand can also be mitigated
through the use of pumped-storage hydroelectricity, which
contributes stored, often renewable, energy back into the grid.
In situations where it is not feasible to meet high demand
exclusively through increased production, load shedding [2]
is implemented as a controlled process to prevent total grid
failure. This involves selectively disconnecting parts of the
grid—such as entire neighbourhoods—to reduce the overall
electrical load, ensuring that the grid does not exceed its
capacity.

Accurate forecasting models are indispensable to grid man-
agement, particularly in anticipating and responding to demand
surges. This capability becomes even more crucial during un-
foreseen critical events, such as pandemics, which can abruptly
and drastically alter usage patterns. Effective models must
rapidly adapt to new consumption patterns, providing timely
forecasts that reflect current consumption trends to maintain
grid stability. The pertinence of machine learning methods in
the study of energy efficiency in particular pandemic scenarios
gains much from the data collected in the most recent COVID-
19 global pandemic. The intersection of energy efficiency
and artificial intelligence (AI) has gained unprecedented sig-
nificance, as the crisis reshaped global energy consumption
patterns and highlighted the urgency of sustainable practices.
The most recent machine learning methods emerged as key
enablers in adapting to these changes.

This paper discusses how AI-driven solutions can be in-
strumental in optimizing energy use during the pandemic, en-
suring efficient operations while addressing the environmental
challenges exacerbated by the health crisis. By examining
AI’s role in mitigating energy consumption in a time of
fluctuating demand and promoting sustainable practices in the
face of adversity, this analysis illuminates the critical role of
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technological innovation in navigating the energy challenges
posed by COVID-19 taking into consideration mobility. We
have a closer look at the mobility data in the context of a
pandemic, based on the data collected during the COVID-19
incidence between 2020 and 2022. Particularly, we look at the
number of unique connections to the cell tower in Slovenia
measuring how much people migrate. The consumption curve
can describe the behaviour of people in regard to mobility.
Taking into account that Telecom data is usually expensive,
we compare the relevance of that data for the forecasting
model in relation to the usage of labels for special days (e.g.,
considering lockdown days as holidays).

The research question addressed in this paper regards if the
input of mobility data is comparable to the input of special
days, particularly during a pandemic scenario learning from
the experience (and data) from the COVID-19 pandemic. In
particular,

• Can we improve model accuracy and performance during
an impactful large-scale event (such as a pandemic) with
additional features (e.g. mobility and other special day
features)?

• Can we make the model more resilient by periodically
updating on a monthly basis

• How do the improvements in prediction accuracy reflect
in the real world? Benefits to grid stability, benefits to
economic aspects as less energy is wasted etc.

• What should energy Critical Infrastructure (CI) take into
account in disruptive scenarios like future pandemics?

The main contribution of this paper is a new methodology
based on the Temporal Fusion Transformer (TFT), and its
initial evaluation, which shows how past energy consumption,
weather forecast and energy-saving features can impact the
prediction of energy consumption.

Results will be presented in Section III-A, where we demon-
strate the model’s performance in predicting Serbian national
consumption. This analysis will validate and illustrate how the
initial version of our model performs against the established
EKC model. Following this comparison, we will build upon
this model in subsequent subsections, focusing on data from
Slovenia.

The COVID-19 pandemic has significantly altered con-
sumption patterns due to increased home stays, underscoring
the need to integrate mobility data into forecasting models
for enhanced accuracy. This approach is supported by [3],
demonstrating the effectiveness of incorporating mobility fea-
tures from publicly available Google data into their predic-
tive models, significantly improving forecast precision. While
authors in [3] were able to demonstrate this phenomenon
across multiple states and continents using mobility data for
the US and EU, our study is limited to Slovenia due to data
constraints. However, we anticipate that this phenomenon will
be applicable to other cultures and states, as observed in
the cited paper. In line with these findings, our methodology
involves deriving a "mobility factor" from data provided by a
Slovenian national telecommunication provider. By analyzing
the number of unique connections to cell towers, we can infer

mobility patterns: fewer cell connections typically indicate that
residents are staying home while connecting to multiple cells
suggests movement to different locations. The total number of
unique connections across all cells in a given area reflects the
overall mobility, serving as a valuable predictor in our models.

We enhance model performance during periods of rapid
consumption changes (e.g., lockdowns) by incorporating a
"special day flag." This flag is activated on weekends, holidays,
or days with enforced curfews/lockdowns. The advantage
of this flag lies in its simplicity and availability for day-
ahead forecasting scenarios, providing a straightforward yet
effective method to account for unusual consumption patterns.
This paper discusses the implemented state-of-the-art deep
learning models, with particular focus on the TFT approach
[4]. Moreover, we build on decision tree-based models such as
XGBoost [5] and CatBoost [6]. Linear regression was used as
a baseline, and the energy data was sourced from ELES and
EKC, represented in this paper by the respective coauthors.
The models are further refined by including mobility data
as an additional input, which is expected to bolster their
accuracy, particularly during periods like the pandemic when
typical consumption patterns are disrupted. By adapting these
advanced models to incorporate new, relevant data inputs,
we propose a new standard in forecasting precision, ensuring
optimal energy management even in the face of significant
behavioural shifts induced by global crises.

This research work builds on [7] and [8], in the context of
CIs as addressed by the Horizon Europe project SUNRISE
building resilience in cases of unforeseen events, such as
pandemics. It particularly focuses on the needs of CIs (like
railway, water distribution operators, hospitals, etc.), however,
it is clearly evident that the main dependency of all CIs is
electricity. Ensuring stable electricity availability (stability of
the network) is dependent on many factors, the most prominent
being patterns of energy consumption and in recent years,
renewable energy production (typically solar production).

II. METHODOLOGY

A. Temporal Fusion Transformer and self attention

Transformer-based models have been shown to surpass
traditional architectures like recurrent neural networks (RNNs)
and long short-term memory networks (LSTMs) in perfor-
mance, making them an attractive option for a wide range
of applications. The methodology we consider in this study
reapplies the TFT approach [9], leveraging the transformers’
architecture and self-attention mechanisms inherent to this ar-
chitecture. The TFT model accommodates the input of various
variables using a variable selection network (VSN), which
assesses the significance of each input. This system enhances
the influence of more impactful inputs while diminishing
the effects of less relevant and noisy data. Based on these
evaluations, inputs are combined and subsequently processed
further. The merged inputs are sent in a LSTM, used to make
sense of temporal relations between the time stamps recurring
to past and future covariates. The subsequent phase applies
the static enrichment layer, which is particularly beneficial
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when dealing with numerous categories, such as price, carbon
emissions, and load demand. This layer enhances the model’s
handling of such diverse classes. Following this, the temporal
self-attention mechanism comes into play, where the model
prioritizes (i.e. focuses attention on) the most critical time
positions. This mechanism is crucial for identifying both long-
term and short-term dependencies within the observed and
known time-varying inputs. In the training phase, the model
minimizes the loss function by tweaking the weights, which
in the VSN amplifies the impact of significant features while
suppressing the noisy ones. Similarly, the attention mechanism
concentrates on time positions that have a substantial effect on
predictions. A clear example is in energy data analysis, where
the model gives precedence to past weekends to enhance the
accuracy of weekend consumption forecasts.

To train the models we’ve used Optuna, a hyper parameter
optimization framework [10], and for the loss function we
utilised Quantile loss [11].

TABLE I
TABLE OF HYPER-PARAMETERS FOR THE 24H MODEL

Hyper-parameter Value

attention head size 32
dropout 0.28
hidden size 92
hidden continuous size 64
learning_rate 0.001
batch_size 64
lstm_layers 2
max_encoder_length 24

The optimal hyper-parameter set for our 24h model is
shown in Table I. Note that for the larger 168h model, more
parameters are required. Please refer to the original TFT
paper [9] for those values. Given these hyper-parameters total
number of trainable parameters was roughly 900,000.

B. Data Collection and Processing

The study utilizes historical weather and energy data that
have been publicly shared by Transmission System Operators
(TSOs) in two countries, Slovenia and Serbia, in the context
of the SUNRISE project. This data collection underpins the
research, providing a foundational dataset for the TFT-based
analysis in this paper. The research employs historical weather
measurements sourced from the open Meteostat platform [12]
and solar irradiation data from Open Meteo [13]. These
sources provide freely available data for research purposes,
with the exception of historical forecasted weather data, which
was procured in bulk from OpenWeatherMap [14] for the cities
of Belgrade and Ljubljana. This forecasted data is crucial for
accurate evaluations as weather predictions are updated several
times a day, and using historical forecasts helps to prevent data
leakage.

Specifically from the Open Meteo database, only shortwave
radiation data was utilized as it was not available from other
sources. This dataset is accessible via the Open Meteo API
and is licensed under the open-source Creative Commons 4.0

license. It includes comprehensive meteorological data for
Slovenia, detailing parameters such as temperature, relative
humidity, dew point per square meter, apparent temperature,
precipitation levels, rainfall, snowfall, snow depth, atmo-
spheric pressure, surface pressure, cloud coverage, wind speed,
wind direction, wind gusts, and notably, shortwave radiation.

Conversely, the Meteostat dataset comprises measured me-
teorological data for Serbia, which includes temperature, dew
point temperature, actual humidity, precipitation, snowfall,
wind direction, wind speed, peak wind gusts, pressure, daily
sunshine duration, and weather condition codes. This dataset
is pivotal for the Serbian energy consumption forecast tool
and the benchmarking forecasting model. It is also publicly
accessible and can be retrieved via API.

The electricity consumption dataset encompasses historical
data on national electricity usage. This data was sourced from
the ENTSO-E Transparency Platform [15] and enhanced with
data from EKC. They provided baseline modelled forecasts
for energy based on demand/consumption in megawatts (MW)
with an hourly resolution. This comprehensive data collection
allows for highly accurate comparisons, facilitated by using
the same training cutoff date. Training and cutoff dates are
specified in each experiment separately. If not, the training
start date was the start of 2017 for "long" models and 2019
for the rest. The 2019 cutoff is related to the mobility data
cutoff date.

Additionally, mobility data was supplied by Telekom
Slovenije, the national telecommunications provider in Slove-
nia. This dataset tracks the daily number of unique connections
to each cell within the network, excluding connections from
hosted users. Each cell tower is divided into multiple cells,
and the number of unique connections per cell serves as an
indicator of mobility. Essentially, the more frequently users
move and change cell towers, the higher the total count of
unique connections, which in turn provides a measure of the
mobility factor.

Figure 1 illustrates the variations in the mobility factor from
2019 to 2023, with annotations for the three lockdown periods.
The data indicates that the reductions in mobility during the
summer holidays are similar to those observed during the first
lockdown. Notably, the initial lockdown had the most profound
impact on mobility, with each subsequent lockdown having a
progressively lesser effect; the third lockdown, in particular,
shows a minimal influence on mobility patterns.

To properly analyse the performance of the models during
the times of altered consumption patterns, we plan to focus
on the year 2020. All the data used was sampled at 1 sample
per hour and was normalised using z-score normalisation.

C. Implementation

To develop the service and train the model, we utilized
Python 3.10, supplemented by several key libraries aimed at
data manipulation and mathematical operations. Specifically,
we used Numpy [16] for numerical computations, Pandas [17]
for data analysis, Matplotlib [18] for plotting graphs, and
Scipy [19] for additional scientific computations. For the deep
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Fig. 1. Mobility between 2019 and 2023

learning components, we employed PyTorch [20], a popular
framework for deep learning applications. Alongside, we used
PyTorch Forecasting [21], an extension of PyTorch designed
specifically for time series forecasting. This combination of
tools provided a robust environment for developing complex
predictive models efficiently.

D. Data Challenges

Efforts have been concentrated on understanding the basic
processes involved in each of the use cases, especially in
the context of the COVID-19 pandemic, which presented
unprecedented challenges to urban management worldwide.
The pandemic severely disrupted daily routines and behaviors
as individuals who were exposed to or contracted the virus
had to isolate themselves, inhibiting their ability to perform
normal activities. Communities enforced social distancing
measures to mitigate transmission risks. These widespread
disruptions contributed to significant societal and economic
impacts, including a substantial loss of life. The adjustments
made during the pandemic have highlighted the importance of
adaptive strategies in managing public health crises.

The dataset preliminarily consist of aggregated and fully
anonymized data concerning people’s activity levels, as
recorded by the telecommunication provider. This primarily
includes the number of individuals present in a specified area
(e.g., a municipality) at a given time. The data is aggregated
both spatially (to the level of municipalities) and temporally
(to hourly intervals), ensuring that it is impossible to extract
any privacy-sensitive information. This approach is similar to
the methodologies used in the Google COVID-19 Community
Mobility Reports and Apple COVID-19 Mobility Trends,
which provided public access to mobility data during the
pandemic. However, these sources are no longer updated and
suffered from limited regional coverage and resolution. The

current dataset aims to fill these gaps by providing more
detailed and continuously updated information.

E. Evaluation

To assess the performance of our models, we utilized both
the Mean Absolute Error (MAE) and the Mean Absolute
Percentage Error (MAPE) as metrics. MAPE is particularly
valuable for its intuitive interpretation, making it easier to
understand forecasting accuracy. Our primary focus was on
predicting load demand, a standard benchmark that enables
comparison with other methodologies. Additionally, we ex-
tended our analysis to include predictions on energy prices
and carbon emissions, demonstrating the versatility and broad
applicability of our models in various contexts. This compre-
hensive evaluation helps highlight the models’ effectiveness
across different domains.

MAE = (
1

n
)

n
∑

i=1

|yi − xi| (1)

The Mean Absolute Error (MAE) is beneficial for quan-
tifying the actual prediction errors, which can be particu-
larly useful when analyzing individual signals. However, for
comparing performance across different models or tasks, the
Mean Absolute Percentage Error (MAPE) 2 tends to be more
suitable. This metric, expressed as a percentage, provides an
intuitive measure of a model’s accuracy.

MAPE =
1

n

n
∑

t=1

∣

∣

∣
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xi

∣

∣

∣

∣

(2)

III. RESULTS

To demonstrate that the TFT model can improve upon
current state-of-the-art methods, we will compare it to EKC
and ELES in-house models currently used in production
settings. Next, we will analyze the performance of the TFT
model during the first COVID-19 lockdown in Slovenia and
investigate the effects of additional features on the TFT, as well
as on gradient boosting methods like XGBoost and CatBoost.
Finally, we will perform a detailed analysis of the feature
importance of the TFT model.

A. Comparing TFT and EKC models

First, we will demonstrate how our base model compares
against the EKC, to predict Serbian national consumption. The
evaluation was performed between 1.1.2022 and 15.1.2023,
and the model was trained on data between 1.1.2019 and
31.12.2022. In Table III we present the comparison between
the XLAB TFT model and the EKC model. As we can observe
in Table II, we have used future forecasted weather as well as
a bigger input window size of 168h instead of 24h. Here we
demonstrate that by increasing the amount of information we
managed to gradually improve the model’s performance.

In Table III we can can further explore the results above
in Table II, but in higher detail. Both the MAPE and MAE
metrics improved by up to 20%, accompanied by a reduction
in standard deviation and a lower maximum error.
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TABLE II
PERFORMANCE COMPARISON FOR 2022 BETWEEN EKC BASELINE AND

XLAB TFT MODEL

Model MAPE [%] Forecasted Window
Weather Size [h]

EKC_baseline 2.34 No 24
XLAB_TFT 1 2.18 (-7 %) No 168
XLAB_TFT 2 1.93 (-17 %) Yes 24
XLAB_TFT 3 1.87 (-20 %) Yes 168

TABLE III
MAPE AND MAE COMPARISON BETWEEN EKC BASELINE AND FOR BEST

PERFORMING TFT VARIANT

Metric MAE MAPE [%]

Model EKC XLAB EKC XLAB

mean 92.24 73.58 (-20 %) 2.34 1.87 (-20 %)

std 91.00 67.53 2.075 1.65
max 3540.00 860.00 29.60 20.05

By extending the input window size to 168 hours, we
achieved improved results, however, this also led to an increase
in training time. In the next section, we will utilise the 24h
model, as it offers a better ratio between time to converge and
performance.

B. Comparing Iterative TFT and ELES Models

In the case of ELES, the specific training cut-off date was
not known, making direct comparisons potentially unfair since
one model might have more recent knowledge updates than
the other. To address this issue, we developed an iterative
model that updates its knowledge on a monthly basis, ensuring
a fairer comparison. The model was trained on data from
1.1.2018 up to 31.12.2019. The last 14 days of this period
were used for validation during the training loop. Subsequent
months were used for testing, progressively incorporating
more data into the training set.

In regards to the iterative model, Table IV shows the com-
parison with the ELES in-house model and the improvements
we achieve with the approach proposed in this paper. As
we can observe in the Table for 2020, the ELES model
outperformed our approach, whereas, for 2021 and 2022, we
were able to improve their approach by up to 10.59 % on
average. The reason for the decreased performance in 2020
could be attributed to multiple factors where one of them
could be related to the model not having enough data and of
course big change in consumption patterns due to the COVID-
19 pandemic.

Overall, an iterative approach inherently results in a more
resilient model. When new consumption patterns emerge,
they will be automatically incorporated into the next model
iteration. An example is expressed in the data of the COVID-
19 pandemic. Since no lockdowns or similar events were
present in the training data, we cannot expect our model to
make accurate predictions during the first COVID-19 lock-
down. Even if we do not pass any information about mobility
or lockdown, the model should adapt to new consumption

TABLE IV
MAE AND MAPE METRICS FOR ITERATIVE LEARNING (2020-2022)

Year Metric MAE MAPE [%]

model ELES XLAB ELES XLAB

2020 mean 41.77 43.26 (+3.57%) 2.81 2.92 (+3.91%)
std 37.94 40.37 2.56 2.72

max 689.00 730.00 30.66 29.55

2021 mean 43.46 37.34 (-13.87%) 2.73 2.37 (-13.1%)

std 42.82 34.26 2.58 2.10

max 319.00 300.00 21.57 20.00

2022 mean 43.62 40.07 (-8.14%) 2.92 2.69 (-7.88%)

std 44.32 35.75 3.21 2.49

max 1214.00 340.00 91.97 47.22

patterns in the next iteration. Alternatively, we could assume
that the lockdown day consumption pattern is similar to that
of a weekend or a holiday. Setting a flag that would treat
lockdown days as holidays would not confuse the model as
much as it would without such a flag. In the next Section III-C,
we will include this feature to inspect its impact.

C. Model Performance During COVID-19 Lockdown

In this section, we will utilise the very same models as in
Section III-B and dive deeper into analysis during COVID-19
lockdowns in 2020 for Slovenia. By adding new features, we
demonstrate how we can improve the prediction capabilities
of existing models.

The Table V is calculated based on Table VI. It demonstrates
that the relative difference between model predictions during
lockdown and non-lockdown periods. The first two models,
ELES and XLAB base long are the same models as in Table
IV. The remaining models are similar but include additional
features; for example, XLAB specday long incorporates a
special day feature. The models base, mobility, and mobility

specday follow a similar pattern but use less training data,
specifically starting from January 1, 2019—approximately one
year less than the other models. Consequently, this may result
in poorer performance for these models, as they were trained
with roughly 14 months of data by the first lockdown.

In Figure V we can observe a noticeable decrease in perfor-
mance during the first COVID-19 lockdown. After removing
the outliers, the change is roughly 32.66%, which is in line
with the literature in [3] observing a similar impact. While
the analysis of the change is not relevant, it demonstrates a
pattern that models utilising either mobility or special days
have lower differences i.e. performing better during the first
lockdown.

Most relevant is the analysis of Table VI, where we are fo-
cusing on the first column lockdown 1 presenting performance
during the first lockdown period in Slovenia. The interval can
be visually observed in Figure 1.

The best-performing model is XLAB spec day long. Based
on the comparison with its baseline, it yielded a relative
improvement of roughly 18.10% and 10.13% compared to
the model that was trained on data from 2019 onward. The
improvement compared to the ELES model was less than 1%.
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TABLE V
RELATIVE DIFFERENCES BETWEEN MAPE DURING LOCKDOWN

NO-LOCKDOWN FOR VARIOUS MODELS IN 2020

Model lockdown 1 no-lockdown Relative

MAPE [%] MAPE [%] Difference

ELES 3.55 2.68 32.46%
XLAB base long 4.31 2.65 62.64%
XLAB specday long 3.53 2.71 30.26%
XLAB base 3.95 2.91 35.74%
XLAB mobility 3.90 2.95 32.20%
XLAB mobility specday 3.65 2.94 24.15%

TABLE VI
MAPE FOR DIFFERENT MODELS UNDER VARIOUS LOCKDOWN

CONDITIONS WITH RELATIVE DIFFERENCES

Model Metric lockdown 1 lockdown 2 no-lockdown

MAPE [%] MAPE [%] MAPE [%]

ELES mean 3.55 (-17.63%) 2.38 (+3.48%) 2.68 (+1.13%)
std 3.07 2.12 2.44

max 16.42 15.45 30.66

XLAB mean 4.31 (0.00%) 2.30 (0.00%) 2.65 (0.00%)

base std 3.38 2.09 2.48
long max 18.55 13.40 29.55

XLAB mean 3.53 (-18.10%) 2.38 (+3.48%) 2.71 (+2.26%)
specday std 2.67 1.93 2.54
long max 16.10 12.28 27.53

XLAB mean 3.95 (-8.35%) 2.39 (+3.91%) 2.91 (+9.81%)
base std 3.14 2.07 2.90

max 18.85 12.28 30.53

XLAB mean 3.90 (-9.51%) 2.70 (+17.39%) 2.95 (+11.32%)
mobility std 3.15 2.14 2.59

max 18.24 14.91 27.94

XLAB mean 3.65 (-15.31%) 2.25 (-2.17%) 2.94 (+10.94%)
mobility std 2.81 1.78 2.64
specday max 13.97 12.23 28.74

Their model performed impressively well for 2020, as we
demonstrated in Table IV. Comparison to the ELES model is
not relevant here, as we are focusing on assessing the impact
of adding features in a controlled environment. As mentioned
the only difference between the XLAB models are features.

With that in mind, when further observing Table VI, a
pattern is observed demonstrating that models utilising either
mobility or special day performed better compared to those
not using it.

Another thing to notice is that the best performance was
actually during the second lockdown, which can be observed
over all models. This could be attributed to various facts,
where patterns could have stabilised by that point and become
more predictable. Additionally, models were updated with new
consumption patterns by then.

The last observation from Table VI is that the mobility and
special day features did not significantly enhance performance
on a typical non-COVID-19 day. To confirm this observation,
we will perform an extensive study of a variety of features in
the next Section III-D.

D. Effect of Additional Features to Model Performance

In this section, we utilize linear regression, XGBoost, and
CatBoost models to assess feature importance across a variety

of input features. The results were evaluated and averaged for
the years 2020 to 2023, and are presented in Table VII.

The first experiment, "None", does not include any addi-
tional features besides the signal itself. The next two experi-
ments contain the signal and date-time features, along with off-
time features such as weekends and holidays. Together, these
features form a base, which is used in subsequent experiments
to study the impact of individual features.

The first subgroup of experiments includes base features
and weather features. As shown in Table VII, adding future
weather improves performance for more complex models,
where experiments utilising base and future weather yielded
the best overall results for XGBoost and CatBoost.

The next group of experiments examines the addition of
mobility data to the base set of features. For linear regression
models, the mobility group outperformed the weather features
group, whereas, for more complex models (XGBoost and
CatBoost), the performance was worse compared to using
weather features. Overall, more complex models performed
better than the simple linear regression model. Here, we
have to keep in mind, that errors are a lot higher for linear
regression.

TABLE VII
EFFECT OF ADDING NEW FEATURES BETWEEN 2020 AND 2023.

Experiment linreg xgb cbm

Name MAPE[%] MAPE[%] MAPE[%]

none 6.20 (+0.00%) 5.46 (+0.00%) 5.13 (+0.00%)
datetime 6.66 (+7.31%) 3.71 (-32.07%) 3.37 (-34.28%)
base 5.67 (-8.60%) 3.60 (-34.01%) 3.39 (-33.85%)
base_weather 5.44 (-12.35%) 3.69 (-32.36%) 3.36 (-34.43%)
base_weatherfut 5.63 (-9.22%) 3.51 (-35.67%) 3.17 (-38.29%)

base_mob 5.42 (-12.63%) 3.67 (-32.87%) 3.36 (-34.58%)
base_specday 5.64 (-9.01%) 3.64 (-33.40%) 3.36 (-34.49%)
base_mobspecday 5.31 (-14.38%) 3.67 (-32.80%) 3.31 (-35.45%)
base_mobfuture 6.94 (+11.95%) 3.67 (-32.86%) 3.31 (-35.52%)
all_specday 5.40 (-13.00%) 3.64 (-33.37%) 3.23 (-37.01%)
all_mob 5.38 (-13.19%) 3.63 (-33.49%) 3.23 (-37.06%)
all_mobfuture 7.31 (+17.79%) 3.63 (-33.47%) 3.23 (-37.03%)
all 6.06 (-2.27%) 3.64 (-33.42%) 3.19 (-37.73%)

*base stands for date-time and holiday features used together

In the final set of experiments, combining all features,
including special days, mobility, and future mobility, resulted
in overall solid performance. The complex models, XGBoost
and CatBoost, showed consistent improvement and leveraged
the extensive feature set effectively. This indicates that the
integration of a diverse range of features allows these advanced
models to extract and utilize information more effectively,
enhancing their prediction accuracy. Notably, the models in
the "all" group demonstrate that these models performed quite
well on average, achieving significant reductions in error rates
compared to the baseline models. Even though the best results
were achieved using future weather data, it makes sense to
include data related to mobility, if available.

In the next Section, we focus on the effect of given features
during the COVID-19 lockdown period in 2020.
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E. Effect of Additional Features on Model Performance during

COVID-19

To evaluate the impact of additional features during the
COVID-19 pandemic, we must analyze their effects specifi-
cally during lockdown periods. Let’s first examine Table VIII
presenting a performance of the models during normal or non-
lockdown days. In comparison to the findings in Table VII
(from the previous Section), we observe a consistent pattern:
models incorporating mobility and special day features offer
limited performance improvements.

TABLE VIII
EFFECT OF ADDING NEW FEATURES FOR NON-LOCKDOWN DAYS IN 2020

(MAPE)

Experiment linreg xgb cbm

Name MAPE[%] MAPE[%] MAPE[%]

none 6.83 (0.00) 5.99 (0.00) 5.55 (0.00)
datetime 9.81 (43.70%) 4.22 (-29.54%) 3.68 (-33.82%)
base 6.94 (1.61%) 3.99 (-33.31%) 3.78 (-31.82%)
base_weather 6.25 (-8.43%) 4.14 (-30.87%) 3.69 (-33.52%)
base_weatherfut 6.78 (-0.68%) 3.93 (-34.37%) 3.50 (-37.00%)

base_specday 6.95 (1.90%) 3.99 (-33.31%) 3.76 (-32.36%)
base_mob 6.83 (0.14%) 4.32 (-27.84%) 3.94 (-29.07%)
base_mobfuture 12.16 (78.10%) 4.33 (-27.68%) 3.91 (-29.57%)
base_mobspecday 6.85 (0.32%) 4.32 (-27.86%) 3.93 (-29.29%)
all_specday 6.12 (-10.35%) 4.12 (-31.23%) 3.69 (-33.18%)
all_mob 6.77 (-0.81%) 4.25 (-28.93%) 3.75 (-32.38%)
all_mobfuture 12.59 (84.47%) 4.29 (-28.32%) 3.79 (-31.75%)
all 6.95 (1.89) 4.25 (-29.13%) 3.78 (-31.99%)

*base stands for date-time and holiday features used together

We must keep in mind that approximately 68.2% of our data
represents normal, non-lockdown days, with the remainder
being lockdown days. This context is crucial for interpreting
model performance. Similar to our observations with TFT,
we face the challenge of limited data (only one year), which
may affect prediction accuracy. Nonetheless, patterns forming
across many models and feature combinations should still
yield relevant results to be able to confirm or not confirm
our hypothesis.

Table IX confirms a significant drop in model performance
during the first lockdown compared to normal days, aligning
with the results from Table V. Furthermore, linear regression
was the least accurate of the models, making it almost unuseful
in some cases. While we cannot expect lockdown prediction
accuracy to match non-lockdown periods, our goal should be
to minimize this performance reduction.

What we can notice, is that experiments including mobility
data and special day data do contribute to improvements
to better performance across all models and combinations.
Several factors support this observation. The first one is that all
best-performing experiments for every model include mobility
or special days. For the second one, let us focus on the
CatBoost model. Based on the results, it is the best-performing
model.

Before we analyse the results more in-depth. It is worth
clarifying that only experiments incorporating special days and
mobility futures contain information on possible big changes
in consumption patterns. While the ’mobility future’ scenario
demonstrates potential gains with perfect mobility forecasts,

TABLE IX
EFFECT OF ADDING NEW FEATURES FOR THE FIRST LOCKDOWN DAYS IN

2020 (MAPE)

Experiment linreg xgb cbm

Name MAPE[%] MAPE[%] MAPE[%]

none 8.33 (0.00) 8.19 (0.00) 7.57 (0.00)
datetime 8.68 (4.17%) 6.67 (-22.61%) 5.86 (-18.56%)
base 8.20 (-1.58%) 6.98 (-14.81%) 6.78 (-10.44%)
base_weather 7.43 (-10.81%) 7.25 (-11.58%) 6.99 (-7.64%)
base_weatherfut 8.41 (1.06%) 6.99 (-14.75%) 6.36 (-15.93%)
base_specday 6.98 (-16.21%) 6.98 (-14.82%) 6.17 (-18.50%)
base_mob 8.34 (0.19%) 7.03 (-14.15%) 6.40 (-15.48%)
base_mobspecday 6.92 (-16.90%) 7.03 (-14.15%) 5.64 (-25.53%)

base_mobfuture 12.23 (46.89%) 6.99 (-14.75%) 5.49 (-27.40%)

all_specday 6.14 (-26.25%) 7.30 (-10.97%) 5.78 (-23.66%)
all_mob 8.29 (-0.44%) 7.21 (-11.97%) 6.68 (-11.80%)
all_mobfuture 14.49 (73.93%) 7.18 (-12.38%) 6.65 (-12.12%)
all 13.47 (61.70%) 7.21 (-11.97%) 5.95 (-21.34%)

*base stands for date-time and holiday features used together

this is not realistically achievable. For the CatBoost model
best-performing experiment was the ’mobility future’, since it
is not realistically possible, it is presented in italic.

Overall, we can notice that CatBoost models containing
either mobility, special day or both performed better compared
to those not utilising these features. However, it’s important
to stress that this advantage is not observed for non-lockdown
days.

When analysing the effect of individual features, based on
the results we could argue that special day feature has a bigger
impact than mobility. Of course, in a world where we would
be able to perfectly predict mobility, the best feature would
be (future) mobility.

Across the tables VII, IX, and VIII, we observe a pattern:
models containing all features often under-perform compared
to the best-performing combinations. This suggests the poten-
tial impact of the ’curse of dimensionality’. With too many
features and limited data, the model may struggle to identify
meaningful relationships.

More importantly, the pattern observed is similar to that
of Section III-C, where we have demonstrated that models
utilising either mobility or special day feature, on average
performed much better during the first COVID-19 lockdown,
compared to those not utilising. Similar conclusions can be
made on effect during normal days, where their effect is
present but does not have a big impact, in some cases even
causing a curse of dimensionality.

F. Explainability and Feature Importance

To address the explainability part of the model, we provide
average feature importance from the iterative model for the
past three years as seen in Figure 2. The encoder features
represent information from the past that is already known,
while the decoder features represent information from the
future that we are trying to predict.

The encoder features (in blue) in Figure 2 demonstrate
the dominance of real load in shaping end results within the
encoder. The second most important feature is mobility, which
additionally confirms our observations. Date-time features and
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Fig. 2. Encoder feature importance

modelled solar radiation follow in importance. Individual
modelled weather features exhibit relatively minor impact;
however, their aggregate influence remains significant due to
their large number.

The decoder features (in orange) in the same Figure 2 reveal
a similar trend to encoder features, particularly regarding the
most influential factors. Notably, modelled weather features
appear to exert a stronger impact within the decoder context.

While it is expected for target and date-time features to
be most important, it was less expected to see a big impact
of measured solar irradiation on predictions. This could be
explained by an increasing amount of PV installed. In Slove-
nia, solar energy accounts for less than 10% of total energy
(more precisely 7.58% as of 2023 [22]. This growth in solar
power could be making accurate solar irradiation data even
more important for accurate predictions.

IV. DISCUSSION

The obtained results show, that mobility data and special
day features do improve the results during the first lockdown
period. This was demonstrated for deep learning models
utilising an iterative approach, as well as gradient boosting
methods such as XGBoost and CatBoost. In the case of the
iterative approach, the performance gains were almost 20 %
for the model containing special days only and the model
with no context regarding the COVID-19 status, supporting
the findings in [3].

On the other hand, we have demonstrated the opposite
for normal days, non-COVID-19 days, where the addition
of mobility and special day features did not significantly
improve the results. Even though no significant improvement
was present, feature importance for multiple runs in 2020
suggests that mobility contains a lot of relevant information
being ranked the second most important in the feature im-
portance plot in Figure 2. The information it provides might
be extracted elsewhere from weather and energy consumption
patterns. The overall TFT model, when applied to load demand
prediction, outperforms current state-of-the-art approaches. We
have demonstrated that the iterative model is able to ingest new
consumption patterns, thus improving its performance.

These results verify the hypothesis proposed in the context
of COVID-19 pandemic data, demonstrating that model ac-
curacy and performance can be improved during large-scale
events. To address the more subjective research question of
what energy critical infrastructure (CI) should consider in
disruptive scenarios, recent experiences and best practices
from the pandemic indicate that the primary focus should be on
understanding the impact of demand changes on a transmission
system (TS). It is essential for a CI operator, specifically a
TSO, to always be prepared for any unforeseen scenarios,
such as future pandemics, to maintain operational continuity
(flawless, uninterrupted core business activities). At the same
time, it is crucial to uphold activities related to grid resilience,
employee health and safety, cybersecurity measures, and other
vital operations.

The severe disruptions caused by the COVID-19 pandemic
in the daily routines and behaviours of consumers led to a
change in the shape of the daily consumption diagram. For
instance, before COVID-19 the daily peak of demand was
in the evening, however during COVID-19 the daily peak
shifts to the morning. The previous change has a big influence
on the adequacy assessment of a TS. Namely, the adequacy
analysis or adequacy assessment of a TS is the most important
analysis of a TS which answers the question: ‘’Is there going
to be enough energy in the system in each situation including
failures of generators”. Based on this analysis, the levels of
necessary spinning and non-spinning reserves are determined
which are crucial for the secure operation of a TS. An incorrect
adequacy analysis leads to an increase in the percentage of
loss of load probability (LOLP), which can further lead to
significant economic damage. The economic damage when the
energy is not served (ENS) is usually estimated with the Value
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of Lost Load (VoLL).
VoLL represents the economic value associated with not

being able to supply electricity to consumers during periods
of high demand or supply shortages. It reflects the cost to
consumers of being without electricity for a certain period
and includes factors such as lost production, inconvenience,
and potential damage to equipment or goods. VoLL is usually
expressed in currency per MWh and can vary depending on
factors such as the type of consumer, the time of day, and the
duration of the outage. In the European Union, the specific
values for VoLL can vary between countries and regions
due to differences in electricity market structures, consumer
preferences, and economic conditions. Typically, VoLL values
in the EU range from around C1,500 to C23,000 per MWh
[23], but they can be higher in some cases, particularly for
critical services or industries where the cost of downtime is
very high. For comparison, wholesale market prices are usually
at the level between 50-100 C/MWh. Other key aspects to be
considered are discussed in [24].

The conventional approach takes typical daily load patterns
when conducting an adequacy analysis. The results of this
research hint at the issues that energy CIs must consider
when preparing resilience strategies for disruptive scenarios
based on recent experience and good practices in the latest
pandemic. They show that the typical daily load patterns can
be interrupted for a significant period in the case of large-scale
events such as COVID-19. Therefore, to decrease LOLP the
CI (i.e. TSOs) should consider the use of untypically daily
load patterns while conducting an adequacy analysis. These
load patterns can be generated by the model described in this
research.

Regarding further analysis and discussions for future dis-
ruptive scenarios, TSOs could also consider using industrial
and residential power consumption predictions as encoder and
decoder features (for total consumption forecast), taking into
account that these two consumption categories could perform
significantly differently in specific situations. Currently, most
of the TSOs do not have separate metering information for
industrial and residential power consumption in real-time
(usually they get data for residential consumption at the end
of the month), as well as their forecasts, although these values
could be estimated well.

Also, the number of prosumers or active customers (solar
installations "behind the meter”) is increasing rapidly, and
taking into account that analysis shows solar irradiation as
a very important feature, future models could also consider
the installed power capacity of active customers/prosumers
(at least on yearly level) as a feature (because it is chang-
ing/growing over the time, and solar generation has the impact
on the measured net consumption).

V. CONCLUSIONS

The goal was to develop a resilient model, that enables us
to make better predictions during times of large-scale events
that have a significant effect on energy demand prediction
models. In this work we show how we can use the mobility and

lockdown flag to improve model accuracy and performance
during impact large-scale events, taking as a basis the data
collected during the COVID-19 pandemic.

We achieve these improvements with additional features,
particularly by considering special day features. The biggest
impact of these features can be observed in the first lockdown
period, whereas for normal days, improvements were harder
to notice. Overall it makes sense to utilise both mobility and
special day functions, if available. They offer insights in case
of large-scale events, even if they are not common. When
taking into account the cost of individual features, mobility
data may turn out to be relatively expensive, here special day
features are much more cost-efficient.

Moreover, the periodic monthly update of the model shows
great benefit for the predictions computed and the resilience
of the models, as we have seen that the effect of COVID-19
was hardly noticeable in the second lockdown.

It was particularly clear, in the cases of EKC and ELES,
that the improvements in prediction accuracy have signif-
icant real-world benefits. During the COVID-19 pandemic,
shifts in daily consumption patterns, such as peak demand
moving from evening to morning, impacted the adequacy
assessment of transmission systems (TS). Accurate forecasts
help ensure there is enough energy to meet demand, reducing
the LOLP and preventing economic damage from unserved
energy (ENS). Better predictions lead to optimal levels of
spinning and non-spinning reserves, enhancing grid stability.
Economically, accurate predictions minimize wasted energy,
saving costs associated with VoLL.

The investigation of larger, more complex versions of the
TFT is crucial as the industry shifts from 1-hour to 15-
minute resolution quadrupling the input parameters. We have
demonstrated that using a 168h input window improves its
performance, but again increases the number of input features
by up to seven-fold. Both changes result in a much bigger
and more complex model, highlighting a key area for future
research on performance impacts.

Research is increasingly focusing on foundational time-
series models based on transformers. Authors of research work
in [25], [26], [27] and [28] focus on zero-shot forecasting
of univariate time-series. Inspired by breakthroughs in natu-
ral language processing with models like Gemini, GPT and
Claude, time-series prediction, similarly aims to predict the
most probable next value based on prior input. Referenced
models often outperform TFT in certain applications, showing
promising results. These methods do not directly apply to
our work, as we are using multivariate time-series, whereas
the papers are focusing on univariate time-series. A potential
implementation approach for multivariate foundational models
could be composed out of multiple foundational models, each
fine-tuned for a specific task, then fusing the outputs to create
a similar architecture to the TFT. At the time of writing, no
studies have been published on this specific approach, but
further research in this direction is anticipated. Overall, these
approaches will play a significant role in efficiently managing
the operations of CIs.
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