
Comparing Lazy Constraint Selection Strategies in

Train Routing with Moving Block Control

Stefan Engels∗ and Robert Wille∗†

∗Chair for Design Automation, Technical University of Munich (TUM), 80333 Munich, Germany
†Software Competence Center Hagenberg GmbH (SCCH), 4232 Hagenberg, Austria

Email: {stefan.engels, robert.wille}@tum.de

Abstract—Railroad transportation plays a vital role in the
future of sustainable mobility. Besides building new infrastruc-
ture, capacity can be improved by modern train control systems,
e.g., based on moving blocks. At the same time, there is only
limited work on how to optimally route trains using the potential
gained by these systems. Recently, an initial approach for train
routing with moving block control has been proposed to address
this demand. However, detailed evaluations on so-called lazy
constraints are missing, and no publicly available implementation
exists. In this work, we close this gap by providing an extended
approach as well as a flexible open-source implementation that
can use different solving strategies. Using that, we experimentally
evaluate what choices should be made when implementing a
lazy constraint approach. The corresponding implementation and
benchmarks are publicly available as part of the Munich Train
Control Toolkit (MTCT) at https://github.com/cda-tum/mtct.

I. INTRODUCTION

S
USTAINABLE transportation systems are becoming in-

creasingly important. Because of this, the demand for

railway transportation is constantly increasing. Since build-

ing new tracks to increase capacity is resource- and time-

consuming, train control systems should also be utilized to

increase capacity.

Because trains cannot operate on sight due to their long

braking distances, such systems are used to prevent collisions.

Most notable systems are the European Train Control Sys-

tem (ETCS), the Chinese Train Control System (CTCT), or the

Positive Train Control (PTC) [1] as well as Communication

Based Train Control (CBTC) for metro systems [2]. While

these systems differ in detail, the main concepts are very

similar. New specifications allow trains to follow each other

more closely on existing infrastructure and at the same level

of safety. In the ideal case, trains can operate under a so-called

moving block control, which provides enormous potential for

increased capacity.

However, the most efficient specification does not help

without methods to optimize train movements that use this

potential. Respective optimization tasks using classical (i.e.,

“old”) specifications are well studied [3]. At the same time,

there is only a little work on routing under moving block

control [4], [5], none of which is available open-source.

Since the number of constraints preventing collisions is

enormous and, at the same time, many of them are not needed

to describe an optimal solution, a lazy approach is used. First,

the problem is optimized without these conditions. During

the solving process, violated constraints are iteratively added

until a feasible (hence, optimal) solution is obtained. There

are different strategies on which (lazy) constraints to add

in each iteration. However, to the best of our knowledge,

they have not previously been compared, and it is hard to

do corresponding evaluations ourselves due to the lack of

available implementations.

In this work, we aim to improve upon the aforementioned.

The resulting source code is included in the open-source

Munich Train Control Toolkit (MTCT) available on GitHub

at https://github.com/cda-tum/mtct. The solving strategy and

other parameters can be chosen flexibly. This allows for

experimental evaluations, in which we analyze what strategy

should be implemented using a lazy approach in train routing

under moving block. Additionally, the proposed model extends

previous solutions to allow more general timetabling requests

and can model train separation more precisely, especially in

scenarios close to stations where a train might occupy multiple

(short) train segments simultaneously.

The remainder of this work is structured as follows: Sec. II

reviews the relevant principles of train control systems, Sec. III

describes the considered routing task and summarizes previous

work as well as our contribution, and Sec. IV and V present

the proposed approach(es). Finally, Sec. VI contains an exper-

imental evaluation, and Sec. VII concludes this paper.

II. TRAIN CONTROL PRINCIPLES

Classically, a railway network is divided into fixed blocks.

Using Trackside Train Detection (TTD) hardware, e.g., Axle

Counters (AC), it is determined whether a particular block is

occupied or not. Because of this, the resulting blocks are also

called TTD sections. A following train can only enter a block

once it is fully cleared by the previous train.

Example II.1. Consider two trains following each other on a

single track as depicted in Fig. 1a. Train tr2 can only move

until the end of TTD2. It cannot enter TTD3 because it is

still occupied and, hence, might have to slow down in order

to be able to come to a full stop before entering the occupied

block section.

Modern control systems allow for more efficient headways.

A train equipped with Train Integrity Monitoring (TIM) can

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 585–590

DOI: 10.15439/2024F3041

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 585 Thematic Session: Computational Optimization

TTD1 TTD2 TTD3 TTD4

AC AC AC ACtr2

H
tr1

H

(a) Classical Block Signaling

tr2

Hd
tr1

Hd

(b) Moving Block Signaling

Fig. 1: Schematic drawings of different signaling principles

report its safe position to the control system. Hence, no

hardware is needed to safely separate trains. Then, the network

no longer has to be separated into fixed blocks. In the best case,

trains can follow at absolute braking distance. Hence, shorter

headway times are possible. This so-called Moving Block sig-

naling has, e.g., been specified as an extension within ETCS

Level 2 [6], which is also formerly known as Level 3 [7].

Example II.2. In contrast to Ex. II.1, consider a moving block

control implemented in Fig. 1b. Because trains operate at

the ideal absolute braking distance, tr2 can move up to the

actual end of tr1 (minus a little buffer). In particular, it can

already enter what has been TTD3 previously. Hence, trains

can follow each other more closely.

III. PROBLEM DESCRIPTION AND CONTRIBUTIONS

In this work, we focus on moving block control systems.

This section briefly provides the problem description of a

corresponding routing task, reviews the current state of the

art, and motivates our work.

A. Train Routing under Moving Block Control

Train routing is the task of determining when and where

trains are driving on the respective network, given timetabling

constraints. This includes the choice of specific tracks and

corresponding timings. More formally, it is defined using the

following notation:

T : A set of trains and its relevant properties (e.g., length,

maximal speed, acceleration, braking curves).

N : A railway network including vertices V and (directed)

edges E as described in [8].

S: A set of stations, where each station S ∋ S ⊆ E is a

subset of edges of the network N .

D(tr): A set of demands for every train tr ∈ T consisting of

– a weight w(tr) ≥ 0 of importance,

– an entry node v
(tr)
in ∈ V together with a desired entry

interval [t
(tr)
in , t

(tr)
in],

– an exit node v
(tr)
out ∈ V together with a desired exit

interval [t
(tr)
out , t

(tr)
out], as well as,

– a set of stations S
(tr)
i ∈ S together with

∗ an interval [α
(tr)
i , α

(tr)
i] in which the train should

arrive at the station,

∗ an interval [δ
(tr)
i , δ

(tr)

i] in which the train should

depart from the station, and

∗ a minimal stopping time ∆t
(tr)
i ≥ 0.

Having this notation, the goal is to determine an optimal

routing. In this setting, optimality is defined as minimizing

the (weighted) exit times such that all schedule demands are

obeyed and the constraints by a moving block control system

are satisfied.

B. State of the Art and Contributions

Train routing and related timetabling tasks under classi-

cal train control have long been considered and are well-

studied [3]. On modern control systems using so-called hybrid

train detection, routing is considered in algorithms to design

optimal (virtual) section layouts by using SAT [9], A* [10], or

Mixed Integer Linear Programming (MILP) [11], [12]. While

the arising questions are similar, these solutions do not utilize

the full potential of moving block.

To the best of our knowledge, [4] is the first approach that

considers optimal routing of trains specifically under moving

block control. They describe a MILP formulation to solve a

routing problem similar to the one considered in this paper.

Say s describes the position and t the time; one could say that

their formulation models the function t(s) at discrete positions

given by vertices of the network. Since trains cannot pass

each other on a given edge, this seems to be a reasonable

simplification while still being able to model at a decent level

of accuracy.

However, the number of constraints to ensure that trains

keep enough distance and do not crash into each other is

rather big. At the same time, most of these are unnecessary

because trains operating at different network parts will not

collide even without explicit constraints. Because of this, one

can first optimize without them. If this yields a collision-

free solution, the problem is solved. Otherwise, constraints

preventing collisions from arising need to be added during the

solving process as so-called lazy constraints. By doing this,

the same optimal solution is obtained; however, only a small

number of the original constraints is considered. This can be

beneficial, especially for large models, as discussed in their

follow-up work [5].

At the same time, this previous approach comes with some

downsides:

• Both trains and stations are single points without length.

The authors claim this is not a problem because the length

can be integrated as a buffer in the headway. However,

especially in station environments, this might not be

feasible. For example, some stations separate a platform

into sections. A long train might occupy all of a platform,

whereas two shorter trains can stop simultaneously (in

different sections of the platform). Those scenarios cannot

be modeled using the previous approach.

• There are different strategies to select which (lazy)

constraints to add. This constitutes a trade-off: adding

only a few lazy constraints in each iteration is quickly

possible. However, many iterations might be needed until

a collision-free solution is reported. On the other hand,

simultaneously adding many lazy constraints increases

the time spent in every iteration but, at the same time,

586 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

likely reduces the number of iterations needed. In [5], no

evaluation of selection strategies for lazy constraints is

provided.

• The implementation of the solution is not publicly avail-

able. This prevents us from doing corresponding evalua-

tions and restricts the proposed solution’s applicability.

Overall, this motivates an alternative MILP formulation,

which properly considers train separation even on shorter

edges by considering the respective train lengths as well as

incorporating more flexible timetable requests. At the same

time, we aim to shed light on which strategy for lazy con-

straint selection might be best by conducting a corresponding

evaluation. Finally, we provide a flexible open-source imple-

mentation at https://github.com/cda-tum/mtct, thus allowing

the community to access such methods.

IV. MILP MODEL

This section presents the MILP model motivated in

Sec. III-B. For reasons of comprehensibility, we limit our-

selves to the relevant variables and constraints. The interested

reader can find the complete model in the open-source imple-

mentation available at https://github.com/cda-tum/mtct.

A. Symbolic Formulation

To model the approach, we need variables describing each

train’s routes and relevant timings. As discussed in Sec. III-B,

we follow the basic strategy by [4] with slight extensions to

incorporate the actual train lengths by tracking each train’s

rear point. Hence, we include the following variables:

• x
(tr)
e ∈ {0, 1} denotes whether a certain edge e ∈ E is

used by train tr ∈ T .

• a
(tr)
v ∈

[

0, t
(tr)
out

]

is the time at which the front of train

tr ∈ T arrives at v ∈ V .

• d
(tr)

v ∈
[

0, t
(tr)
out

]

is the time at which the front of train

tr ∈ T departs from v ∈ V .

• d(tr)v ∈
[

0, t
(tr)
out

]

is the time at which the rear of train

tr ∈ T departs from v ∈ V , hence, tr has entirely left

the previous edge.

The speed is included by extending the vertices accordingly.

Let P
(tr)
v ⊆ [0, v

(tr)
max] be a finite set of discretized velocities

(paces) a train tr ∈ T might have at v ∈ V 1. The extended

graph has a (directed) edge ϵ
(tr)
e,p1→p2 ∈ E(tr) connecting

(u, p1) and (v, p1) for e = (u, v) ∈ E, p1 ∈ P
(tr)
u , and

p2 ∈ P
(tr)
v if, and only if, it is possible for train tr ∈ T

to accelerate/decelerate from p1 to p2 while traveling on e.

For every such extended edge ϵ
(tr)
e,p1→p2 , the variable

• y
(tr)
e,p1→p2 ∈ {0, 1} denotes whether train tr ∈ T uses the

corresponding extended edge.

Example IV.1. Consider again the setting of Ex. II.2, where

two trains follow each other. For presentation purposes, we

choose the segment to consist of three vertices. In Fig. 2, the

1For this work, we have used a uniform discretization of 10km/h as these
values can be displayed by a standard speed indicator [13, Signal Zs 3].

tr2 tr1

v0
e1

v1
e2

v2

d(tr1)v0
= 10

d
(tr1)
v0

= 0

a(tr1)v0
= 0

d(tr1)v1
= 120

d
(tr1)
v1

= 100

a(tr1)v1
= 55

d(tr1)v2
= 170

d
(tr1)
v2

= 160

a(tr1)v2
= 160

0

10

0
0

10y
(tr1)
e1,10→0 = 1

y
(tr1)
e1,0→0 = 0

y
(tr1)
e2,0→10 = 1

y
(tr1)
e2,0→0 = 0

P (tr1)
v0

= {0, 10} P (tr1)
v1

= {0} P (tr1)
v2

= {0, 10}

d(tr2)v0
= 104

d
(tr2)
v0

= 96

a(tr2)v0
= 96

d(tr2)v1
= 139

d
(tr2)
v1

= 131

a(tr2)v1
= 131

d(tr2)v2
= 190

d
(tr2)
v2

= 180

a(tr2)v2
= 180

0

10

20

0

15

0

10
y
(tr2)
e1,10→15 = 1

y
(tr2)
e2,15→10 = 1

P (tr2)
v0

= {0, 10, 20} P (tr2)
v1

= {0, 15} P (tr2)
v2

= {0, 10}

Fig. 2: Example Setting for Symbolic Formulation

extended graph for tr1 is drawn above and the one for tr2
below the track. Values of relevant variables are written at

the fitting places. Furthermore, note that x
(tr1)
e1 = x

(tr1)
e2 =

x
(tr2)
e1 = x

(tr2)
e2 = 1.

B. Constraints

Of course, the above variables must be constrained to

represent valid train movements. In the following, we present

the most important constraints. We leave out some technical

constraints needed to connect variables according to their

desired purpose for ease of understanding. Furthermore, we

might formulate some constraints in its logical, rather than

linear, form. In either case, adding and reformulating the

missing constraints using big-M and possibly some helper

variables is straightforward. They are irrelevant to presenting

this work’s crucial concepts and ideas.

1) Valid Train Movements: Each train tr ∈ T has to travel

on a valid path from its entry to exit. Hence,
∑

e∈δ+
(

v
(tr)
in

)

x(tr)
e =

∑

e∈δ−
(

v
(tr)
out

)

x(tr)
e = 1 (1)

where δ+(·) and δ−(·) denote outgoing and incoming edges

respectively. Moreover, a flow-conserving constraint (which

also considers the respective velocity) has to be fulfilled at

every other vertex. Thus, for every v ∈ V −
{

v
(tr)
in , v

(tr)
out

}

and

p ∈ P
(tr)
v we have

∑

ϵ∈δ−(v,p)

y(tr)ϵ =
∑

ϵ∈δ+(v,p)

y(tr)ϵ (2)

within the velocity extended graph. To prevent cycles, the in-

and out-degrees are furthermore bound by one, respectively.

2) Travel Times: Denote by τ (tr)
(

ϵ
(tr)
e,p1→p2

)

∈ R≥0 the

minimal time it takes train tr ∈ T to traverse ϵ
(tr)
e,p1→p2 ∈ E(tr)

of the velocity-extended graph. For details on how these

may be calculated, we refer to [4, Fig. 3], but it suffices

STEFAN ENGELS, ROBERT WILLE: COMPARING LAZY CONSTRAINT SELECTION STRATEGIES IN TRAIN ROUTING WITH MOVING BLOCK CONTROL 587

to consider them as an arbitrary oracle. Analogously, let

τ (tr)
(

ϵ
(tr)
e,p1→p2

)

∈ R≥0 ∪ {∞} denote the maximal time. In

this case, it is noted that a train might be allowed to stop on

some of the edges, in which case ∞ is possible. Again, we

refer to [4, Fig. 4].

Hence, assuming e = (u, v), we have

a(tr)v ≤ d
(v)

u + τ (tr)
(

ϵ(tr)e,p1→p2

)

+M ·
(

1− y(tr)e,p1→p2

)

(3)

a(tr)v ≥ d
(v)

u + τ (tr)
(

ϵ(tr)e,p1→p2

)

−M ·
(

1− y(tr)e,p1→p2

)

(4)

where M ≥ 0 is large enough (e.g., M = t
(tr)
out)2 to ensure

that the constraint is only activated if the respective edge is

used.

Finally,

d
(tr)

v ≥ a(tr)v ∀v ∈ V, tr ∈ T (5)

and a train can only stop at a vertex (i.e., “̸=” in Eq. (5)) if

it has velocity 0, i.e.,

d
(tr)

v ≤ a(tr)v +M ·
∑

ϵ∈δ(v,0)

y(tr)ϵ . (6)

3) Track Release: In contrast to [4], we do not model a

train as a single point. This allows for more accurate train

separation in the model. For this, we need to relate the end

of a train to its front. Let R = {e1, . . . , ek} ⊆ E be a route

starting in v, such that
∑k−1

i=1 l(ei) < l(tr) ≤
∑k

i=1 l(ei)
3.

Similarly to above, let τ
(tr)
λ→µ(ϵ) and τ

(tr)
λ⇝µ(ϵ) be the minimal

and maximal travel time from point λ to µ on the velocity

extended edge ϵ ∈ E(tr), where 0 ≤ λ ≤ µ ≤ l(ϵ). Then, the

following bounds have to hold

x(tr)
e = 1∀e ∈ R ⇒ d(tr)u1

≥ d
(tr)

uk
+

∑

ϵ∈Ek

y(tr)ϵ · τ
(tr)
0→s(ϵ) (7)

x(tr)
e = 1∀e ∈ R ⇒ d(tr)u1

≥ a(tr)vk
−

∑

ϵ∈Ek

y(tr)ϵ · τ
(tr)
s→lk

(ϵ) (8)

assuming ei = (ui, vi), s := l(tr) −
∑k−1

i=1 l(ei), lk := l(ek),
and Ek being the set of all edges connecting uk to vk in the

velocity extended graph.

While we chose to write the logical form in Eq. (7) and (8)

for better readability, they can easily be reformulated into

linear constraints using big-M. We do not add upper bounds

because the objective of small headways pushes the variables

down wherever needed.

4) Headway: Reference [4] models train headways on sin-

gle edges, which is precise if edges are rather long. However,

the braking distance considered might range multiple edges,

particularly close to stations. We use and proceed similarly to

Sec. IV-B3 to model this more precisely. However, the length

of the train is replaced by its braking distance.

On each edge e ∈ E, we introduce binary variables

otr1≻tr2
e ∈ {0, 1}, which is 1 if, and only if, tr1 ∈ T

2Note that Eq. (4) is only added if τ (tr)
(

ϵ
(tr)
e,p1→p2

)

≤ t
(tr)
out because

otherwise bounding by the maximal travel time has no effect.
3In general we denote by l(·) the length of an object

follows tr2 ∈ T on edge e. The respective headway constraints

relating a of the following and d of the preceding train are

then analog to Eq. (7) and (8); however, with the additional

conditions that the following train has a specific velocity and

the respective ordering variable is one.

Similarly, one can proceed with trains traveling in opposite

directions. Then, however, the respective track segments be-

have like a TTD section, and a train’s moving authority can

only enter a track segment once the opposing train has entirely

left it.

5) Timetable: Of course, also the timetable demands D(tr)

have to be satisfied. Reference [4] can bind the respective

timing variables directly since the exact stopping points are

predefined. While, in our case, this is true for the entry and exit

nodes, each stop at station S
(tr)
i ∈ S could be at a particular

set of vertices, say V
(tr)
Si

. For every such v ∈ V
(tr)
Si

, we add a

respective binary variable stop
(tr)
i,v ∈ {0, 1}. Then,

stop
(tr)
i,v = 1 ⇒ a(tr)v ∈ [α

(tr)
i , α

(tr)
i], (9)

stop
(tr)
i,v = 1 ⇒ d

(tr)

v ∈ [δ
(tr)
i , δ

(tr)

i], and (10)

stop
(tr)
i,v = 1 ⇒ d

(tr)

v − a(tr)v ≥ ∆t
(tr)
i . (11)

Again, these logical constraints can easily be reformulated into

linear constraints using big-M.

C. Objective

Finally, the goal is to enable every train to leave the network

as early as possible. If a train leaves after its predefined earliest

departure time, it is caused by the routing choice, not the

respective request. We minimize this difference according to

the given weights, which we normalize to one. Thus, the

objective is given by

min
1

∑

tr∈T w(tr)
·
∑

tr∈T

w(tr) ·
(

d(tr)vout
− t

(tr)
out

)

. (12)

V. LAZY HEADWAY CONSTRAINTS

Note that there are many headway constraints of the

form described in Sec. IV-B4, more precisely of or-

der O
(

|T | ·
∑

tr∈T

∑

v∈V |P
(tr)
v |

)

= O
(

|T |2 · |V | · |P|
)

,

where |P| denotes the average number of velocity extensions.

For instances with many trains on more extensive networks,

the time to explicitly add all these constraints to a model

is substantial. However, most of these constraints are not

explicitly needed because they describe a scenario far from

optimal. This motivates a lazy approach.

For this, we optimize using all except the headway con-

straints. The obtained solution could violate some of the

requirements. If so, one has to add a set of violated constraints

to the model and reoptimize, whereby the solver can use

information from the previous iteration to warm start. This

procedure is continued until the solution is feasible and, hence,

optimal.

However, the question arises of which constraints to add in

each iteration. A given conjectured solution determines each

588 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Fig. 3: Runtime of Different Lazy Constraint Strategies

train’s route and velocity profile uniquely. Hence, at most

O
(

|T | ·
∑

tr∈T |X (tr)|
)

= O
(

|T |2 · |X |
)

conditions need to

be checked, where |X (tr)| denotes the number of edges used

by a respective train and, again, |X | the respective average.

In fact, the number is even smaller because only trains whose

routes intersect need to be compared.

Note that the headway constraints are transitive in the sense

that if tr1 follows tr2 at a safe distance at a given point,

then it also safely follows all trains that might have passed

before tr2. In particular, it suffices to check (and possibly add)

only headways regarding the immediate preceding train. This

reduces the number of checked constraints to O
(

|T | · |X |
)

.

Finally, one could either add all checked constraints (to give

as much information as possible to the solver) or only such

constraints that are violated (to not overload the solver with

unnecessary information). In the extreme case, one could even

only add one violated constraint and stop checking further

constraints immediately. In the first case, one is likely to only

need a few iterations. Conversely, a first violated constraint

might be found very quickly; however, more iterations are

needed in the end. The best strategy might depend on the

specific problem and is worth evaluating.

VI. IMPLEMENTATION AND EVALUATION

The approach presented above has been implemented, made

publicly available as open-source, and used to evaluate lazy

constraint selection strategies. It is included in the Munich

Train Control Toolkit available at https://github.com/cda-tum/

mtct and under active development. In this section, we describe

both the resulting implementation as well as the evaluations

and results obtained.

A. Implementation

We implemented the model described in Sec. IV using the

C++ API of Gurobi [14]. The resulting tool allows the user

to choose between different strategies for lazy constraints to

be added in each iteration by controlling various parameters.

Lazy constraints are implemented using the (custom) callback

framework provided by Gurobi.

In the current version, the tool allows to, e.g., compare the

following selection strategies:

• “Full Model:” The entire model is explicitly constructed

in advance and passed to the solver. No callback is used.

• “All Checked Lazy Constraints:” In case of infeasibility,

all O
(

|T |2 · |X |
)

constraints corresponding to overlap-

ping routes are added in each iteration regardless if they

are violated or not.

• “All Adjacent Train Constraints:” Similarly, all checked

constraints are added in case of infeasibility. However,

only O
(

|T | · |X |
)

conditions corresponding to adjacent

trains directly following each other are considered.

• “Adjacent Violated Constraints:” Again, only constraints

corresponding to adjacent trains are considered. This

time, however, only violated constraints are passed to the

solver in each iteration. Conditions already fulfilled are

ignored but might be added to a later callback.

• “Only First Violation:” As soon as one violated con-

straint is found, only this one is added, and the callback

is immediately aborted without checking the remaining

conditions.

B. Evaluation

We tested these different strategies on an Intel(R) Xeon(R)

W-1370P system using a 3.60GHz CPU (8 cores) and 128GB

RAM running Ubuntu 20.04 and Gurobi version 11.0.2. As

benchmarks, we use the railway networks and schedules

from [11, Appendix A]. Additionally, we create random

timetables of up to 50 trains on two of the networks, including

the Munich S-Bahn Stammstrecke. Since optimizing up to the

millisecond is unreasonable, we stop at a proven optimality

gap of 10 seconds.

The results are provided in Fig. 3. On the x-axis, we plot

the runtimes in seconds. Note that we chose a logarithmic

scale for better readability. The y-axis provides the fraction

of samples that were solved in the given time or faster. The

STEFAN ENGELS, ROBERT WILLE: COMPARING LAZY CONSTRAINT SELECTION STRATEGIES IN TRAIN ROUTING WITH MOVING BLOCK CONTROL 589

lines are monotonously increasing by design. Generally, if a

line is over/left of another line, the corresponding algorithm

performs faster/better.

We present two plots to avoid distorting the analysis because

of infeasible instances. On the left, we included instances

known to be feasible; on the right, we included instances

proven to be infeasible. In the latter case, the time plotted

corresponds to the time it took the proposed approach to prove

infeasibility.

Clearly, the numbers confirm that a lazy approach is ben-

eficial: one should not explicitly specify the entire model in

advance. The only exception to this is that only adding one

constraint at a time performs even worse, which becomes

especially clear when considering infeasible examples.

Among the other strategies, no one clearly outperforms the

others. At the same time, there seems to be a slight advantage

of only considering adjacent trains directly following each

other instead of all possible pairs of trains. However, it is

questionable if this effect is significant.

Overall, it seems reasonable to only add violated constraints

corresponding to adjacent trains. However, other strategies

might also be beneficial depending on the context in which

the algorithm is used since the observed benefit is only minor.

Having the proposed approach available as open-source will

allow adding and evaluating further strategies easily.

VII. CONCLUSIONS

In this work, we considered train routing within a moving

block environment. We introduced a MILP formulation that

can more accurately (than existing solution methods) model

train separation on layouts with short track segments by

incorporating the actual train length. Moreover, we discussed

how a lazy constraint approach can be implemented using

different strategies in each callback. Various such strategies

have been implemented open-source and are available at

https://github.com/cda-tum/mtct. The user can control the pa-

rameters affecting the solving process.

An experimental evaluation confirms that the solution pro-

cess benefits from the lazy approach as long as multiple

constraints are added simultaneously. On the other hand, there

seems to be no significant difference between some of the

tested strategies. At the same time, the open source imple-

mentation allows for the use of different strategies depending

on the instance, and it is not necessary to decide on the one

and only best approach in this setting.

Previous work focuses on the optimal design of other

modern train control systems relying on so-called hybrid train

detection. These systems combine the efficiency of moving

block with the practicability of classical train control [15].

Design automation methods in this context must both route

trains and place so-called virtual subsections. However, both of

these tasks alone are already hard, and optimization methods

in this context can highly benefit if routing is considered

separately [11]. While the details are out of scope for this

paper, it is reasonable to believe that optimal routes under

moving block are good choices in this case. In particular,

we aim to include this work (and possible future work on

routing under moving block control) as a first step within an

optimization pipeline for automated planning of train control

systems with hybrid train detection. Again, future work will

also be made available open-source as part of the Munich Train

Control Toolkit mentioned above.

REFERENCES

[1] J. Pachl, Railway Signalling Principles: Edition 2.0, 2021. [Online].
Available: http://dx.doi.org/10.24355/dbbs.084-202110181429-0

[2] L. Schnieder, Communications-Based Train Control (CBTC). Springer
Berlin Heidelberg, 2021. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-62876-8

[3] R. Borndörfer, T. Klug, L. Lamorgese, C. Mannino, M. Reuther, and
T. Schlechte, Eds., Handbook of Optimization in the Railway Industry,
2018. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-72153-8

[4] T. Schlechte, R. Borndörfer, J. Denißen, S. Heller, T. Klug,
M. Küpper, N. Lindner, M. Reuther, A. Söhlke, and W. Steadman,
“Timetable optimization for a moving block system,” Journal of Rail

Transport Planning & Management, vol. 22, 2022. [Online]. Available:
http://dx.doi.org/10.1016/j.jrtpm.2022.100315

[5] T. Klug, M. Reuther, and T. Schlechte, “Does laziness pay off? -
a lazy-constraint approach to timetabling,” in 22nd Symposium on

Algorithmic Approaches for Transportation Modelling, Optimization,

and Systems (ATMOS), 2022. [Online]. Available: http://dx.doi.org/10.
4230/OASIcs.ATMOS.2022.11

[6] Siemens, Bombardier, Mermec, Network Rail, and Thales, “Deliverable
D4.2 moving block enhancements,” in X2Rail-5 Completion of

activities for Adaptable Communication, Moving Block, Fail Safe

Train Localisation (including satellite), Zero on site Testing, Formal

Methods and Cyber Security. Shift2Rail, 2023. [Online]. Available:
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-5

[7] Siemens, Hitachi Rail STS, Bombardier, Thales, Network Rail,
Alstom, CAF, Trafikverket, AZD, Mermec, Deutsche Bahn, SNCF,
and ERTMS Users Group, “Deliverable D5.1 moving block system
specification,” in X2Rail-1 Start-up activities for Advanced Signalling

and Automation Systems. Shift2Rail, 2019. [Online]. Available:
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1

[8] S. Engels, T. Peham, J. Przigoda, N. Przigoda, and R. Wille,
“Design tasks and their complexity for the European Train Control
System with hybrid train detection,” 2024. [Online]. Available:
http://dx.doi.org/10.48550/arXiv.2308.02572

[9] R. Wille, T. Peham, J. Przigoda, and N. Przigoda, “Towards
automatic design and verification for Level 3 of the European
Train Control System,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2021. [Online]. Available: http:
//dx.doi.org/10.23919/date51398.2021.9473935

[10] T. Peham, J. Przigoda, N. Przigoda, and R. Wille, “Optimal
railway routing using virtual subsections,” in Reliability, Safety,

and Security of Railway Systems. Modelling, Analysis, Verification,

and Certification, 2022. [Online]. Available: http://dx.doi.org/10.1007/
978-3-031-05814-1_5

[11] S. Engels, T. Peham, and R. Wille, “A symbolic design method for
ETCS Hybrid Level 3 at different degrees of accuracy,” in 23rd

Symposium on Algorithmic Approaches for Transportation Modelling,

Optimization, and Systems (ATMOS), 2023. [Online]. Available:
http://dx.doi.org/10.4230/OASICS.ATMOS.2023.6

[12] S. Engels and R. Wille, “Late breaking results: Iterative design
automation for train control with hybrid train detection,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE),
2024. [Online]. Available: http://dx.doi.org/10.23919/DATE58400.2024.
10546590

[13] DB InfraGO AG, “Richtlinie 301: Signalbuch,” 2024.
[Online]. Available: https://www.dbinfrago.com/web/schienennetz/
netzzugang-und-regulierung/regelwerke/betrieblich-technisch_
regelwerke

[14] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[15] M. Bartholomeus, L. Arenas, R. Treydel, F. Hausmann, N. Geduhn,
and A. Bossy, “ERTMS Hybrid Level 3,” SIGNAL + DRAHT (110)

1+2, 2018. [Online]. Available: https://www.eurailpress.de/fileadmin/
user_upload/SD_1_2-2018_Bartholomaeus_ua.pdf

590 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

