
Evolving the Enterprise Software Systems

Landscape: Towards Anti-Patterns in

Smalltalk-to-Java Code Transformation

Marek Bělohoubek and Robert Pergl

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic

Email: {marek.belohoubek,robert.pergl}@fit.cvut.cz

http://ccmi.fit.cvut.cz

Abstract—In the rapidly evolving landscape of enterprise
software systems, there is a marked escalation in the proliferation
of new technologies, tools, languages, and methodologies daily.
These innovations are pivotal not only for the development of
new systems but also for the maintenance and augmentation of
existing infrastructures. Consequently, it is imperative to devise
systems that are responsive to these advancements, fostering the
integration of novel tools and methodologies into the current
systems. This integration often necessitates mechanisms for
transforming source code across diverse programming languages.
In the course of developing a transformation tool from Smalltalk
to Java, we encountered several code patterns that significantly
impede the transformation process. This paper aims to elucidate
one such transformation anti-pattern. We provide a comprehen-
sive overview, a formal delineation, illustrations derived from
actual code, and propose refactoring strategies for both Smalltalk
and Java environments.

I. INTRODUCTION

T
HE EVOLUTION of software systems within enterprises

is a perpetual and intricate process. Each day ushers

in a profusion of fresh technologies, tools, programming

languages, and methodologies aimed at facilitating the devel-

opment of novel systems while also helping in the maintenance

and expansion of existing ones [1].

The significance of maintenance and expansion cannot be

overstated, primarily because as these systems mature, there

emerges a necessity to adapt to updated requirements, thereby

compelling the integration of new libraries, the adoption of

the latest technologies, and, in extreme cases, the complete

restructuring of the underlying architecture.

As current research suggests, the frequency of such mod-

ifications is increasing [2] it becomes essential to develop

new systems that take into account these modifications [3]

and create tools and methodologies to help incorporate this

design philosophy into existing systems, for example by help-

ing to transform source code between different programming

languages.

Over a year ago, we began researching the transformation of

Smalltalk code to Java, based on previous research by Engel-

brecht [4], with the aim of creating tools and methodologies

following these three principles:

• Transformation process should require as little manual

input as possible.

• The resulting code should be easy to read and edit

manually, to make future expansion and maintenance as

simple as possible.

• Tools need to provide option to manually override

(sub)result of any step in the process, and allow inclusion

of these changes during repeated processing of the input

code.

Throughout the process of implementation and subsequent

testing on real-world code, we encountered numerous in-

stances where our methods failed to effectively transform

certain code snippets.

Upon closer examination of these snippets, we identified

recurring code patterns that, while perfectly valid in Smalltalk,

lacked direct equivalents in Java suitable for automated trans-

lation without compromising the original functionality or

excessively cluttering the resulting code.

Internally, we have coined the term "Transformation anti-

patterns" to describe these phenomena. In this paper, we aim to

elucidate one such anti-pattern by furnishing a comprehensive

description, formal definition, real code-based example, and

refactoring solutions applicable to both the Smalltalk and Java

contexts.

II. LANGUAGES

First, we need to provide the reader with additional infor-

mation about the languages and design of our tool.

A. Smalltalk

Smalltalk, which emerged in the 1970s as Smalltalk-72,

is a dynamically typed programming language that is purely

object-oriented. It was first made available to the public with

the release of Smalltalk-80 in the 1980s [5].

Smalltalk is distributed in the form of an image along with

its own development environment and virtual machine. Conse-

quently, every application developed in Smalltalk necessitates

the execution of the associated image.

Various versions of Smalltalk (called dialects) exist, each

with its own interpretation of the Smalltalk virtual machine.

These include proprietary systems such as Visual Works [6], as

well as open-source initiatives like Squeak [7] and Pharo [8].

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 567–572

DOI: 10.15439/2024F3128

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 567 Thematic Session: Advances in Programming Languages



B. Java

Java, created in the 1990s and launched in 1996 as Java 1.0,

is a statically typed, object-oriented, high-level programming

language [9].

A crucial component of Java is the Java Virtual Machine

(JVM) [10], which facilitates the running of Java applications

on various computer architectures, regardless of the platform

used. This abstraction shields programmers from platform-

specific intricacies.

C. Language differences

There are three main distinctions between Smalltalk and

Java that complicate the conversion process to the extent that

we refer to it as transformation.

Firstly, they vary in their handling of typing and types. Java

follows a static typing approach, requiring all variable types,

method arguments, and return values to be defined before com-

pilation. In contrast, Smalltalk is dynamically typed, meaning

type checks are performed only during run-time.

The second differentiation lies in the contrast be-

tween Smalltalk’s meta-classes and Java’s class features. In

Smalltalk, each object holds a reference to its metaclass, which

stores class-specific methods and variables. Conversely, Java

uses the static keyword to define class features, which do not

pertain to an underlying object and thus cannot be accessed

through reference.

Finally, whereas all types in Smalltalk are subclasses of

Object, Java includes eight primitive types that solely contain

values without any Object-like characteristics (such as meth-

ods, initialization, etc.).

These disparities necessitate transformation tools to either

deduce all types used in the code for integration into statically

typed Java, and/or implement an additional framework to

mimic Smalltalk’s dynamic behavior.

III. SMALLTALK TO JAVA TRANSFORMATION TOOL

This section consists of two parts: general overview of

the transformation process and a more in-depth look at the

translation step.

A. Transformation process

Our vision for the tool primarily revolves around facilitating

the transition of the business logic from legacy Smalltalk

systems into contemporary object-oriented languages.

These systems often grapple with challenges related to

maintaining comprehensive and accurate documentation due

to extensive years of ongoing maintenance and subsequent

development. Given that the tool necessitates parsing the

source code of the system for transformation purposes, it

can concurrently generate a class model of the system as an

ancillary outcome.

Considering that the transformation process will likely entail

substantial modifications to the underlying architecture and

technologies, particularly concerning the user interface (UI),

it becomes imperative to support only partial transformation

of the system.

In light of these requirements, our approach involves the

development of a suite of tools designed to execute the

transformation through the following sequential steps:

• Scope definition User defines the transformation scope

by specifying which parts (bundles, packages, classes) of

the system should be transformed.

• Type inferring Transformation tool then uses a real-time

type inferrer [11] to obtain all types used in the selected

scope.

• Translation The scope is then transformed class-by-class,

method-by-method, using previously inferred types. The

source code is translated from Smalltalk to Java, so the

result not only works like the original but also looks as

close as possible to the original.

• Model generation The transformation tool then produces

a model of the transformed scope, in the form of a UML

with a transformation profile applied to it.

• Java generation Finally, the generation tool uses the

transformation model to generate the package structure

and Java classes out of it.

B. Translation step

As mentioned previously, our goal is to make a set of tools

and methodologies to help programmers migrate applications

and systems from Smalltalk to Java with the expectation of

further maintenance and development performed within the

transformed code.

Therefore, such tools have to be capable of producing

human-readable and editable code, which limits usage of

certain methods that deal with the discrepancy between dy-

namically typed Smalltalk and statically typed Java in elegant

ways, but produce code that is very hard to maintain and

expand.

One such method described in Mr. Engelbrecht’s work [4]

suggests using a single class named SmalltalkObject as

an ancestor to all classes in the transformed system.

This class then defines a dummy definition for every method

in the original system with all inputs and outputs replaced by

SmalltalkObject itself. Concrete classes override their

own methods with specific implementations.

With this clever use of class-based reflection, this method

effectively simulates Smalltalk behaviour in Java, but at the

cost of extreme inconvenience for the future expansions of

the transformed code, since every class implements or inherits

every single method defined in the transformed code.

C. Translation tool

Our implementation of the tool responsible for the transla-

tion step treats each method / class definition as a separate code

snippet, with the only connection to the rest of the transformed

scope being inferred types.

We use the abstract syntax tree generated by Smalltalk

compiler to transform methods node-by-node, in essence doing

word-by-word literal translation.This is combined with usage

of the inferred types to produce being human-like strongly

typed code in Java.

568 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



To better demonstrate here is an example of simple

Smalltalk method:

sum: aFirst and: aSecond

^ aFirst + aSecond.

Assuming that we have previously inferred that aFirst,

aSecond and their sum are all typed Integer, we will get

the following translation:

public Integer sumAnd(Integer aFirst,

Integer aSecond){

return aFirst + aSecond;

}

As demonstrated in the example above, the translated code

uses strong typing and for simpler methods looks like it was

written by a human.

Unfortunatelly during our testing on real-world application

we have discovered several code patterns that prevent fully

automated translation, either because there is no direct strongly

typed equivalent to the original weakly typed code, or because

the automatic solution would introduce severe complications

to readability and extensibility of the code.

We have named such code structures "Transformation anti-

patterns".

IV. TRANSFORMATION ANTI-PATTERNS

We define transformation anti-patterns as code structures

that satisfy all of the following conditions:

• The code structure is syntactically and semantically valid

in Smalltalk, capable of being compiled and executed

without any errors.

• Translating the code structure directly from Smalltalk to

Java would yield Java code that either fails to compile

or exhibits considerable divergence in runtime behavior

when compared to the original Smalltalk implementation.

Virtually all anti-patterns identified thus far originate from

the semantic discrepancies between the two languages, fre-

quently stemming from the contrasting principles underlying

dynamic and static typing.

This phenomenon can be likened to the challenges inherent

in translating between natural human languages. For example,

the literal translation of a joke that relies on clever wordplay

and phonetic similarity in one language will almost invariably

fail to convey its original humour in another language.

Therefore, it is imperative to detect such occurrences during

the translation process and notify the user, advising them to

review the outcome, and, if possible, offering guidance on

resolving any issues that may arise.

Our investigation into the transformation from Smalltalk to

Java necessitates the identification of suspicious code struc-

tures, their categorisation into anti-patterns, and the provision

of multiple strategies for addressing them.

The following section presents an example of one such

anti-pattern, identified during experiments on a real-world

Smalltalk system (regrettably, direct examples of the code can-

not be provided due to an existing non-disclosure agreement).

While the example anti-pattern isn’t the most complicated

one, it demonstrates the basic principles behind anti-patterns

very well and we have found it occurring quite frequently in

the analysed code.

V. ANCESTOR DEFINED VARIABLE

The employment of inheritance and class hierarchy is pri-

marily motivated by the opportunity to establish methods and

variables within a high-level class and subsequently allow all

its subclasses to inherit these attributes, thereby adhering to

the "Don’t Repeat Yourself" (DRY) principle.

This practice is prevalent in both Smalltalk and Java,

typically manifesting in the form of abstract classes or Java

interfaces. However, disparities arise in its utilization between

the two languages due to the distinction between dynamic and

static typing.

In dynamically typed languages like Smalltalk, program-

mers can define variables and methods in ancestor classes with

a general type and then utilize specialized types in subclasses

instead.

While this approach is also feasible in strongly typed

languages like Java, it necessitates explicit casting each time

the programmer accesses the actual value or return value of a

method from the ancestor class, to align with the specialized

type in the subclass.

This casting can be implemented either by incorporating

casts wherever the variables/methods from the ancestor class

are utilized, or by overriding pertinent methods with new

implementations that invoke their parent counterparts and then

cast the result to the appropriate type.

However, both of these practices are suboptimal: the former

clutters the code with type casts, while the latter violates

the DRY principle by necessitating the reimplementation of

methods.

Alternatively, programmers can leverage Java generics to

define problematic types in the ancestor class and defer the

specification of concrete types to its descendants. While this

approach typically functions effectively, it encounters two

limitations.

Firstly, descendants are only considered polymorphic if they

all employ identical concrete types. Secondly, the concrete

types must share at least one common ancestor or implement

the same interface to be usable in both the ancestor class and

the concrete classes, assuming the ancestor class doesn’t solely

define simplistic get/set methods.

While employing disparate types in ancestor and descendant

classes is generally discouraged, even in dynamically typed

languages, ancestor classes following this pattern are typically

abstract, serving as "interfaces with partial implementation,"

either explicitly designated as such or never instantiated within

the program itself.

VI. EXAMPLE

Let’s suppose following scenario. We are translating three

classes:

MAREK BĚLOHOUBEK, ROBERT PERGL: EVOLVING THE ENTERPRISE SOFTWARE SYSTEMS LANDSCAPE 569



• Ancestor - which defines an instance variable called

property and implements its accessor.

• DescendantString - subclass of Ancestor, initial-

izes it’s instance variable with empty String.

• DescendantInt - subclass of Ancestor, initializes

it’s instance variable with int.

Here is code snipped with their Smalltalk implementations:

Object subclass: #Ancestor

instanceVariableNames: 'property.'

Ancestor>>property

^property.

Ancestor subclass: #DescendantString

DescendantString>>initialize

property := ''.

Ancestor subclass: #DescendantInt.

DescendantInt>>initialize

property := 0.

Transforming the code above directly is certainly possi-

ble (see the end of this subsection), but since each of the

Ancestors subclasses initializes property with a com-

pletely different type, it will be defined as Object.

Therefore, even if the user wants to work directly with one

of the subclasses, he will be forced to use type casting for all

but the simplest operations with property.

public class Ancestor {

protected Object property;

public Object getPropertyValue(){

return property;

}

}

public class DescendantString

extends Ancestor{

public DescendantString(){

property = "";

}

}

public class DescendantInt

extends Ancestor{

public DescendantInt(){

property = 0;

}

}

VII. REFACTORING SOLUTION

There are two main solutions for refactoring that coincide

with the place where they occur: Ancestor abstraction (in

Smalltalk) and Ancestor parameterisation (in Java).

A. Ancestor abstraction

Move all problematic variables and method implementations

from the ancestor to its direct subclasses, making both the

ancestor and it’s problematic methods abstract.

Ancestor subclass: #DescendantString

instanceVariableNames: 'property.'

DescendantString>>property

^property.

DescendantString>>initialize

property := ''.

Ancestor subclass: #DescendantInt

instanceVariableNames: 'property'.

DescendantInt>>property

^property.

DescendantInt>>initialize

property := 0.

The code above shows the changes in Smalltalk code and

the translated result is bellow.

public abstract class Ancestor {

public abstract Object getPropertyValue();

}

public classDescendantString

extends Ancestor{

protected String property;

public DescendantString(){

property = new String();

}

public String getPropertyValue(){

return property;

}

}

public class DescendantInt

extends Ancestor{

protected Integer property;

public DescendantInt(){

property = new Integer();

}

public Integer getPropertyValue(){

return property;

570 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



}

}

This approach breaks the DRY principle, but the refactoring

can be done in the source system (before the transformation to

the statically typed language). It also keeps the polymorphism

intact.

B. Ancestor parameterisation

Change the problematic ancestor into parametric class (for

example, in Java: Ancestor <T> class) and define the

correct concrete type in the generalisation itself (to con-

tinue with our previous Java example: Descendant class

extends Ancestor<concreteType>).

public abstract class Ancestor <T>{

protected T property;

public T getPropertyValue(){

return property;

}

}

public class DescendantString

extends Ancestor<String>{

public DescendantString(){

property = "";

}

}

public class DescendantInt

extends Ancestor<Integer>{

public DescendantInt(){

property = 0;

}

}

This approach follows the DRY principle, but moves all

of the refactoring to the target side. Worse yet, this approach

can break the principle of substitution depending on the target

system.

For example, in Java only descendants that have their

concrete type matching the currently used ancestor will be

allowed for substitution (this is due to the Java generics

implementation) [12].

Lastly, this solution can be applied only to instance side

methods, because static methods cannot be parameterized.

C. Comparison

The main differences between the two proposed solutions lie

in the side of refactoring (source or target) and if the solution

breaks or follows the DRY principle.

During our experiments, we have found that Ancestor

abstraction is the most commonly used, as it provides con-

sistency during repeated transformations (by making all the

changes in the source) and keeps the principle of substitution

intact, both of which greatly outweigh breaking the DRY

principle.

However, it is necessary to always keep the context in mind

as there are many cases where Ancestor parametrisation leads

to better results.

VIII. RELATED WORK

The foundational principles behind transformation anti-

patterns are not unique to the transition from Smalltalk to

Java [13]. Instead, they are commonly observed across trans-

formations from weakly-typed to strongly-typed languages.

Historically, programmers have grappled with challenges

arising from the fundamental differences between the source

and target programming languages. Examples include the

translation of nested routines from Pascal to C [14], addressing

structured programming constraints in the translation from

Fortran to C [15], and, most critically, issues related to

differences in typing systems, such as those encountered in

the transition from Python to Java [16].

Furthermore, the development of transpliers—translating

compilers—is an essential area of exploration. Some transpli-

ers are specialized for specific languages, like those for C-to-

Rust [17]. However, there is also burgeoning research in the

realm of multilingual transpliers [18] [19].

This discussion would be incomplete without acknowl-

edging advancements in AI translation tools. ORIGIN-

Transcoder [20] employs a neural-based algorithm to reduce

the need for manual input in the translation process. Although

its applicability to translations from Smalltalk remains un-

proven, there is significant interest in the potential role of

generative AI in the translation process [21].

IX. CONCLUSION

In this article, we have introduced the concept of transfor-

mation anti-patterns and shown an example of one of them.

Anti-patterns themselves will not always cause problems,

but they represent severe complications for maintenance and

future expansions of the translated code.

Based on this analysis, we believe that there is a space for

further research into this topic, with many more anti-patterns

yet to be discovered.

ACKNOWLEDGMENT

This research was supported by the grant of Czech Technical

University in Prague No. SGS23/206/OHK3/3T/18.

Disclosure of Interests. The authors have no competing

interests to declare that are relevant to the content of this

article.

Statement on the use of AI AI technologies (Writefull

and ChatGPT) were used solely to improve the language of

the paper.

REFERENCES

[1] M. Hilbert and P. López, “The world’s technological capacity to store,
communicate, and compute information,” science, vol. 332, no. 6025,
pp. 60–65, 2011.

[2] R. Kurzweil, The Law of Accelerating Returns. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 381–416.

MAREK BĚLOHOUBEK, ROBERT PERGL: EVOLVING THE ENTERPRISE SOFTWARE SYSTEMS LANDSCAPE 571



[3] O. Dvořák and R. Pergl, “Tackling rapid technology changes by applying
enterprise engineering theories,” Science of Computer Programming, vol.
215, p. 102747, 2022.

[4] R. L. Engelbrecht et al., “Implementing a smalltalk to java translator,”
Ph.D. dissertation, University of Pretoria, 2006.

[5] A. C. Kay, The Early History of Smalltalk. New York, NY, USA:
Association for Computing Machinery, 1996, p. 511–598.

[6] “Custom Software Application Development Services - Cincom
VisualWorks® | Cincom Smalltalk®,” 9 2023. [Online]. Available:
https://www.cincomsmalltalk.com/main/products/visualworks/

[7] Squeak.org, “Squeak/Smalltalk.” [Online]. Available: https://squeak.org/

[8] “Pharo - Welcome to Pharo!” [Online]. Available: https://pharo.org/

[9] I. Cosmina, An Introduction to Java and Its History. Berkeley, CA:
Apress, 2022, pp. 1–31.

[10] F. Yellin and T. Lindholm, “The java virtual machine specification,”
1996.

[11] J. Blizničenko and R. Pergl, “Generating UML Models with
Inferred Types from Pharo Code,” in International Workshop on

Smalltalk Technologies, Koln, Germany, Aug. 2019. [Online]. Available:
https://hal.science/hal-04053497

[12] M. Naftalin and P. Wadler, Java Generics and Collections: Speed

Up the Java Development Process. O’Reilly Media, 2006. [Online].
Available: https://books.google.cz/books?id=zaoK0Z2STlkC

[13] M. Bělohoubek and R. Pergl, “The state of smalltalk to java transforma-
tion: Approaches review,” in World Conference on Information Systems

and Technologies. Springer, 2024, pp. 235–241.

[14] N. Sundaresan, “Translation of nested pascal routines to c,” ACM Sigplan

Notices, vol. 25, no. 5, pp. 69–81, 1990.
[15] D. S. Higgins, “A structured fortran translator,” ACM SIGPLAN Notices,

vol. 10, no. 2, pp. 42–48, 1975.
[16] E. Jin and Y. Sun, “An algorithm-adaptive source code converter to

automate the translation from python to java,” JLPEA, 2020.
[17] L. Xia, B. Hua, and Z. Peng, “An empirical study of c to rust transpilers,”

School of Software Engineering, University of Science and Technology

of China, and Suzhou Institute for Advanced Research, University of

Science and Technology of China-04/27, 2023.
[18] F. Bertolotti, W. Cazzola, and L. Favalli, “∗ piler: Compilers in search

of compilations,” Journal of Systems and Software, vol. 212, p. 112006,
2024.

[19] F. Bertolotti, W. Cazzola, D. Ostuni, and C. Castoldi, “When the dragons
defeat the knight: Basilisk an architectural pattern for platform and
language independent development,” Journal of Systems and Software,
vol. 215, p. 112088, 2024.

[20] V. Rajathi, M. Harishankar, J. S. DS et al., “Origin-the transcoder,”
in 2022 1st International Conference on Computational Science and

Technology (ICCST). IEEE, 2022, pp. 179–182.
[21] J. D. Weisz, M. Muller, S. I. Ross, F. Martinez, S. Houde, M. Agarwal,

K. Talamadupula, and J. T. Richards, “Better together? an evaluation of
ai-supported code translation,” in Proceedings of the 27th International

Conference on Intelligent User Interfaces, 2022, pp. 369–391.

572 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


