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Abstract—As autonomous technologies blend into a variety
of industries, the employment of Multi-Robot Systems (MRS)
in complex tasks is becoming increasingly prevalent. These
systems, characterized by their distributed intelligence and col-
laborative capabilities, are now largely deployed in executing
critical missions ranging from environmental exploration to
disaster response. To support the trustworthy execution of such
collaborative multi-robot missions, the existence of an underlying
trust management framework is becoming imperative, given the
rising risks of malicious intruders attempting to join the MRS.

This paper proposes a Trust Management Framework (TMF)
for Multi-Robot Systems, to bridge the gap of scarce trust
management support for MRS. By analyzing trust dynamics and
integrating direct and indirect trust with contextual data, we
address the trust vulnerabilities inherent to MRS. Our primary
contribution is the development of a novel TMF significantly
supporting the trust, security and reliability of MRS. The paper
systematically outlines the evolution of our TMF, from theoretical
underpinnings to an integrated solution, and the discussion of its
impact on the trustworthiness of cooperative robotic networks.

I. INTRODUCTION

T
HE proliferation of intelligent and independent devices,

vehicles, and robots is reshaping our everyday lives [1],

[2]. This advancement leads to fully digital environments that

can collaborate, compete, or even pose a threat [3], [4], [5].

Networks of multiple robots are advancing to take on human

responsibilities in everyday activities and hazardous missions,

including exploring underwater terrains, responding to natural

disasters, and carrying out military operations [2].

The strength of Multi-Robot Systems (MRS) [6] lies in their

distributed nature. Robots with unique capabilities possess dif-

ferent strengths and limitations, which enhances task success

and system robustness. Robots have multiple sensors to sense

their surroundings and plan the steps based on the mission

and actual data. Communication is vital in these systems,

enabling them to collaborate and adapt their behavior based on

agreement and adaptive decision-making, which at the same

time makes these systems vulnerable to robot misbehavior,

whether unintentional or underpinned by hidden malicious

intents.

Despite the increasing digitalization and interconnectedness

of MRS, the integration of Trust Management Frameworks

(TMF) [7] tailored for these systems remains largely un-

explored. This gap exposes MRS to vulnerabilities, risking

their robustness and resilience against attacks. Current trust

management approaches, while foundational, fall short in

MRS contexts and missing understanding of their applicability

and limitations in the context of MRS. These approaches also

need to pay more attention to prioritizing individual safety

of the members within these systems and the surrounding

ecosystems.

To bridge this gap, this paper proposes a tailored Trust

Management Framework (TMF) for Multi-Robot Systems

(MRS), with the intent to overcome the discussed limitations

by proposing a TMF that enhances the trustworthiness and

safety of MRS through comprehensive trust inputs, including

reputation and peer opinion, thereby ensuring the integrity

and resilience of MRS in complex digital environments. To

this end, we base our design on a general baseline TMF [7],

to which we map the mechanisms necessary to prevent

trust attacks in MRS scenarios, as collected in our previous

work [8]. Specifically, we focus on the mechanisms necessary

to support direct and indirect trust while paying attention to

the contextual information necessary in trust decisions. Our

main contribution is the creation of a novel Trust Management

Framework to prevent vulnerabilities and enhance the safety

of multi-robot systems. The proposed TMF is intended for

feasible deployment and utilization while ensuring optimal

trust and safety measures.

The rest of the paper is structured as follows. After re-

viewing related work in Section II, the background definition

of multi-robot systems and robot capabilities for our specific

purpose are provided in Section III. Section IV presents

the methodology of the TMF design process, followed with

individual components of the TMF design in Section V and VI.

The resulting TMF for MRS is presented in Section VII,

together with the discussion in Section VIII and conclusion

in Section IX.

II. RELATED WORK

Machine-to-machine trust is crucial for successfully im-

plementing fully autonomous systems involving multi-robot

systems. The practical implementation of such trust was

initially explored by Yang and Parasuraman in 2021 [9],

who developed an agent trust model to facilitate cooperation

among heterogeneous multi-robots. Their research focuses on

trust evaluation based on the robot’s needs (safety, basic,

teaming, and capability). However, it could be enhanced by
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other aspects like reputation or peer opinion, which could help

provide solutions for unaddressed system vulnerabilities.

Recent studies delve deeper into the theoretical foundations

of trust in autonomous systems [10], which focus on robot

actions’ reliability, predictability, and transparency and allow

systems to form relationships. Besides, many studies can be

found in the SIoT (Social Internet of Things) [11], which

mimic human relationships. The study [12] focuses on ap-

plying aerial drone swarms to improve public safety by crowd

monitoring and disaster response [13], requiring robust and

reliable social interactions among robots. The [14] focused

on trust-based mechanisms based on the blockchain model.

Although their solution has outperformed various measures

such as throughput, latency, accuracy, and block updating

limits, it is based only on the local trust of its neighbors. Tran-

sitive relationships could improve the algorithm, degrading its

performance but providing a more secure approach.

In contrast, the study [15] addresses the usage of Hidden

Markov Model (HMM) in trust management for underwater

robotics. This model enables the measurement of the trustwor-

thiness of the sensor nodes to combat malicious or internal

attacks. In this direction again, peer opinion could extend the

robustness of trust management based on the HMM approach.

Ground-based networks, such as Vehicular Ad-hoc Net-

works (VANETs), allow vehicles to form human-like relation-

ships, improving navigational aids and emergency response ca-

pabilities and ensuring safety for drivers and pedestrians [16].

Aslan and Sen designed a dynamic trust management model

for vehicular ad-hoc networks [17] where the trustworthiness

of vehicles is assessed using the vehicle trust value based on

the data trust values of their event messages. This helps to

establish a more reliable trust management framework with a

combined trust model. While the model is a good source for

inspiration, given its different context, it falls short in sup-

porting details necessary in trust management in collaborative

robotic missions (integrating the details of the mission, robot

role in it, directives of the leader, etc.).

III. BACKGROUND

This section introduces the reader to multi-robot systems’

essential terminology and background.

A. Multi-Robot Systems

The effectiveness of multi-robot systems is attributable

to their composition of diverse robots, each enriched with

distinct capabilities, enabling a synergistic collaboration that

surpasses the abilities of individual robots. This significantly

improves the success of a task and relaxes the dependence on

a single robot, focusing on the cooperation of many distinct

robots instead. As a result, the system becomes more robust

and less likely to fail if one of the robots experiences an

issue [18]. The distribution of robot types in the system is also

essential, as different types of robots have different capabilities

and limitations. Communication is a crucial aspect of multi-

robot systems, which can be either seamless or introduce

challenges, depending on the compatibility of robot commu-

nication mechanisms and protocols. Yet, technology exists

to facilitate communication between different communication

protocols [19]. Efficient communication can significantly en-

hance the system’s capabilities and increase its efficiency.

Additionally, robots in multi-robot systems can recognize each

other, known as kin recognition [20], and understand peer

capabilities and limitations, further contributing to successful

task completion.

B. Characteristics of a Robot in MRS

Inspired by [21], robot characteristics can be summarized

as follows.

a) Capabilities: Robots are aware of their surroundings.

They can generate and store information and combine it in

real-time with new knowledge. They can plan their steps based

on the mission and actual data. They have a rechargeable

battery with limited capacity. They can move, orientate in the

environment, and generate a trajectory considering detected

obstacles. They are often capable of grabbing and carrying an

(appropriately sized) item.

b) Sensors: Robots can sense their position using GPS

and IMU. They can have any combination of additional sen-

sors, such as LIDAR, radar, camera, microphone, temperature

sensors, or range finders [22]. They can detect and diagnose

internal faults and battery level.

c) Communication: Robots can communicate locally

with other robots if the communication method is compatible.

They can communicate on a private, ciphered channel with

other robots with access to it. If possible, they can connect

to a shared source of information and exchange data with

it, both ways (download and upload). They can also store

or backup data on remote storage. However, these remote

connections may be impossible due to the bad conditions of

the surrounding environment, inaccessible channels, or being

too far away.

d) Collaboration: The robots are capable of collabora-

tion with another robot or group of robots. They can consider

the actions of other individuals while planning. They can

participate in decision-making and adapt their behavior to the

agreement. They can process and store information obtained

from other robots.

IV. METHODOLOGY

The trust management concept is well-defined in various

domains such as Internet of Everything or Social Internet of

Things [7] but remains unexplored in multi-robot systems.

With the ever-increasing digitalization and communication

between systems, there is a need to ensure integration of

appropriate trust management into such systems to increase

their robustness and resilience for their safer integration in

our digitalized society. To obtain an applicable solution for

trust management in MRS, our Trust-Management Framework

(TMF) design process is based on an existing trust frame-

work, which is scrutinized from two directions to (1) validate

whether each of its current components is necessary for trust
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Fig. 1. Schema of the methodology.

management in MRS, and (2) identify missing properties and

mechanisms specific to the context of MRS. Based on this

analysis, a TMF for MRS solution is designed. These steps

are visualized in Figure 1 and described below.

1) Select the baseline TMF: First, we identified a baseline

trust management framework, with the intention to lay out

a holistic foundation that can be then filtered and extended

based on the specifics of MRS. To this end, we have reached

for a more general context of the Internet of Everything (and

Social Internet of Things) and chose a TMF designed as

a collection of concepts from a broad literature review [7],

[23]. In the TMF, depicted in Figure 2, trust of one agent

(trustor) in another (trustee) is being built via combining the

mechanisms of direct trust (based on local and highly context-

specific experience with the other agent) and indirect trust

(possibly global reputation of the agent) [24]. The two are

later combined via the component of trust decision. The TMF

components can be described as follows [7].

• Direct Trust constitutes an individual assessment by the

trustor, derived from direct interaction with the trustee.

It specifically stems from a combination of present and

past experience (direct observation) that the trustor has

with the trustee. Consequently, it is imperative to establish

mechanisms that evaluate the experience during real-

time interactions between the trustor and the trustee (po-

tentially emulating human cognitive functions) without

exposing its vulnerabilities.

• Indirect Trust is deduced from propagated opinions across

various trust paths to assess a trustee’s reputation. The

principal sources are the trustor’s trusted peers (their

opinions and recommendations) and an overseeing au-

thority responsible for monitoring the trustee’s reputation

within the network. Accordingly, there must be systems

to update the reputation and propagate it throughout the

ecosystem.

• Context Information shapes the trust decision to mirror

the trustor’s present circumstances during the decision-

making process (for instance, the trustor’s vulnerability

during interactions with the trustee, the risks involved,

the accountability of the trustee in the event of malicious

actions, and whether any potential damage is reversible

or subject to compensation, ensuring reparability). Fur-

thermore, broader contextual information also influences

the direct and indirect trust computation.

2) Analysis of the baseline TMF in the context of MRS:

To detect the necessary areas for change of the baseline TMF,

we investigated its coverage of MRS context, which was done

in two steps:

• Relevance of existing components. In the first step, we

verified that the TMF contains no parts that could be

irrelevant to the MRS. For each component in the TMF,

we asked: How can this component (direct trust/indirect

trust/context information) be used to promote trust man-

agement in MRS? and compiled answers with the help

of knowledge of MRS from existing literature. A suffi-

cient answer to this question denotes that the discussed

component has its yield and, therefore, should remain in

some form in the final solution.

• Missing concepts and blind spots. The second part of

the analysis consists of detecting gaps in the coverage

of the MRS context, which could cause the TMS to be

insufficient. We went through the collection of the sce-

narios and vulnerabilities in multi-robot systems and its

application in swarm robotics [8], and for each scenario

and component, we asked: How can this component be

used to prevent or mitigate this type of trust attack in

MRS? Is there anything missing in the original TMF that

would ease this process? Exhaustive answers to these

questions serve as a base for updating the baseline TMF

in the next step.

3) Refined TMF for MRS Design: Ultimately, we use the

acquired knowledge to refine the baseline TMF and define

the resulting TMF for MRS. The components of the baseline

TMF, which were verified as valuable, serve as the base

for the refined TMF. From the scenario analysis, we collect

observations of the necessary robot support in trustworthy

mission execution and cluster them by their source or subject.

Each of the clusters gets assigned a component in the original

TMF that it shall extend, or an approval to form a new

component in the resulting TMF. Using these clusters, we

refine the structure of the assigned components to cover them

sufficiently.

V. ANALYSIS OF THE BASELINE TMF

This section examines the baseline Trust-Management

Framework (TMF), as depicted in Figure 2, to validate whether

each of its current components has its role in the context of

trust management in Multi-Robot Systems (MRS).

A. Direct Trust

Direct trust is the main component by which the robot can

judge other robots. Direct trust consists of two parts: present

experience [25] and past experience [26]. Robots can use their

current experience in MRS to evaluate their direct interactions

with other robots. This can help to give more weight to the

ongoing interaction. If a robot only bases its decisions on past

interactions with another robot (recorded by past experience)
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Fig. 2. Baseline Trust Management Framework [7].

and the other robot misbehaves in the current situation, the

system might not recognize the misbehavior, and an error

could occur. The trap of the experience mentioned above

is a crucial component in MRS, as there are many one-to-

one interactions between robots, which can provide the robot

with significant experience that can help it evaluate trust. This

shows that both direct trust components of the baseline TMF

are relevant and contribute to correct functioning.

B. Indirect Trust

In the MRS, robots can use direct and indirect trust [27] to

evaluate each other. While direct trust comes from personal

interaction, indirect trust comes from reports, recommenda-

tions, and reputation mediated by others. Robots can leverage

indirect trust by relying on peer opinions [28] to decide

whether to trust an individual. They can also establish a

hierarchy based on individuals’ reputations [28], which can

increase when a robot performs its tasks well. If a robot

completes most of a task, even if not explicitly designed for

it, its reputation can reflect it and increase. All baseline TMF

aspects are relevant and suitable for the MRS.

C. Context Information

For MRS, context information can carry the same signif-

icance as other systems. It can serve as an essential but

non-negligible aspect in the process of making trustworthy

decisions. Context information can aid in evaluating the suit-

ability, risks [29], and potential advantages of an action or

interaction within a specific environment [30] and with specific

objects. Environmental factors, information sensitivity [31],

and the likelihood of recovering [7] from a risky action can

be considered in this context. Additionally, the types of robots

in our environment can influence MRS, as each individual

may be suited to different tasks, leading to varying levels of

security perception. In summary, all the components of the

context information baseline TMF remain relevant also in the

context of MRS.

VI. TRUST SCENARIOS MAPPING TO THE BASELINE TMF

This section presents the analysis of the baseline TMF with

the intention to identify missing concepts and blind spots

relevant to the context of MRS. It focuses on individual

vulnerabilities occurring in multi-robot systems, as collected

in [8]. The text is divided into several sections, each explaining

the issue and providing a detailed description of the trust-

management solution and its mapping to the baseline TMF.

A. Information Manipulation or Ignoring

The improper modification and dissemination of informa-

tion can cause significant problems during a mission. The

transmitted data can be divided into three categories of actions

related to erroneous information: individual, external, and

passing information [8].

The presence of a Trust Management Framework (TMF)

can support the trustor to cross-check information obtained

from the trustee with other sources. Therefore, it can point

out inconsistencies in the information, which can lead to

discarding false information and thereby foiling the attack. The

type of mission sets the sensitivity of the data, so it should

be considered in the context part of the TMF for MRS. Also,

only insiders (trusted peers) may recognize some defects in

information as they have the necessary permissions to access,

so in the TMF for MRS, they should be differentiated from

random passersbys.

1) Individual Information: Let us first examine the TMF

robustness against the attack of a robot sharing false individual

information. The purpose of this attack is for the robot to share

false information about itself that others cannot verify, such

as its battery level. The TMF can be very beneficial in this

case, as it can use its recorded past interactions with the robot,

compare information with other sources [32], and send a test

message to determine if the robot is generally truthful. If the

system is centralized [33], the robot may have to be asked

to answer to a higher authority with more information about

itself.

2) External Information: Information manipulation or ig-

noring attacks on external information are similar to the pre-

vious type of attack. In this scenario, the robot observes [34]

its surroundings and shares false information about other

robots or objects in the environment, which can however be

verifiable by others. Since the information is verifiable, other

robots can verify the information and update the source robot
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trust scores accordingly. The impact on behavior depends on

environmental conditions and possibly on its changes (e.g.,

weather, moving objects), which are currently not included in

the baseline TMF.

3) Passing the Information: In this type of attack, the robot

receives information from other sources, such as another robot

or a server, and then passes it along to the next recipient, which

is the moment when it can change it to false information. In

this scenario, the robot is not the original source of the infor-

mation but rather a mediator that can modify the transmitted

data. An important aspect of robot interactions is the direct

experience with a robot that consistently and accurately trans-

mits information without making unwarranted modifications.

Trust values from other peers can be received through feedback

[32], reputation ratings [35], or recommendations [36]. The

authority can select the primary message distributors based

on their trust level if the message is not broadcast. When the

robot transmits sensitive data, like navigational information,

the communication should be more reliable, which can have

a different impact on the trust score [31].

B. Manipulation with Communication Channels

Effective communication and information exchange are

crucial for mission success. However, vulnerabilities in data

passing and storage can be exploited. Even a minor leak of

swarm position or resources may lead to significant losses.

Insider attacks and changes made to shared information can be

significant risks. Also, interference with communication and

signals could threaten the mission [8].

Observation of malicious behavior against communication

channels by the trustor or their peers, followed by the isolation

of the trustee, may stop those attacks from spreading. How-

ever, detection of this behavior gets more complex with various

permissions and chosen communication channels. Therefore,

the TMF for MRS should go into more detail with the context

of the mission and roles of the robots.

1) Leak of Information: The trustor needs to observe

trustee’s history of managing and transmitting sensitive in-

formation without exposing it. To detect vulnerable behaviors

with the information, storing every robot’s action globally and

locally is necessary. It will be a marked comparison of these

historical actions [37] to see if they are the same or if there

are any incorrect things.

Indirect trust can enhance information’s credibility by allow-

ing other robots’ feedback and reports. This would also enable

the implementation of an external security system to monitor

unusual communication patterns [37]. Robots involved in

previous security breaches or have indirect evidence of such

behavior would be considered less trustworthy, even if there

is no direct observation of their actions.

The sensitivity of the transferred information is essential

for evaluating the manipulation with it as the more sensitive

data should be protected better. In the current TMF, this is

not completely covered as the context part aims more at the

trustor itself than its mission.

2) Changing of Shared Information: Many algorithms often

work together using shared information. However, this shared

source can be vulnerable to manipulation, leading the group

to work with false information.

The trustor should observe the trustee’s correct manipulation

in updating and handling the information, which enhances the

group’s problem-solving capabilities. If the trustee is caught

making unauthorized or harmful changes in the past, it should

take shape in the future evaluations of their trustworthiness.

The shared information should be checked and compared

with previous versions, and the changes that were caused to

the data should be evaluated. If other robots suspect a change

made to the information, they can share that with each other.

3) Restrain Access: The work of MRS relies on distributed

communication and information sharing, making interference

a real threat. Malicious robots can disrupt signal transmission

by overloading the communication channel with irrelevant

messages.

There are always multiple communication channels between

robots; the higher the trust score of a robot, the more channels

are available. The higher the level of the communication

channel, the more messages can pass through it with a higher

level of confidentiality. The origin and content of messages

should be observed to detect overflowing by irrelevant or

repeating messages. The evaluation is based on the context

of the mission and its presumed communication.

Malicious robots can also disturb communication by noise

or physical destruction of transportation medium. Their be-

havior and sent signals should be observed and evaluated.

The trustor may verify sent messages with peers on other

more secure channels to which only they can access.

C. False Performance Promises

In time-critical missions, there is a risk that some individuals

may intentionally fail to complete tasks on time. Other robots

failing to identify and address this malicious behavior can lead

to unnecessary time loss and mission failure. The more time-

critical the mission, the more vulnerable it is to this attack. The

suitability of the environment and the trustee for the mission

can also impact the time limit that the trustor is willing to wait

for the mission to be completed, which is connected to the

vulnerability of the whole system and the individual waiting

for the completion of an action to continue with his task. The

time and status of the mission are reflected in the timeout for

action. These aspects should be included in the baseline Trust

Management Framework (TMF).

The robot’s past experience determines if a delay is typical.

This past experience can be shared among all system robots,

enabling them to share opinions about the targeted individual.

If robots are visibly damaged or noticeably delayed in their

work, it has to be factored into the trust decision. Furthermore,

the delay can be compared to a pre-estimated time limit.

D. Authority Misusage

In swarm systems with hierarchical leadership, malicious

robots in leader roles can manipulate others to do unwanted
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things, making detection and elimination harder. Malicious

leaders may change permissions and force subordinates into

unwanted actions, endangering the mission.

This scenario is the least covered by the baseline TMF as it

does not recognize the trustee’s relation to the mission and the

role of the leader as a whole. But it can still detect suspicious

behavior of the leader and cause their demotion.

1) Permission Regulations: Each robot should have permis-

sion to access resources set according to its role or mission.

A malicious robot with authority may change the rights of

other robots, denying access to information or resources. If

these permissions are not granted or are taken away without

clear reason, it should be considered suspicious. These rights

assignments could be taken as direct experience within the

TMF.

To evaluate their own rights, the trustor should take into

account the value and sensitivity of the data used within the

mission. It needs to be as objective as possible because even

if the robot thinks it needs a particular resource, it does not

mean there is no way to solve the mission without it. The

baseline TMF covers this sensitivity to some extent through

context information.

When introducing the leader hierarchy, the trustor can ask

sub or superior leaders for their opinion. Leaders’ opinions

may have a higher impact on the decision or even be unques-

tionable. Therefore, this weight could be somehow recognized

in the TMF.

Also, the trustor can observe inadequate changes in the per-

missions of their peers. In that case, it may signify the leader’s

(trustee’s) incompetency or malicious intentions, which are

both problematic for the mission’s success. The baseline TMF

covers this by the peer opinion part.

2) Task Allocation: Getting orders from the leader is

usually done via direct communication, and if the trustor

knows and understands the mission’s aims and plans, they can

directly evaluate this kind of interaction. The orders should be

consistent with previous ones and any changes should have a

reason. The leader should have a plan and reasons for task

assignment. If they encourage the trustor to do irrelevant or

dangerous tasks, they should provide more details, eventually

even evidence that a particular approach does not lead to the

destruction of the society.

As the missions of MRSs are, by definition, collaborative, so

orders from leaders should take into account the plans of other

group members and complement them efficiently. Therefore,

references from peers and leaders within the same mission are

more valuable for detecting this attack. If the assigned task is

irrelevant or even complicates or devalues the work of other

group members, it should be considered suspicious. However,

similarly to the previous section, the task evaluation should

be as objective as possible because the mission may be in a

critical state, which requires more extreme solutions.

E. Physical Attacks

In robotics, physical attacks can range from inter-robot

communication manipulation to the destruction of robots or

even the kidnapping of individual units. These attacks can sig-

nificantly delay a robot’s mission, including stealthy tactics or

leading robots into traps. Additionally, changing or destroying

the environment can make it difficult for robots to navigate

and complete their mission.

Components in the TMF cover all necessary information

to detect possible physical attacks. The trustor evaluates their

vulnerability and reparability and, based on past or present

destructive behavior of the trustee or their bad reputation, may

decide to avoid them or even isolate them.

1) Robot Destruction: Aggressivity and destructive inten-

tions may be long-term, especially in the case of trustee

malfunction. Therefore, the trustor should consider previous

endangering behavior covered by past experience in the TMF.

Present experience is also important, the trustor should observe

the possible physical superiority of the trustee and their

behavior. Even false information or risky instructions obtained

from the trustee may mean a deliberate effort to destroy the

trustor.

Physical attacks are usually critical and unmistakable with

other actions. Any peer can similarly evaluate the situation

and refer it to the trustor. Therefore, the opinion of robots

with and without knowledge of the mission and context can

be considered valuable without much doubt.

The actual state and capabilities of the trustor directly

influence its ability to defend itself against the destructive

trustee. Also, the trustor’s importance for the mission should

be considered in the final trust decision. The surrounding en-

vironment and mission type influence the view of the trustee’s

communication. For example, risky instruction may be more

tolerable in dangerous environments under time pressure.

2) Kidnapping/Capture: Similarly to the destruction at-

tacks, kidnapping may be predicted by the uneven physical

capabilities of the trustor and trustee and by suspicious com-

munication. Exhortation to move to unknown places should

especially be critically evaluated.

The risk of being kidnapped impels the trustor to consider

their value. They may carry secret information or know-how

that may be misused in the wrong hands. Otherwise, the

context may be weighted as in case of possible destruction.

The escaped peers will provide information about the kid-

napper’s behavior. Therefore, the trustor should consider the

peer’s opinion. Also, the size and strength of the surrounding

group can be considered, as the trustor alone is more vulner-

able to kidnapping than the whole group.

3) Changing or Destruction of the Environment: Spotting

trustee to manipulate their surroundings inadequately may

signal their destructive intentions. Also, observing new en-

vironmental changes may lead to suspecting nearby robots.

In addition to warnings from witnesses of the malicious

behavior, the trustor’s peers may also provide information

about the environment’s last state and the items’ positions.

Based on this, any changes may be observed without the

previous visit to the particular place.

The environment may contain items of various value, and

the trustor should evaluate their importance according to the
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TABLE I
COLLECTED OBSERVATIONS SORTED BY TMF PART

Direct Trust Context Information Indirect Trust

Trustee’s motion State of the environment Communication with other agents
Communication with trustee Trustor’s experience with similar environment Feedback loops
Trustor’s historical experience with trustee Static vs dynamic object Reputation
Accurancy of provided information Sensitivity of data Involvement in previous security breaches
Integrity of provided information Riskiness of the mission History of shared information source
Trustee’s behavior Discovery of information leak Other leaders’ opinion
Trustee’s knowledge Credibility of provided information Missing peers
Unauthorized or harmful change of shared information Trustees’s access to information Leader’s opinion
Amount of sent information from trustee Relevance of information Destroyed peers
Capabilities of trustee Author of information
State of trustee Time left
Trustees opinions Trustor’s access to information

Threat to other robots
Efficiency
Mission’s state
Trustor’s state
Trustor’s capabilities
Changes of environment

mission. Changing or destruction of the environment may not

always mean bad intentions. There could be, for example,

some obstacles or dangerous objects intended to be displaced

or destroyed.

F. Attacks on Internal Intelligence

Machine learning models have vulnerabilities that lead to

biased or irrational behavior. To prevent this, it is important

to stop false data from reaching the robot’s learning model and

to verify information with trusted sources. It is also crucial to

monitor the robot’s behavior for signs of exploitation of known

vulnerabilities in its control mechanisms [38]. The robots have

past experiences stored in their memory, which includes their

encounters with malicious data. The distributed intelligence

of the entire group, including the robots’ internal intelligence,

must be well-protected to prevent attacks by malicious enti-

ties. This involves addressing complex decision-making under

uncertainty and minimizing information leakage [39], [40].

G. Decision Making Attacks

The decision-making process of robots can be influenced

by various types of attacks, such as contrarian behavior,

wishy-washy attitudes, following a sect [41], and going along

with the majority opinion [8]. It is essential to monitor the

trustee’s opinions over time to detect any potentially harmful

patterns aimed at manipulating decisions. Opinions can be

affected by the current context, the mission status, and the

trustee’s relationship to it, which are essential factors currently

not considered. Peer opinions can also carry weight if the

peer is trusted and working with the same information and

mission. Therefore, understanding the trustor-peer relationship

can enhance the effectiveness of the decision-making process.

Bots can omit or exclude a trustee from voting if past

experiences show the trustee attempted to abstain. The history

of individuals plays a significant role in preventing these kinds

of attacks. When evaluating opinions, it is crucial to consider

the context and recognize that initially controversial opinions

may be supported by concrete steps or facts.

H. Summary of Observations

Overall, we have identified 39 observations that characterize

the specifics of MRS context in trust management across all

the examined scenarios. The collected observations were then

clustered by their affiliation to a particular component of the

baseline TMF, as presented in Table I.

Main topics missing by baseline TMF are mission infor-

mation (e.g. its state, plan, kind of data) and different levels

inside of the mission hierarchy (leaders, team members, other

passerby.

VII. TRUST MANAGEMENT FRAMEWORK FOR

MULTI-ROBOT SYSTEMS

This section presents the proposed Trust Management

Framework (TMF) for Multi-Robot Systems (MRS), reflecting

the observations from Section V and VI, as well as the

mapping of the observations to TMF components as presented

in Table I. The resulting TMF for MRS is presented in

Figure 3.

In summary, the observations led to a more detailed break-

down of the direct trust TMF component, where the present

experience is divided into communication, the accuracy and

credibility of which should be evaluated by the trustor as the

trustee may easily lie, and observation, that does not have to

be directly questioned because it comes from a reliable source

(trustor itself).

Mission information expanded the context information com-

ponent, as the state of the mission directly influences the

need for collaboration with other robots and overall safety

requirements. The mission information consists of three main

aspects: mission state, time left, and data sensitivity, described

in detail below.

Besides, as the robots may play different roles within the

mission with different roles to the trustor, the TMF was

extended to reflect these roles. The rest of this section presents

the TMF components in a structured way.
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Fig. 3. Trust Management Framework for Multi-Robot Systems.

A. Actors

1) Trustor: represents the robot in question who is in the

process of making a decision whether to trust another robot

(trustee). The TMF is in place to support this trust decision.

2) Trustee: represents a robot (typically outside the scope

of control by the trustor) that is interacting in some way with

the trustor who has limited certainty about its trustworthiness

and might feel vulnerable in its presence.

3) Authority: sits on top of the trust hierarchy and might

take form of a set of regulations and directives (does not need

to be represented as a robot itself).

4) Leader: is superior to the trustor and controls the

mission the trustor is deployed to complete. In this regard, its

trust directives should have higher weight than peer opinion

or even be, by definition, unquestionable.

5) Trusted Peers: represent the robots whose trust opinion

has higher weight in trust decision than that of other robots

in the system, as they form a peer (friendship) group with the

trustor, whose trust they have previously gained.

6) Other Peers: represent other robots who might be rele-

vant in the context of the mission that the trustor is aiming to

complete but who do not benefit from pre-gained trust of the

trustor.

B. Direct Trust

The direct trust component consists of the present and past

experience of the trustor with the trustee, being fed by their

ongoing interaction. The present experience is influenced by

the communicated information (its accuracy and credibility)

and trustor’s direct observation of trustee actions and behavior.

The past experience reflects the experience from previous

interactions, together with their context, such as the role of

the trustee in the mission that the past experience relates to

(i.e., how dependent the trustor was on the trustee at that point

in time to complete its mission). Besides, the past experience

also records past trust decisions made by the trustor about the

trustee.

C. Indirect Trust

The indirect trust component is specific to the role it origi-

nates from. While the authority governs the global reputation

of each MRS member, the leader gives trust directives (e.g.,

the necessity to trust a certain robot), the peers (both the

trusted peers and other peers) only share their trust opinion,

together with supplementary trust-related information, which

can be shared by any of these actors. The trust-related in-

formation can, for instance, consist of the elements of peers’

subjective past experience with the trustee in question.
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D. Context Information

The context information characterizes the context of the

trustor that influences its trust decision. This includes its

vulnerability and reparability as in the baseline TMF, but it

also includes information about the mission that the trustor is

deployed to complete (namely the mission state, time left, and

data sensitivity). Mission state stands for mission progress so

far (e.g., environment explored, part of the resources lost) and

its future plan (e.g., collecting environmental information, re-

turning to the base). Time left records how much time is left to

complete the mission. The mission state and time left directly

influence the robot’s behavior, decision-making process, the

need for collaboration with other robots, and overall security

and safety requirements. Data sensitivity mainly impacts data

transmission and communication—the higher the sensitivity

level, the higher trust score of a trustee/peer is necessary to

approve data communication.

E. Trust Decision

The trust decision is made on the basis of the direct trust

consideration, indirect trust inputs, and the current state of the

context in the particular moment when the trust decision is to

be made. The result is stored in the past experience part of the

direct trust component (as it is subjective to the trustor) and

propagated to the rest of the network via trust and information

sharing.

VIII. DISCUSSION

With the advent of Industry 4.0, Smart Cities, and other

advanced contexts [42], [43], MRS are becoming increasingly

present in everyday life, where increasingly more tasks rely

on them. Therefore, their trustworthiness and safety needs to

be taken more seriously. Our work brings ideas on preventing

attacks even before they occur by carefully selecting trusted

system members. By avoiding suspicious individuals, the

whole MRS can become more trustworthy, and hence, it can

participate in more critical tasks, including interaction with

vulnerable human beings.

The selection of trusted peers cannot be done imprudently

as the MRS missions are intended to be done by collaboration

between multiple robots. An extensive reduction in the pool

size of trusted peers might thus lead to lower efficiency or

even failure of the mission.

The proposed TMF for MRS brings structured information

and methods to make trust decisions consciously by con-

sidering relevant data and the real-time state of the mission

and the environment. As the amount of this data may be

overwhelming, its processing should be considered in the early

phase of the system design. The TMF should be narrowly

targeted to MRS to cover all their needs, but it should also

be flexible enough to adapt to any of the wide range of MRS

types.

A. Threats to Validity

To minimize the threats to validity, the proposed TMF

for MRS is built on two main sources, covered by careful

methodological design to minimize the risks of compromising

its quality. To this end, we have opted for an incremental

design, starting from an existing baseline TMF and scrutinized

its components in both the direction of the necessity of

existing components and their sufficiency to cover possible

MRS scenarios.

B. Application of the Proposed Framework

The framework shows which facts should be considered

when deciding trust between the trustor and the trustee. When

designing a MRS, all of these items should be considered

and covered to achieve the best result. Each part of the TMF

should be adjusted to the context of the concrete robot, and

the collected data should be structured to evaluate the trust

effectively. The trustor needs to be assigned an initial trust

score and relation to the newly encountered robot and robots

from the initial group (considering its leader hierarchy). After

that, trust should be evaluated regularly, even with robots

deemed trustworthy, due to the trust score erosion over time

(governed by the system authority). After each evaluation, the

trustor should update records about the trustee in its memory

and inform the rest of the system about its findings.

C. Future Directions

There is a multitude of research directions that can take the

proposed TMF further, whether in terms of its application or

extension. The first intended step on our side is to experiment

with the framework in a variety of case studies, exploring the

TMF in the context of heterogeneous MRS, where robots with

vastly different designs, capabilities, and purposes must work

together seamlessly. Next, we aim to explore how the TMF can

be scaled to accommodate large and complex MRS, ensuring

that trust management remains effective as the number of

robots and interactions increases.

In the next phase, we intend to explore the role of the

designed TMF in human-robot trust dynamics, especially

in scenarios where human intervention or collaboration is

necessary. This might include the need to address the ethical

implications of trust decisions made by MRS and ensure

compliance with emerging regulations in robotics and AI.

IX. CONCLUSION

In conclusion, this research contributes to the potential

of Multi-Robot Systems (MRS) in our digital era, where

their distributed intelligence and collaborative capabilities are

being harnessed for a multitude of applications, from simple

tasks to complex missions. The inherent strength of MRS,

derived from the unique abilities and collective resilience of

their robotic constituents, is limited by their susceptibility to

misbehavior and security threats. Recognizing this challenge,

this paper contributes to the solution by introducing a Trust

Management Framework (TMF) for MRS designed to fortify

the integrity and safety of MRS. Grounded in a baseline TMF,

our proposed framework integrates MRS-related mechanisms

fed by extensive research on MRS scenarios. The framework’s

emphasis on both direct and indirect trust, underpinned by
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contextual awareness, represents a holistic solution towards

safeguarding MRS against vulnerabilities and opening to door

towards MSR integration in our interconnected world.
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