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Abstract—Every year about 30 million people travel by ship
worldwide often in extreme weather conditions and polluted
environments and many other factors that impact the health
of passengers and crew staff. Such issues require medical staff
for passenger health care. We introduce a model based on
Reinforcement learning(RL) which is used in the dialogue system.
We incorporate the Hierarchical reinforcement learning (HRL)
model with the layers of Deep Q-Network for dialogue oriented
diagnosis system. Policy learning is integrated as policy gradients
are already defined. We created a two-stage hierarchical strategy.
We used the hierarchical structure with double-layer policies
for automatic disease diagnosis. A double layer means it splits
the task into sub-tasks named high-state strategy and low-level
strategy. It has a user simulator component that communicates
with the patient for symptom collection low-level agents inquire
about symptoms. Once it’s done collecting it sends results to
the high-level agent which activates the D-classifier for the last
diagnosis. When it’s done its sent back by the user simulator
to patients to verify the diagnosis made. Every single diagnosis
made has its reward that trains the system

I. INTRODUCTION

M
ARITIME TRANSPORTATION plays a vital role in

global trade and passenger transport contributing to

economic development and connectivity [14]. Maritime trans-

portation is the backbone of global trade, as ships carry over

80 percent of trading goods worldwide [34]. Almost every

industry is changing due to technology and new methods

of operation, but the maritime sector is currently seeing

this transition most quickly [26]. Further investigation pro-

vides insights into the function of innovative communications

technology, including virtual telemedicine and secure radio

expertise, and assesses their practicality in the context of

emergency maritime medicine [8], [12]. There is always a need

of medical facilities for passengers and crew members. One of

the biggest challenge in it is timely and accurate diagnosis of

disease.As ships have limited resources and lack of medical

staff on board so we can not relay on traditional methods. So

we move towards Machine learning and Artificial Intelligence

(AI) to train system to do automatic diagnosis [2].

AI has emerged as a revolutionary force in many field like 5G

vehicular networks [10], rehabilitation [24], MIMO communi-

cation [17] and also in healthcare, offering new methods to the

way we do disease identification, its treatment, and tracking.

The implementation of AI in healthcare is enhancing diag-

nostic accuracy [15]. Specially ,Hierarchical reinforcement

learning (HRL) is a promising method to extend traditional

reinforcement learning to solve more complex tasks [38]. Hi-

erarchical reinforcement learning (HRL) provides more broad

sprctrum to Rl, by offering a divide-and-conquer method-

ology. In this methodology, the intricate and challenging

problems,are divided into multiple smaller problems. These

divided problems are easier to solve and their solutions can be

regenerative to solve other related problems. This methodology

has preceding been successfully used to speed up many offline

preparing and organising algorithms where the variables of the

environment are known in advance [7]. Hierarchical reinforce-

ment learning (HRL) is a layered algorithm based on RL. HRL

has been evidenced to be efficient in challenges with deferred

and infrequent rewards and minimizing the learning difficulty

by splitting the long-term goal into stages [35]. The symptom

collection process of multiple phases of consultation between

the agent and the patient as a Markov decision process, and

uses the reinforcement learning algorithm for training [30].

our contribution is implementing the HRL by assigning re-

wards to correct symptom query in result of agent collecting

the symptom and relating it with certain disease.policy learn-

ing is integrated as policy gradients are already defined.As

we are using hierarchical reinforcement learning it creates

two stage hierarchical strategy, fist stage is high level strategy

which triggers the low level strategy. Low level strategy have

multiple agents working as symptoms checkers and disease

classifiers. Each Agent is responsible for investigating certain

types of diseases.At the end we have disease classifier which

is responsible to check responses from all agents and conclude
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disease diagnosed. Every disease have relation with symptoms

and symptoms are also related with more than one disease.So

for achieving maximum accuracy its necessary to understand

symptoms and narrow down options of diseases at every

single question with dialogue simulator. Now on ships as we

have limited medical staff so its doing diagnosis using HRL,

in which we have Agents every single agent is specialized

for certain field providing broad spectrum of diseases to be

diagnosed. The paper organised as follows, firstly we have

related work. As Reinforcement learning specifically hierar-

chical reinforcement learning is emerging and is popular for

classification, So we mentioned worked done earlier.Secondly

proposed framework model is which explains all components

in the model that includes leader, agent, user simulator, d-

classifier.Its shown in detail in figure 1.Thirdly we have

benchmark models which describe all the best models we are

comparing with.Lastly we have results and conclusions.

II. RELATED WORK

This section outlines some related works on the use of

reinforcement learning for healthcare problems.

Dynamic Treatment Regime (DTR) is has an importance in

healthcare as well as for medical research. DTR are considered

as sequence of alternative treatment paths and any of these

treatments can be adapted depending on the patient’s condi-

tions [6]. Therefore, the authors in [22] apply a cooperative

imitation learning approach to utilize information from both

negative and positive trajectories to learn the optimal DTR.

The given framework minimizes the chance of choosing any

treatment that results in a negative outcome during the medical

examination. However, the proposed work is not suitable to

employ for the disease diagnosis on ships.

Online symptom checkers by [20] have been put into action

to recognise the possible causes and treatments for diseases

based on a patient’s symptoms. The work in [11] uses deep

RL for fast disease diagnosis. Similarly, authors in [25] utilize

an approach of automatic development of a dialogue manager

capable of doing goal-oriented dialogues for the health do-

main. While the work in [29] employs a hierarchical RL is

used for automatic captioning the video.

A machine learning method upper confidence bound is utilized

in [16] to assist patients during their medication process at

home. Authors considered the cognitive and physical impair-

ments of the patients in the training of the machine learning

model. A similar work is also done in [5] but with the help

of Thompson sampling method. However, these systems are

useful to specific scenarios during medication at home.

An end to end multi-channel conversational interface for

dynamic and co-operative target setting is developed in [29],

which integrates collective reward (task/persona/sentiment) for

task success, personalized augmentation and user-adaptive

behavior. Furthermore, an automatic diagnostic system is de-

signed in [27] by applying both evident and inherent symptoms

utilized by the Deep-Q Network Reinforcement Policy.

Moreover, there are some AI based solutions for the contin-

uous and remote monitoring of unpredictable health issues.

Such a failure mode and effect analysis is given in [4] and [3]

for a specific mobile health monitoring system. Both of these

systems were designed to provide remote healthcare solutions

but these are for certain cases and environments and cannot

be generalised for other cases.

The works in [19] and [23] use AI techniques for risk

management in nuclear medication department. The later will

is the extension of former one and discuss the risk cases during

examination at such departments. Although, the proposed

systems are useful to avoid possible risk at nuclear medication

departments but are not useful for healthcare solutions at ships.

an End-to-End Knowledge-routed Relational Dialogue System

(KR-DS) that enables dialogue management, natural language

understanding, and natural language generation to cooper-

atively optimize via reinforcement learning is presented in

[1]. [32]. Q-learning algorithm is used in [18] to create

an optimal controller for cancer chemotherapy drug dosing.

Major depressive disorder treatment is considered in [21]. The

authors have utilized the strong transfer ability of HRL to

build a cross-domain dialogue system, which learned shareable

information in similar subdomains of different main domains

to train a general underlying policy.

Hybrid and hierarchical RL methods gained significant

attention in recent years [10]. The proposed work presents

extended RL structure as hierarchical structure that has two-

stage policies for automatic diagnosis. it has hierarchical

structure with double layer policies for automatic disease

diagnosis.Double layer means it splits the task into sub-

tasks named as high-state strategy and low level strategy.User

simulator communicates with patient for symptom collection

low level agent inquire symptoms. Once its done collecting

it sends results to high level agent which activates the D-

classifier for last diagnosis.When its done its send back by

user simulator to patients to verify diagnosis made.

III. MODEL FRAMEWORK

The disease diagnosis model finds the policy π for the

maximum reward. For disease diagnosis Markov decision

process is used in which M = [S,A,P,γ] [9]. S is the state,

Sh is state in high stage strategy, Sl i is state in low-stage

strategy, n is the number of low strategy agents. All states can

be expressed as S = Sh
⋃

{

Sl i
}n

i=1
. For actions, Ah is high stage

agent’s action ,Al i is low stage action. n is the number of low

strategy agents. All actions are expressed as A = Ah
⋃

{

Al i
}n

i=1
All dialogue rewards is shown by R. State transition model

is shown by P. γ is the discount rate used to compute Q

value function. The major aim is to optimize Markov decision

process M = [S,A,P,Γ] and identify the policy π that elevate

the cumulative discount reward for all (S,A).
In this paper, we extend simple RL structure into hierarchical

structure that has two-stage policies for automatic diagnosis.

Framework is shown in the Figure 1 it is hierarchical structure

with double layer policies for automatic disease diagnosis.

Double layer means it splits the task into sub-tasks named

as high-state strategy and low level strategy. Idea is inspired

by hospital consultation in real world. It works in a way that
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Fig. 1. Model Diagram

High-state Agent gets the current initial state as St , then it

appoints a low level agent to communicate with user simulator

for symptom collection. In Figure 1,it has four main parts

Leader, Agent, User simulator and Disease classifier. Current

initial state as St is encoded as a vector that depicts the level of

each symptom and also about number of iterations necessary.

Consider a doctor that asks symptoms from patient. They

will first consider that patient have certain disease and start

asking related symptoms. Similar to that agent chooses a

symptom to inquire the patient At ∈ SṪhe possible user

responses could be (true/false/unknown). If at is element in set

of diseases, agent will inform user about diagnosis made, and

diagnosis is made dialogue session would end and accuracy

depends on correctness of diagnosis.

A. Strategy of Leader Model

In leader model its main task is to figure out if its activating

the D-classifier or the agent to collect more symptoms. Once

the leader activates the agent it will interact with user N num-

ber of cycles (dialogue rounds) until sub task is terminated. For

action at
l the reward of the leader is rl

t . Γ is the discount factor

and re
t+t ′

is the reward given by user simulator to low stage

agent for current cycle. One reward is generated for disease

classifier shown as re
t . In formula d is the action to activate

the agent Ai.

rt =

{

∑
N
t ′=1 Γt ′re

t+t ′
, if al

t = Ai

re
t , if al

t = d
(1)

The rewards obtained from user simulator will be aggregated

as the reward of High-stage agent which is the high-stage

reward calculated in equation(1).

B. Strategy of Agent Model

The objective of agent is to optimize the expected cumula-

tive discounted reward. For that we use bellman equation in it

Q-value function illustrates cumulative reward. In equation θl

is the parameter of present policy network. Action of agent is

shown by al
t and after taking action the next dialogue state is

St+1 to the policy π .

Qπ
l (st ,a

l
t |θ

l) = rl
t +E(St+1,a

l
t+1)

[ΓT
l Qπ

l (St+1,a
l
t+1|θ

l ′)](2)

The low-stage agent has task of compiling symptoms by taking

to user simulator, which is activated by high-stage agent.

The high level agent has layers of DQN and parameters of

the network is shown byθl . The parameters keep updating in

training by decreasing the mean-square error(MSE) between

the Q-values of target network achieved and the Q-value of

current one. That MSE is utilized as loss function of the

advance policy network as shown in equation (3).

L(θ l) = E[rl
t +ΓT

l max lat+1
Q∗

l (St+1,a
l
t+1)|θ

l ′)

−Qπ
l (St+1,a

l
t+1|θ

l ′)2]
(3)

In equation (3) first term is Q value of target network achieved

and second one is Q value of present network.

C. User Simulator

The user simulator is the part of system that is responsible

of communicating with agent and also contains the user aims

in the data set. AT the start of every dialogue session it samples

the aims randomly from training set. User aim hold two

types of symptoms named as explicit and implicit symptoms.

Explicit symptoms are provided to agent as initial input and

with the help of that it will discover implicit symptoms while

interacting with patient. During the interaction if it gets correct

symptom then it will get reward as 1 , with incorrect symptom

it will get reward of -1 and for an unknown symptom it will get

reward of 0. Once its done collecting symptoms from patient

low-stage agent activates high-stage agent and then the disease

classifier for final classification of disease.

D. synthetic Dataset

On ships we have vast range of diseases that can occur, so

having such big real world data set was almost impossible so

we used synthetic data set available as Data/Fudan-Medical-

Dialogue2.0 to show the effectiveness of HRL. In it every

disease is linked with set of symptoms, not only that every

single symptom has a probability for a certain disease. Now

for identification process out of many symptoms in data set

we choose any of explicit symptoms among those provided by

the patient , that one symptom has more importance and rest

of the symptoms are treated as implicit symptoms.

IV. BENCHMARK MODELS

First work is done on dialogue system which used task

oriented disease diagnoses. It used one layer policy structure

based DQN wich is called FLAT-DQN it has to do with

choosing actions in each turn of dialogues[30]. After that

there is a dialogue system for automatic medical diagnosis

that communicates with patients to collect extra symptoms

other than their self-reports and do automatic diagnose. It
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uses KR-DS that treats all diseases and all symptoms equally

[33]. HDNO, a hierarchical reinforcement learning model,

to improve performance and is validated on dialogue-based

MultiWoz datasets [28]. HRL is a hierarchical reinforcement

learning model which uses disease classifier for classification

of symptoms separately [13]. GAMP, a model that integrates

the generative adversarial network(GAN). Its policy was also

DQN based used generator to generate action and a discrimina-

tor is there to check if its a good action taken on base of reward

achieved [31]. HRL-pre-T , Its Hrl pre trained has two levels

of policy just like us but one visible difference is that it trains

the models separately and we train them together [11]. HRL

is the model that used both real world and synthetic dataset

and used in disease diagnosis [36]. KN-HRL is the enhanced

model that creates the disease symptom relation matrix and

do disease diagnosis based on patient’s utterances [37].

V. RESULTS AND CONCLUSIONS

In order to check performance of our model we conduct

experiment on same synthetic dataset.We did comparison of

all models that includes Flat-DQN, KR-Ds, REFUEL, GAMP,

HRL-Pre-T, KNHRL and Lastly our HRL model.Flat-DQN,

KR-Ds, REFUEL performed almost similarly. Flat-DQN, KR-

Ds are good models but performed best with the short di-

alogues. KNHRL and Lastly HRL model performed well

but with less accuracy with larger dialogues. We present a

comparison of all as given in Table 1.HRL(ours) used publicly

available data set with the more medical knowledge in format

of dialogues.It used disease symptom relation and symptom

disease for training and testing both , also multiple rounds of

dialogues with user simulator and patient and multiple layers

of DQN which improves accuracy.

Table1

Test Ac-

curacy

Avg

turns

Match

rate

Flat-DQN 0.343 1.23 0.023

KR-Ds 0.357 6.24 0.388

REFUEL 0.416 4.56 0.161

GAMP 0.409 1.36 0.077

HRL-Pre-T 0.452 6.838 /

HRL 0.504 6.48 0.495

KNHRL 0.558 20.98 0.333

HRL (ours) 0.627 3.00 0.506

In future work we hope to gain more accuracy and collect

some real world dataset.We think that with further more

improvements this model can solve the problem of shortage

of medical staff in the entire world.
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