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Abstract—This paper explores a novel variation of the classical
secretary problem, commonly referred to as the marriage or best
choice problem. In this adaptation, a decision-maker sequentially
dates n ∈ N candidates, each uniquely ranked without ties from
1 to n. The decision strategy involves a preliminary non-selection
phase of the first d ∈ N candidates where, d < n, following which
the decision-maker commits to the first subsequent candidate
who surpasses all previously evaluated candidates in quality.
The central focus of this study is the derivation and analysis
of P (d, n, k), which denotes the probability that the selected
candidate, under the prescribed strategy, ranks among the top
k ∈ N overall candidates, where k ≤ n. This investigation
employs combinatorial probability theory to formulate P (d, n, k)
and explores its behavior across various parameter values of d,
n, and k. Particularly, we seek to determine in what fraction
of the entire decision process should a decision-maker stop the
non-selection phase, i.e., we search for the optimal proportion d

n
,

that maximizes the probability P (d, n, k), with a special focus
on scenarios where k is in generally low. While for k = 1,
the problem is simplified to the classical secretary problem with
d

n
≈

1

e
, our findings suggest that the strategy’s effectiveness is

optimized for portion d

n
decreasing below 1

e
as k increases. Also,

intuitively, probability P (d, n, k) increases as k increases, since
the number of acceptable top candidates increases. These results
not only extend the classical secretary problem but also provide
strategic insights into decision-making processes involving ranked
choices, sequential evaluation, and applications of searching not
necessarily the best candidate, but one of the best candidates.

I. INTRODUCTION

T
HE secretary problem demonstrates a scenario involving
optimal stopping theory, which is studied extensively in

the fields of applied probability, statistics, and decision theory.
Known under various names such as the marriage problem, the
sultan’s dowry problem, the fussy suitor problem, the googol

game, and the best choice problem, its solution has garnered
attention due to the intriguing nature of its simple yet effective
decision strategy often referred to as the 37% rule [1].

In the classical form of the problem, an administrator
aims to hire the best secretary out of n (uniquely) rankable
applicants. Each applicant is interviewed one at a time in
random order, with an immediate decision required at the
end of each interview. Once rejected, an applicant cannot
be recalled. The challenge lies in making a decision with
incomplete information about the quality of unseen applicants,
necessitating a strategy that balances the risk of passing up
the best candidate against the potential for future superior
candidates. The odds algorithm provides the shortest rigorous
proof for this problem, establishing that the optimal win
probability is always at least 1

e
, with the optimal stopping

rule being to reject the first ∼ n
e

applicants, i.e. roughly 37 %
of n, and then stop at the first applicant who is better than all
previously interviewed candidates.

Other modifications of the secretary problem explore var-
ious strategic nuances. One such variant is the “postdoc”
problem [2], where the objective shifts from selecting the
best to the second-best candidate (because the “best” will
go to Harvard). Theoretical analysis shows that the success
probability for this variant with an even number of applicants
is exactly 0.25n2

n(n−1) , which simplifies to approximately 1/4 as n
grows large. This change underscores the subtlety needed in
planning and execution when the goal is not to secure the top
choice but a candidate just slightly less optimal.

Further expanding the range of strategic considerations,
another version allows multiple selections, aiming to secure
the top-k candidates using k tries [3]. Here, the challenge
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grows with k, as each choice potentially affects subsequent se-
lections. Research indicates that the initial non-selection phase
should last approximately

⌊

n
ke1/k

⌋

candidates, maximizing the
chance of selecting all top-k candidates, which converges to
1
ek

in probability as n becomes very large. In a sophisticated
variant of the secretary problem, a decision-maker is granted
multiple attempts to select the best candidate [4], each gov-
erned by a distinct set of r decision thresholds (a1, a2, . . . , ar),
where a1 > a2 > · · · > ar. As the number of interviews
approaches infinity, the threshold for each decision-maker
converges to ne−ki , where ki is a defined constant [5]. Bruss
and Louchard in [6] explored online selection strategies for
choosing the κ best objects from n sequentially observed,
rankable objects, with a focus on threshold functions that
account for past selections and their asymptotic behavior as
n→∞.

In this work, we extend the classic framework to develop
and analyze P (d, n, k), the probability that after skipping first
d candidates, the candidate selected using a stopping rule, i.e.,
the one that got the highest ranking so far, ranks among the top
k candidates out of n candidates in total. Our study examines
the effects of varying the parameters d, n, and k to determine
optimal selection strategy, particularly we search for propor-
tion d

n
that maximizes probability P (d, n, k). Besides different

decision thresholds, we specifically explore the efficacy and
the impact of increasing k on the strategy’s performance.
Skipping the first d candidates allows for establishing a robust
benchmark of candidate quality without prematurely commit-
ting, thus striking a critical balance between not selecting
too early (if d is small), which risks missing higher-quality
candidates appearing later, and not starting too late (when d
is large), which risks missing optimal candidates that have
already been evaluated. This opens room for optimizing the
value of d or d

n
which maximizes probability P (d, n, k) of

selecting one of the top k candidates.

II. A MODIFIED SECRETARY PROBLEM OF SEARCHING FOR

TOP CANDIDATES

The classical secretary problem, also known as the marriage
problem, traditionally focuses on identifying the optimal strat-
egy to select the best candidate from a sequentially reviewed
set. This section introduces a modified version of the secretary
problem that expands the objective to include not just the
best candidate but potentially any of the top few candidates,
based on predefined criteria. This modification introduces
a more complex and realistic scenario that decision-makers
often encounter in various practical applications, from hiring
processes to academic admissions.

A. Problem setup and notation

In this modified framework, a decision-maker sequentially
dates n ∈ N candidates, each uniquely ranked from 1 to n
without ties. The candidates are reviewed one at a time in
a random sequence, and the decision-maker must decide im-
mediately after each interview whether to select the candidate
or continue with the process. Once a candidate is rejected,

they cannot be recalled. The decision-maker initially evaluates
d candidates without selecting any of them, where 1 ≤ d < n.
This phase is crucial for establishing a benchmark against
which all subsequent candidates are compared. It allows the
decision-maker to gain a clear understanding of the average
candidate quality, setting a standard that must be exceeded
to initiate the selection phase. Starting from the (d + 1)-th
candidate and continuing with (d + 2)-th, (d + 3)-th candi-
date, . . . , the decision-maker selects the first candidate who
surpasses all previously evaluated candidates in quality. This
approach aims to maximize the likelihood of choosing one of
the top-ranked candidates by ensuring a thorough comparison
to a well-established quality benchmark.

B. Description of the strategy

The specifics of the strategy can be further distilled into
several key steps.

(i) Evaluate the first d candidates without selecting any
(non-selection phase).

(ii) Begin the selection process with the (d+1)-th candidate.
(iii) Continue with (d+ 2)-th, (d+ 3)-th candidate, . . . , and

stop at the first candidate who is better than all the
evaluated candidates so far.

(iv) If no such candidate is found by the end, either select the
last candidate or leave the position unfilled, depending
on specific rules which may be predefined in the problem
statement.

This modified approach introduces a dynamic element to the
decision-making process, where the decision-maker’s strategy
adapts based on the outcomes of initial evaluations. Let
P (d, n, k) be a probability that the selected candidate, using
the prescribed strategy, is among the top k ranked candidates.
The objective is to maximize the probability P (d, n, k), which
quantifies the success of the strategy in terms of selecting
a top-ranked candidate. The subsequent section will delve into
the solution methods and analytical techniques used to derive
and maximize P (d, n, k), offering insights into the optimal
values of d

n
and the conditions under which the strategy

succeeds.

C. Analytical derivation of P (d, n, k)

In this section, we delve into the analytical workings of the
formula P (d, n, k), which quantifies the probability that the
selected candidate is among the top k out of n candidates,
following a strategy where the first d candidates are merely
evaluated and not selected, 1 ≤ d < n. The derivation involves
considering each candidate i, where i ranges from d+1 to n,
and calculating the probability that this i-th candidate is one
of the k best.

Assume that the candidate i is being considered for se-
lection, with i ∈ {d + 1, d + 2, . . . , n}. The strategy entails
skipping the initial d candidates, so the analysis starts from
the (d + 1)-th candidate. Several aspects ensure that the i-th
candidate, who is selected, is one of top k candidates.

(i) To select i-th candidate, the decision-maker couldn’t
meet before any candidate rated higher than any of first
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d candidates. Thus, the maximum rating among the first
i−1 candidates (including the skipped d candidates) must
lie within these d candidates, occurring with a probability
of d

i−1 .
(ii) The selected i-th candidate must be among the top k

candidates in total.

• The probability that the i-th candidate is the absolute
best among all n candidates is 1

n
.

• The probability that the i-th candidate is the second-
best involves two conditions: first, the i-th position
must actually be the second highest, which occurs
with probability 1

n
, and second, the best candidate

is not among the first i candidates but among those
who follow (otherwise, they should be selected as
a candidate with the highest ranking so far), which
occurs with probability n−i

n−1 . Therefore, the com-
bined probability is

1

n
·
n− i

n− 1
.

• For the i-th candidate to be the third-best, the
logic extends further: the probability of being third
is compounded by the likelihood that exactly two
candidates ranked higher are still to come after

candidate i, so equal to
(n−i

2 )·2!
(n−1

2 )·2!
. This probability

is calculated as

1

n
·

(

n−i
2

)

· 2!
(

n−1
2

)

· 2!
=

1

n
·
(n− i)(n− i− 1)

(n− 1)(n− 2)
.

• Extending this to the general case for the j-th best,
where 1 ≤ j ≤ k, the probability that the i-th
candidate is the j-th best can be similarly modeled. It
is the product of the probability that the i-th position
is the j-th highest, 1

n
, and that all higher-ranked j−1

candidates appear among those n− i yet to be seen,
(n−i
j−1)·(j−1)!

(n−1

j−1)·(j−1)!
, so

1

n
·

(

n−i
j−1

)

· (j − 1)!
(

n−1
j−1

)

· (j − 1)!
=

(

n−i
j−1

)

· (j − 1)!

n · (n−1)!
(j−1)! (n−j)! · (j − 1)!

=

=

(

n−i
j−1

)

· (j − 1)!

n · (n−1)!
(n−j)!

=

=

(

n−i
j−1

)

· (j − 1)!
n!

(n−j)!

=

=

(

n−i
j−1

)

· (j − 1)!
n!

(n−j)! j! · j!
=

=

(

n−i
j−1

)

· (j − 1)!
(

n
j

)

· j!
(1)

The i-th selected candidate can be the first, the sec-
ond, . . . , or the k-th best out of all n candidates,
so j ∈ {1, 2, . . . , k}. Since these states are obviously
disjunctive, the probability that i-th selected candidate

(for fixed i ∈ {d + 1, d + 2, . . . , n}) is among top k is,
using formula (1), equals to

k
∑

j=1

(

n−i
j−1

)

· (j − 1)!
(

n
j

)

· j!
. (2)

Since conditions (i) and (ii) from previous analysis are
independent (condition (i) deals with arrangement of first i−1
candidates while condition (ii) handles last n−i+1 candidates
sequence), we can derive that the probability for the i-th
candidate being among the top k and better than the previous
maximum observed among the first i − 1 candidates can be
represented (for fixed i ∈ {d+ 1, d+ 2, . . . , n}) as

d

i− 1

k
∑

j=1

(

n−i
j−1

)

· (j − 1)!
(

n
j

)

· j!
, (3)

and since i-th candidate can be (d+1)-th, (d+2)-th, . . . , n-th
one (which are disjunctive), we get the complete probability
that the i-th candidate is among the top k and with the highest
ranking so far out of the first i− 1 candidates, as follows

P (d, n, k)
(1,2,3)
=

n
∑

i=d+1

d

i− 1

k
∑

j=1

(

n−i
j−1

)

· (j − 1)!
(

n
j

)

· j!
. (4)

III. OPTIMAL STRATEGY FOR THE MODIFIED SECRETARY

PROBLEM OF SEARCHING FOR TOP CANDIDATES

We assume that a decision-maker knows or pre-estimates
the number n of all candidates and also decides how many
top candidates k are relevant for their selection. However, the
decision-maker would like to know, at which candidate to stop
only evaluate rating and start possible selecting to maximize
probability P (d, n, k) of selecting one of top k candidates. In
other words, the decision-maker would like to know the value
of d, or value of d

n
.

A. Maximizing P (d, n, k) for fixed n ∈ N and k = 1 with

respect to 1 ≤ d < n

Let’s focus on simplifying the formula for P (d, n, k) when
k = 1. This specific case indeed reverts the problem to the
classical secretary problem [1], where the goal is to maximize
the probability of selecting the best candidate out of n. For
k = 1, formula (4) simplifies significantly,

P (d, n, 1) =

n
∑

i=d+1

d

i− 1

1
∑

j=1

(

n−i
j−1

)

· (j − 1)!
(

n
j

)

· j!
=

=

n
∑

i=d+1

d

i− 1

(

n−i
1−1

)

· (1− 1)!
(

n
1

)

· 1!
=

=
n
∑

i=d+1

d

i− 1

(

n−i
0

)

· (0)!
(

n
1

)

· 1!
=

=
n
∑

i=d+1

d

i− 1

1

n
=

d

n

n
∑

i=d+1

1

i− 1
=

=
d

n

n−1
∑

i=d

1

i
. (5)
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Formula (5) can be simplified using harmonic series, where
Hn =

∑n
i=1

1
i
. Therefore, the partial sum from d to n− 1 as

in formula (5) can be expressed as

n−1
∑

i=d

1

i
=

n−1
∑

i=1

1

i
−

d−1
∑

i=1

1

i
= Hn−1 −Hd−1,

thus, we improve formula (5) as

P (d, n, 1) =
d

n

n−1
∑

i=d

1

i
=

d

n
(Hn−1 −Hd−1). (6)

For large n, the harmonic number Hn can be approximated
using the natural logarithm as Hn ≈ ln(n)+γ, where γ is the
Euler-Mascheroni constant. Applying this to our partial sum
in formula (6), we get

P (d, n, 1) =
d

n
(Hn−1 −Hd−1) ≈

≈
d

n
(ln(n− 1) + γ − (ln(d− 1) + γ)) ≈

≈
d

n
(ln(n− 1)− ln(d− 1)) ≈

≈
d

n
· ln

(

n− 1

d− 1

)

. (7)

Let’s take a derivative of P (d, n, 1) from formula (7)
with respect to d searching for the value of d maximizing
P (d, n, 1),

∂

∂d
P (d, n, 1) ≈

∂

∂d

{

d

n
· ln

(

n− 1

d− 1

)}

=

=
1

n
· ln

(

n− 1

d− 1

)

+
d

n

1
n−1
d−1

(

−
n− 1

(d− 1)2

)

=

=
1

n
· ln

(

n− 1

d− 1

)

−
d

n(d− 1)
. (8)

Putting derivative ∂
∂d

P (d, n, 1) from formula (8) equal zero,
we get

∂

∂d
P (d, n, 1) ≡ 0

1

n
· ln

(

n− 1

d− 1

)

−
d

n(d− 1)
= 0

1

n
· ln

(

n− 1

d− 1

)

=
d

n(d− 1)

ln

(

n− 1

d− 1

)

=
d

d− 1
,

and for large n and d is n−1
d−1 ≈

n
d

and d ≈ d− 1, so

ln

(

n− 1

d− 1

)

=
d

d− 1

ln
(n

d

)

≈
d

d
= 1, (9)

which results in n
d
≈ e or d

n
≈ 1

e
, where e is Euler constant.

The well-known 37% rule comes from the equation d
n
≈ 1

e
in

formula (9) since 1
e
≈ 0.369.

B. Maximizing P (d, n, k) for fixed n ∈ N and k > 1 with

respect to 1 ≤ d < n

To simplify and analyze P (d, n, k) in a continuous manner
which would enable us to search for d

n
maximizing P (d, n, k),

we consider a transformation using continuous approxima-
tions. Assuming a large n, the sums can be approximated by
integrals,

P (d, n, k) ≈

∫ n

d

d

x− 1

k
∑

j=1

(

1

j
·

(

n−x
j−1

)

(

n
j

)

)

dx. (10)

Given the transcendental nature of the expressions in for-
mula (10), involving exponential and logarithmic functions in
integral form, and the eventual use of the gamma function
Γ(x) = (x−1)! in place of combinatorial numbers, numerical
methods are preferred for solving the optimal parameters,
highlighting the complexity and non-linearity of the problem.

C. Maximizing P (d, n, k) for fixed n ∈ N and 1 ≤ k ≤ n
with respect to 1 ≤ d < n using numerical approaches

Formula (10) indicates that a numerical searching for d
n

that
maximizes P (d, n, k) for fixed n ∈ N and 1 ≤ k ≤ n, where
d is any value in 1 ≤ d < n, could be more promising than
an analytical solution.

We set n = 20 and searched numerically for d
n

that maximizes P (d, n, k) for k ∈ {1, 2, . . . , 20}.
We used both formula (4) and also a function
getMyProbability(n, d, k,m) based on Monte Carlo
simulation, see Algorithm 1, that estimates P (d, n, k)
probability for m = 50 random samples of candidates
for each combination of values (d, n, k). The outcomes of
function getMyProbability(n, d, k,m) should confirm
analytical correctness of formula (4) for P (d, n, k) probability.
In Algorithm 1, we set d < n because if d = n, the selection
phase cannot occur, as it begins with the (d+1)-th candidate.
We denote the probability as P̂ (d, n, k) in Algorithm 1
instead of P (d, n, k), as the algorithm uses a finite number
(m) of simulated repetitions. If Algorithm 1 is repeated t
times, yielding P̂ (d, n, k)τ in its τ -th iteration, the following
relationship holds, P (d, n, k) = limt→∞

1
t

∑t
τ=1 P̂ (d, n, k)τ .

In Fig. 1, we see the values of d
n

for n =
20 and k ∈ {1, 2, . . . , 8}. While the boxplots come
from simulated samples of candidates so that func-
tion getMyProbability(n, d, k,m) estimated value of
P (d, n, k) across all m = 50 repetitions for a given combi-
nation of (d, n, k), the blue line shows analytically computed
values of P (d, n, k) using formula (4).

As we expected, the proportion d
n

decreases as k increases
– it is feasible, if more candidates are acceptable for selection
(larger k), the more of them are likely in last n−d candidates
in a row, thus, d and d

n
could diminish. As k increases, the

probability P (d, n, k) of selecting a top k candidate rises,
which is intuitive since accepting more candidates increases
the chances of selection. Optimal values of d∗ and d∗

n
that

maximizes P (d, n, k) for n = 20 and k ∈ {1, 2, . . . , 20}, as
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Algorithm 1: Estimation of probability P (d, n, k) of
selecting one of top k candidates

1 Function getMyProbability(n, d, k,m):
Input : n (total # of candidates), d (# of

candidates to meet without selecting), k
(# of top ranked candidates), m (# of
scenarios to simulate)

Output: estimate of P (d, n, k) probability
2 c← 0;
3 for i← 1 to m do

4 sample← sample integers from 1 to n
without replacement;

5 if d < n then

6 j ← d+ 1;
7 while j ≤ n and

sample[j] < max(sample[1 : d]) do

8 j ← j + 1;
9 end

10 if j ≤ n and sample[j] is in the top k
positions of n then

11 c← c+ 1;
12 end

13 end

14 end

15 P̂ (d, n, k)← c
m

;
16 return P̂ (d, n, k);
17 return

TABLE I
OPTIMAL VALUES OF d∗ AND RATIOS d

∗

n
THAT MAXIMIZES PROBABILITY

P (d∗, n, k), AND MAXIMUM VALUE OF THE PROBABILITY FOR SELECTING

ONE OF THE TOP k CANDIDATES OUT OF n = 20. THE PROPORTION d
∗

n

DECREASES AS k INCREASES, INDICATING A SHIFT TOWARDS EARLIER

SELECTION FOR LESS RESTRICTIVE OUTCOMES.

k d∗ d
∗

n
P (d∗, n, k)

1 7 0.350 0.384
2 6 0.300 0.538
3 5 0.250 0.627
4 4 0.200 0.687
5 4 0.200 0.730
6 3 0.150 0.766
7 3 0.150 0.794
8 3 0.150 0.813
9 2 0.100 0.836

10 2 0.100 0.856
11 2 0.100 0.870
12 2 0.100 0.881
13 1 0.050 0.889
14 1 0.050 0.907
15 1 0.050 0.922
16 1 0.050 0.934
17 1 0.050 0.942
18 1 0.050 0.947
19 1 0.050 0.950
20 1 0.050 0.950

0
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0
.8

d

P
(d
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n

, 
k

)

2 4 6 8 10 12 14 16 18 20
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0
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k
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0
.8
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P
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n
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k

)
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k  =  3

0
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0
.4

0
.8

d

P
(d

, 
n

, 
k

)
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k  =  4

0
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0
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0
.8

d

P
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, 
n

, 
k

)
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k  =  5

0
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0
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0
.8

d

P
(d

, 
n

, 
k

)

2 4 6 8 10 12 14 16 18 20

k  =  6

0
.0

0
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0
.8

d

P
(d

, 
n

, 
k

)

2 4 6 8 10 12 14 16 18 20

k  =  7

0
.0

0
.4

0
.8

d

P
(d

, 
n

, 
k

)

2 4 6 8 10 12 14 16 18 20

k  =  8

Fig. 1. Optimization of d

n
for maximizing P (d, n, k) across k values

from 1 to 20 with n = 20, using both analytical formula (4) and Monte
Carlo simulations via getMyProbability(n, d, k,m) (Algorithm 1). As
k increases, P (d, n, k) rises while d

n
decreases, demonstrating a trade-off in

selection strategy efficiency. Boxplots come from m = 50 random repetitions
of sample generation for given combinations of (d, n, k) and confirm the
analytical model’s predictions. Blue line stands for values of analytically
calculated P (d, n, k).
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well as the maximized values of probability P (d∗, n, k), are
in Table I, and correspond to outcomes from Fig. 1.

Finally, in Fig. 2, there are values of d∗

n
that maximize

P (d, n, k) for n = 100 and k ∈ {1, 2, . . . , 100}, and Fig. 3
shows maximized values of P (d∗, n, k) for varying values
k ∈ {1, 2, . . . , 100} and n = 100. Similarly as before, max-
imizing proportions d∗

n
decrease and maximized probabilities

P (d∗, n, k) increase, as k increases. Both Table I and Fig. 2
show that for a restrictive approach when only top k = 3
are acceptable for selection, we need to stop the non-selecting
phase not earlier than before skipping first 25 % of candidates,
i.e., d∗

n
≈ 0.25, which could be called as a 25% rule.

0 20 40 60 80 100

0
.0

0
0
.1

0
0
.2

0
0
.3

0

k

d
*
/n

n  =  100

Fig. 2. Values of d
∗

n
that maximize P (d, n, k) for n = 100 and varying

values k ∈ {1, 2, . . . , 100}.
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Fig. 3. Maximized values of P (d∗, n, k) for n = 100 and varying values
k ∈ {1, 2, . . . , 100}.

IV. CONCLUSION

This study has extended the classical secretary problem by
exploring the probability P (d, n, k) of successfully selecting

one of the top k candidates after initially skipping d can-
didates. Using probability and combinatorics, we illustrated
that analytical methods for searching values of proportions d

n

maximizing probability P (d, n, k) are complex, thus, we use
Monte Carlo simulations to investigate the optimal strategies
for different settings of k.

Our findings indicate a clear strategy shift depending on
the rank acceptability, k. As k increases, allowing for a less
restrictive choice, the optimal d

n
ratio decreases, signifying

that an earlier selection becomes preferable. For k = 1, which
reflects the traditional secretary problem, the optimal skipping
strategy is d

n
≈ 1

e
≈ 0.369, consistent with the well-known

theoretical result of skipping the first 37 % of candidates. Also,
probability P (d, n, k) rises as k increases – intuitively, the
more candidates are acceptable for selection, the higher is the
chance for selecting one of them. When considering only the
top k = 3 candidates for selection, the non-selecting phase
should extend through at least the first 25 % of candidates,
effectively establishing a 25% rule.

For real-world applications, such as hiring processes or
competitive selection scenarios, these insights can guide more
nuanced and more practical strategies that balance risk and
reward effectively according to the range of acceptable out-
comes. Also, in various applications, we do not want neces-
sarily select the very best candidate, but one of top candidates
is enough.
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