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Abstract—Cyber-Physical Systems are designed and developed
using multi-disciplinary teams. Handovers from one discipline
to another often occur using text documents written in natural
language, which can be imprecise, ambiguous, and lead to errors.
To improve this situation, we created a textual Domain Specific
Language with live graphical feedback to enhance the handover
between mechanical and mechatronic engineers working on
medical robots at Philips IGT. The Domain Specific Language
formalizes the system description and provides immediate live
graphical feedback to prevent mistakes from being made, such as
editing the wrong physical parts and by visualizing the differences
of two versions of a system. In addition, our approach leverages
multiple industry standards and it enables bi-directional naviga-
tion between languages.

I. INTRODUCTION

A
CYBER-PHYSICAL System (CPS) [4] is a complex

system composed of both hardware and software compo-

nents. These systems are designed and developed with multi-

disciplinary teams. Often, a CPS consists of moving parts such

as in the case of robots, cars, airplanes, etc. For the hard-

ware component development, mechanical and mechatronics

engineers are involved. The mechanical engineer creates 3D

models of the physical components using a Computer Aided

Design (CAD) tool [27] and performs measurements, i.e., on

weight and tolerances. The mechatronics engineer makes these

physical systems move by creating control solutions using

tools such as Matlab and Simulink [21]. Both disciplines use

their own specialized software tools. Currently, the workflow

involves manually written documents that are used to handover

designs and measurement information from the mechanical

engineer to the mechatronics engineer. Due to the informal

nature of these documents, they can be imprecise, ambiguous,

and prone to errors. Additionally, changes between document

versions may go unnoticed.

At Philips IGT, we create interventional X-ray systems

such as the Azurion system in Figure 1, which are used for

minimally invasive procedures. These large medical robots

feature motorized moving parts that can be operated using

joysticks [24].

In this paper, we present an improved workflow for the

development of these CPSs. After a mechanical component

Fig. 1. Interventional X-ray system

has been modelled using a CAD tool, the mechanical engineer

can export the 3D model in the Unified Robot Description

Format (URDF) [17], which is based on eXtensible Markup

Language (XML) [7]. However, one downside of URDF is

that weights and tolerances are not included, and cannot be

added. Additionally, it lacks an import mechanism for reusing

components across similar robots. These limitations can be

addressed using the XML macro language (Xacro) [2], which

requires manual editing to add weights and tolerances. Both

formats are in XML, which is not a user-friendly way of edit-

ing. Furthermore, we place these files in a version controlled

system, but merging XML-based files is challenging.

The first author of this paper created a textual Domain

Specific Language (DSL) [11] called Geometry Specific Lan-

guage (GSL) or GeometrySL. The language extends Xacro

but is not based on XML. Instances of this language are

placed in a version controlled system and handed over from

mechanical engineers to mechatronics engineers. By using

formal GSL files instead of informal documents, we reduce

the likelihood of errors due to handovers. The GSL provides

immediate live graphical feedback when editing the textual

instance, showing which part is being edited within the robot’s

3D model. It also has facilities for graphically comparing two

versions of a robot, highlighting parts that are different in a

3D model. Additionally, it supports bi-directional navigation

from a graphical part to the corresponding DSL fragments and

vice versa. This allows seamless navigation between graphical
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views, URDF instances, Xacro instances, GSL instances, and

back again using shortcuts.

To the best of our knowledge, the novelty of this research

lies in the creation of the GSL, a DSL that defines how

differences between robot representations are visualized. By

leveraging multiple languages, including industry standards

like Xacro and URDF, this approach enables bi-directional

navigation and offers a unique method for visualizing differ-

ences in robot descriptions.

The paper is organized as follows. In Section II, we provide

an overview of related work. We describe the current and

proposed workflows in more detail in Section III. The GSL,

Xacro and URDF languages are presented in Section IV.

Section V describes the design of the tool. The resulting tool

is shown in Section VI. Discussion is in Section VII. In this

section, we also discuss how our work is related to the work

of others. And we conclude our paper in Section VIII.

II. RELATED WORK

Fig. 2. DSL categories from [26]

Shen et al. [26] categorized recent studies on DSL based on

three concerns: concrete syntax, abstract syntax and semantics.

They analyzed the parsing and mapping strategies of these

studies to classify them into categories such as external/inter-

nal, textual/graphical, modeling/visualizing/embedding. This

study aims to address research gaps in DSL categorization.

The vertical axis of Figure 2 lists literature references while

horizontal axis list the following categories:

• External (Ext): Standalone languages with their own

syntax and grammar, distinct from any host language,

providing specific solutions within a particular domain.

• Internal (Int): Embedded within an existing general-

purpose programming language, leveraging the host lan-

guage’s syntax and features to implement domain specific

constructs.

• Textual (Tex): Use text-based syntax, similar to tra-

ditional programming languages, designed for domain

experts familiar with coding or scripting.

• Graphical (Gra): Employ visual representations such

as diagrams and flowcharts to define domain specific

constructs, useful for users preferring visual over textual

representation.

• Domain Specific Visual Language (DSVL): A subset

of graphical DSLs using specialized visual notations to

represent domain concepts, facilitating understanding and

communication among stakeholders.

• Domain Specific Modeling Language (DSML): Focus

on creating models specific to a domain using specialized

syntax and semantics, providing tools for simulation,

validation, and code generation.

• Domain Specific Embedded Language (DSEL): A type

of internal DSL embedding domain specific constructs

within a host language, integrating domain specific func-

tionality directly into general-purpose language code.

The figure features a red box highlighting the scarcity of

research focused on Gra and Tex DSL combinations. While

enabling live graphical feedback reduces cognitive load,

improves collaboration and communication in engineering

projects. This study bridges computing science and behavioral

research domains to improve DSL design with live graphical

feedback for better communication and collaboration in com-

plex engineering projects.

To visualize property changes in language instances, we

need to consider their visibility. Munzner’s book [19] rec-

ommends automatic highlighting with varied colors, shapes,

or positions can emphasize distinctions between properties.

The “pop-out” effect in Munzner’s book helps users spot

differences quickly without focused attention.

In [14], Joshua Horowitz et al. define programming quali-

ties. The focus is on immediate feedback (liveness), domain

specific editing (richness) and composability. Composability

enables the inclusion of external libraries or components,

separating responsibilities over multiple sources. Programming

tasks often require using multiple composed tools, so effects

should be visible with minimal distraction and effort. Liveness

and richness often fail to retain their composability according

to Horowitz et al. conclusion. They identified a trend where

interfaces lacking composability are standalone applications

that offer limited utility in practice. This research explores

the intersection of liveness, richness and composability by

adhering to these qualities using familiarity with 3D graphical

tools for hardware-engineers’ workflow improvement and tool

intuitiveness enhancement.

Van Rozen et al. [34] recognized the need for program

execution observation in traditional programming, which re-

quires re-execution of updated source code from the beginning.

This process is time-consuming and distracting when valuable

states are lost or difficult to reproduce. To address these

challenges, they propose a more fluid and live experience in

programming using Textual Model Diff (TMDiff) [31]. Tmdiff

uses two key techniques: origin tracking (tracing semantic

model elements back to their defining source code) and text

differencing (identifying corresponding model elements when

aligned names have the same origin). The deltas found by

TMDiff are converted into run-time edit operations, which can

be applied atomically using rmpatch. Custom state migrations

extend rmpatch to avoid information loss or invalid run-time

states. Events like user interactions and changes in source

code are recorded for undo functionality, persistent application

state and back-in-time debugging. They evaluated existing

methods (Xtext and EMFCompare) using Eclipse Modeling

Framework (EMF) and found TMDiff’s scope-handling ability
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more flexible. Their goal is to minimize distractions and

preserve intermediate visual state for a smoother programming

experience.

In [10], Cooper et al. present requirements and challenges to

integrate graphical editors using Sirius within EMF. They note

that while Sirius allows creation of custom modeling editors,

it has a steep learning curve. To address this limitation, they

propose five requirements for a hybrid textual-graphical work-

bench: syntax-aware editing, scoping and referencing, rename

refactoring, error/warning marker display and accessibility to

the textual model. These requirements aim to improve produc-

tivity, reduce errors and facilitate collaboration by providing

seamless integration between graphical and textual models.

Their proposed solution aligns with a case study on hybrid

modelling workbenches.

A DSML for UML profiles was created by combining

Papyrus and Xtext using EMF. One unique feature is shared

storage base for both textual and graphical views, reducing

synchronization efforts. The tool is tested their by four sce-

narios (Create1, Modify1, Create2, Modify2) with experienced

developers in the UML language. Results showed that creating

elements and setting properties were faster in textual notation

while constructing state machines was quicker in the graphical

view. Renaming operations were faster in textual mode due

to regex search and replace efficiency. The hybrid solution

was superior in efficiency, doubling the speed in mentioned

scenarios. This demonstrates potential of combined graphical-

textual approach for DSMLs [1].

In game development, rapid adjustments of rules are made

using tools like Machinations1. Van Rozen et al. created a DSL

called Micro-Machinations (MM) using the tool Rascal [30]

to balance games. MM allows for direct visualization model

editing, shortening feedback loops and reducing design itera-

tion times by improving flexibility and adaptability. The Rascal

Language WorkBench (LWB) with SPIN model checker [5] is

used for analyzing MM, providing an IDE that reads textual

MM and displays a visual model interactively. The MM Lib is

embedded in the game itself to tackle interoperability, trace-

ability and debugging challenges [29]. An immediate feedback

loop greatly improves multi-disciplinary team collaboration in

gaming domain similar to engineering domains.

Perez et al. [22] created DSVL using both textual and

graphical views with AToM tool2. They followed meta-model

centric approach where EBNF grammar was generated based

on the meta-model, allowing decision to be made later whether

to use graphical or textual syntax. Another issue is that

produced Abstract Syntax Tree (AST) from parsing is not

formally defined causing problems in integration with multi-

view DSL proposed by them. They noticed that it is more

natural to describe equations in a textual notation.

A more extensive version of this work can be found in [6].

1https://machinations.io/
2http://atom3.cs.mcgill.ca/

III. WORKFLOW

In this section, we describe the current workflow of hard-

ware engineers at Philips IGT and we propose a new improved

workflow. The workflow involves two actors: mechanical

engineers and mechatronics engineers.

A. Current workflow

The workflow process follows a waterfall approach, where

mechanical engineers measure the system in the factory. These

measurements are then communicated via various Office tools

to mechatronics engineers. The tools used by these actors

are depicted in Figure 3 and illustrate their interactions. The

interactions between the tools can occur either automatically,

with data being stored or transferred automatically between

tools, or manually inputted by the user.

Fig. 3. Tools and actors.

We describe the actions per actor:

• Mechanical engineer. The mechanical engineer creates

the hardware design of the system using the CREO3 tool

for opening and editing 3D CAD files. They also measure

the real-world properties of the system, perform calcula-

tions in Excel and document any changes compared to

the original CAD model using Word. These updates are

presented via PowerPoint [25].

• Mechatronic engineer. The mechatronic engineer man-

ually compares previous measurements saved as Mat-

lab instances with the changed properties recorded in

CAD and Excel to determine if the system still meets

the specifications. For example, they ensure that the

system adheres to the predefined tolerances for each

link4. These assessments are crucial for maintaining the

system’s performance and reliability, and are calculated

using complex calculations and simulations in Matlab and

Simulink [36].

In sum, the handover from the mechanical engineer to the

mechatronics engineer currently relies on informal document-

based communication. This can result in misunderstandings

and potential errors due to missed changes or ambiguities.

3https://www.ptc.com/en/products/creo/
4A link in robotics refers to a rigid component that forms part of a robot’s

structure, connecting to other links through joints.
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B. Proposed workflow

In the proposed workflow, all Microsoft Office tools are

replaced by Domain Specific Modelling (DSM) [12] using

a single Geometry Specification Language (GSL) with live

graphical feedback. It replaces the Microsoft Office tools by

a unified language capable of presenting changes, serving as

documentation and evaluating mathematical expressions that

can be used to describe and calculate properties.

Fig. 4. Actors and tools workflow with DSL.

By eliminating the reliance on Microsoft Office tools and

therefore multiple sources of truth, the complexity associated

with using these tools is reduced. This can be observed in

Figure 4 compared to Figure 3.

A CAD file can be converted into URDF which we are able

to translate to our own DSL. The mechanical engineer can

input measurements manually in an expressive manner similar

to an Excel spreadsheet but now in the GSL. Meanwhile,

the mechatronic engineer can compare previous measurements

stored in the single source of truth DSL which is stored within

Philips’ version control system. Using a textual DSL makes,

i.e., merging branches easy.

C. Use cases

In this section, we describe two main use cases. One

involves presenting the textual DSL in a graphical manner

and another focuses on visualizing differences between two

versions of the DSL in a graphical representation.

1) Present: The first use case demonstrates effective com-

munication of measurement changes between mechanical and

mechatronic engineers. It serves as a visual representation tool,

enabling the presentation of changes through visualization.

By hovering over the textual representation using the cursor

as a pointer, the view automatically focuses on the specific

physical link of the robot being hovered over. This visualiza-

tion feature enhances communication by clearly highlighting

and displaying the changes made to each physical link of the

robot. It provides a seamless and intuitive way for stakeholders

to understand and interpret updated measurements for every

physical link in the robot.

The mechanical engineer can efficiently navigate, inspect,

and present the robot’s hardware properties using the tool’s

textual and graphical representations. This use case showcases

how engineers can leverage the tool’s features to communicate

and demonstrate the robot’s hardware-properties.

2) Highlight: The highlight use case offers an efficient so-

lution for mechatronic engineers to automatically identify and

highlight changed physical links between robot or component

versions. This internal scenario eliminates the need for manual

input of values into Matlab, as it leverages automatic high-

lighting and live graphical feedback. Engineers can quickly

and accurately pinpoint variations between link versions using

this feature, reducing reliance on manual comparisons and

potential errors.

IV. LANGUAGES

In this section, we introduce the Language WorkBench

(LWB) used to implement our tool as needed in order to

understand this paper. We describe the URDF, Xacro and

GSL languages. Finally, we provide example instances of these

three languages.

A. Language workbench

A LWB provide concepts and mechanisms to define lan-

guage syntax, semantics, and code generation for a language.

They facilitate model-driven engineering by allowing develop-

ers and domain experts to work with high-level abstractions

that closely resemble the specific problem domain. This can

lead to more efficient development processes, maintainable

code, and closer collaboration between different stakehold-

ers. LWBs bridge the gap between generalized programming

languages and the unique requirements of specialized do-

mains [8].

There are many language workbenches (LWBs) available.

Both Eclipse Modeling Framework (EMF) and Rascal5 are

used at Philips; however, Rascal provides support for Visual

Studio Code (VS Code). Given that VS Code6 is the preferred

tool at Philips and aligns with our previous experience using

Rascal, we decided to use it for our tool.

Rascal [16] is a type-safe programming language featuring

immutable data, built-in pattern matching, search, and rela-

tional calculus. It is a functional and procedural programming

language with Java-like syntax. We introduce the language

in this section as needed to understand the code fragments

presented in this paper. The code snippets in Listing 1 are

reused from [23].

1 loc l =

2 |file:///Users/kees/.bashrc|(100,20,<2,0>,<2,20>)

3

4 data Boolean = true() | false() | and(Boolean lhs,

5 Boolean rhs);

6 // extending Boolean with another constructor
7 data Boolean = or(Boolean lhs, Boolean rhs);

8 data Statement = \if(Expression c, Statement tt,

9 Statement ff);

10

11 for (int i <- [1 .. 5]) println(i);

12

13 str w = "world"

14 println("Hello, <w>!"); // prints "Hello , world!"

Listing 1. Rascal code fragments

5https://www.rascal-mpl.org
6https://code.visualstudio.com
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Rascal has numerical types such as int and booleans,

represented by bool. It supports polymorphic lists, maps for

collections and loc for location constants.

Rascal also provides the following built-in functions for

working with maps:

1) Map := A list that uses any kind of data as index (called

keys), to store a value.

2) rangeR := Expects a map and returns a map of key, value

pairs that match the values.

3) range := Returns a list of values.

4) domain := Returns a list of keys.

On Line 2 there is a constant loc that points to a file

with the file scheme and selects the part on line 2 between

the left margin and the 20
th column. Locations are used to

refer to files, store information extracted from files and help

in referring back to source locations.

In Rascal, Algebraic Data Types (ADTs) can be user-defined

with their constructor functions. The fragment on Lines 4-

9 shows a declaration of an ADT for the representation of

Boolean expressions using three constructors. The next line

extends the same ADT by adding an alternative to the existing

declaration. Reserved keywords are not permitted as names of

algebraic constructors; hence, if is escaped with \if when

used as the name of an algebraic constructor.

Control structures such as for can be used to iterate over

a value, while str literals in Rascal are not delimited by line

endings.

We utilized the following two Rascal libraries: Salix and

TypePal. Salix is a library that facilitates the development

of web-based GUI programs; it runs user code on the server

side instead of client-side execution. The library employs the

Model View Controller (MVC) pattern by sending HTML

patches to the browser and interpreting messages from the

browser on the server to update the view accordingly. TypePal

is a typechecking and validator library for Rascal, designed to

analyze and enforce type constraints, ensuring correct usage

of types and detecting potential type-related errors in DSL

instances. TypePal provides static type checking capabilities

and can be used to improve the reliability and correctness of

language instances [28].

B. URDF

Utilizing URDF offers numerous advantages, notably its

capability to express a wide range of hardware properties,

with the exception of tolerances. Moreover, URDF facilitates

seamless conversion from formats like CAD files, streamlining

the integration of engineering disciplines for our use case.

Furthermore, the compatibility of URDF with visualization

tools such as RViz7 underscores its ability in conveying

essential information using a 3D graphical representation.

The downside of URDF is its inability to scale and its

cumbersome XML format, which is difficult to maintain and

causes issues in the archiving system when merging changes.

As the model becomes more complex, the lack of reusable

components results in larger file sizes.

7http://wiki.ros.org/rviz

C. Xacro

To address the issue of large URDF files, especially for

complex 3D robot models like interventional X-ray systems,

a solution based on modularization and composition using

the Xacro language can be employed. Xacro provides a way

to create modular and reusable components, making robot

descriptions more manageable and organized.

Although Xacro simplifies URDF composition and intro-

duces expression evaluation, it still relies on an XML format

that is neither user-friendly nor intuitive, making it difficult to

version control and prone to merging issues.

D. GeometrySL

To overcome the previously described limitations, we in-

troduce GeometrySL (GSL), which extends XacroSL. Geom-

etrySL encapsulates Xacro and converts it to a more user-

friendly syntax, making it easier to archive and merge changes.

It enabled the creation of a more intuitive syntax that sup-

ports custom property definitions (including tolerances) and

provides enhanced visualization options. The aim is to offer

a more intuitive, flexible language for 3D robot modeling,

addressing the drawbacks associated with traditional XML-

based URDF descriptions.

Creating GeometrySL adds flexibility in defining and de-

signing custom syntax, making it more intuitive to use and

easier to extend with new semantics and introduce custom

properties, enhancing its expressiveness and adaptability for

different use cases.

One of these new use cases is the integration of visual

semantics. This allows mechanical engineers to describe de-

sired appearances of views using a language that engineers

can understand. This approach enables better collaboration by

providing live graphical feedback.

E. Example instances

Next, we will describe three features using language

instances–custom features, modular includes, and highlighting

differences between two robot versions. Due to confidentiality

concerns, we use Franka’s Panda robot8 as an example instead

of our interventional X-ray system.

1 robot {

2 link {

3 name="lbr_iiwa_link_0"

4 inertial {

5 origin := {

6 rpy="0 0 0"

7 xyz="-0.1 0 0.07"

8 }

9 mass := { value="0.2" }

10 tolerance := { value="200" }

11 inertia := {

12 ixx="0.05"

13 ixy="1"

14 ixz="0"

15 iyy="0.06"

16 iyz="0"

17 izz="0.03"

18 }

8https://support.franka.de/docs/franka_ros.html
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19 }

20 visual {

21 origin := {

22 rpy="0 0 0"

23 xyz="0.2 0.1 0"

24 }

25 geometry {

26 mesh := { filename="meshes/link_0.stl" }

27 }

28 }

29 collision {

30 origin := {

31 rpy="0 0 0"

32 xyz="0 0 0"

33 }

34 geometry {

35 mesh := { filename="meshes/link_0.stl" }

36 }

37 }

38 }

39 }

Listing 2. GeometrySL instance example

Listing 2 shows an example of GeometrySL for the Panda

robot, demonstrating how to define a link. A link has a name

and various features such as inertial, visual, and collision

properties. Inside the inertial feature, we added a custom

property called “tolerance”. This property can be exported to

Xacro but not to URDF. The instance also references STereo

Lithography (STL) files, which is a format used to describe

3D objects using triangles.

1 robot {

2 name="lbr_iiwa"

3 xmlns:xacro="http://www.ros.org/wiki/xacro"

4 include "lbr_iiwa_link_0.gsl"

5 ...

6 include "lbr_iiwa_link_7.gsl"

7

8 include "lbr_iiwa_joint_1.gsl"

9 ...

10 include "lbr_iiwa_joint_7.gsl"

11 }

Listing 3. GeometrySL instance example for modular includes

In Listing 3, an instance of GeometrySL is shown that

describes the Panda robot. It includes other instances of

GeometrySL to describe links and joints of the Panda robot. A

link is represented as a mesh, while a joint defines the relation

between exactly two joints.

1 <?xml version="1.0"?>

2 <robot name ="lbr_iiwa"

3 xmlns:xacro="http://www.ros.org/wiki/xacro" >

4 <xacro:property name ="color" value ="Green"/>

5 <xacro:property name ="half" value ="0.1"/>

6 <xacro:include filename

7 ="lbr_iiwa_link_0.gsl.xacro"/>

8 ...

9 <xacro:include filename

10 ="lbr_iiwa_link_7.gsl.xacro"/>

11

12 <xacro:include filename

13 ="lbr_iiwa_joint_1.gsl.xacro"/>

14 ...

15 <xacro:include filename

16 ="lbr_iiwa_joint_7.gsl.xacro"/>

17 </robot>

Listing 4. Xacro instance example for modular includes

Listing 4 shows an example of how to represent the same

information from Listing 3 in the Xacro language. It uses XML

syntax instead.

1 <?xml version="1.0" ?>

2 <robot name="lbr_iiwa">

3 <link name="lbr_iiwa_link_0">

4 <inertial>

5 <origin rpy="0 0 0" xyz="-0.1 0 0.07"/>

6 <mass value="0.2"/>

7 <inertia ixx="0.05" ixy="1" ixz="0"

8 iyy="0.06" iyz="0" izz="0.03"/>

9 </inertial>

10 <visual>

11 <origin rpy="0 0 0" xyz="0.2 0.1 0"/>

12 <geometry>

13 <mesh filename="meshes/link_0.stl"/>

14 </geometry>

15 <material name="Grey"/>

16 </visual>

17 <collision>

18 <origin rpy="0 0 0" xyz="0 0 0"/>

19 <geometry>

20 <mesh filename="meshes/link_0.stl"/>

21 </geometry>

22 </collision>

23 </link>

24 ...

25 <link name="lbr_iiwa_link_7">

26 ...

27 </link>

28 <joint name="lbr_iiwa_joint_1" type="revolute">

29 <parent link="lbr_iiwa_link_0"/>

30 <child link="lbr_iiwa_link_1"/>

31 <origin rpy="0 0 0" xyz="0 0 0.1575"/>

32 <axis xyz="1 0 1"/>

33 <limit effort="300" lower="-2.96705972839"

34 upper="2.96705972839" velocity="10"/>

35 <dynamics damping="0.5"/>

36 </joint>

37 ...

38 <joint name="lbr_iiwa_joint_7" type="revolute">

39 ...

40 </joint>

41 </robot>

Listing 5. URDF instance example for expanded Xacro instance

Listing 5 shows an example of how to represent the same in-

formation as Listing 4 using URDF syntax instead. It includes

expanded information from Listing 2, but does not include

the “tolerance” property that was present in GeometrySL and

Xacro.

1 highlight

2 robot "robot_v1.gsl"

3 difference

4 robot "robot_v2.gsl"

Listing 6. GeometrySL instance example for highlighting differences
for two versions of a robot

Listing 6 demonstrates a language instance of GeometrySL

that visually shows the differences between two versions of

the robot.

V. DESIGN

In this section, we describe how we realized the use cases

presented in Section III.
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A. Conversion tool

One of the benefits of using URDF, a widely adopted and

standardized format is that other tools often have conversion

features. For instance, the Blender tool9 can be utilized as

an intermediary that enables conversion from CAD export

files into URDF. Blender is open-source, has free licensing,

and it has widespread community support. This not only

makes Blender cost-effective but also ensures that the tool is

consistently updated and improved by a global community of

developers.

B. VS Code URDF viewer

The VS Code URDF viewer10 was utilized as the start-

ing point, which incorporates BabylonJS11, a JavaScript 3D

graphics library. This library can load STL files and assemble

them using URDF. However, it lacks certain features such

as comparing changed properties, highlighting differences, bi-

directional navigation and side-by-side views, and maintaining

state after changes. Additionally, it requires the use of URDF,

which has a non-user-friendly syntax and leads to large

file sizes when designing systems like interventional X-ray

systems. Nonetheless, despite these limitations, the VS Code

URDF viewer serves as a beneficial starting point.

The visualization is extended with a context menu. The

view’s context menu enhances user experience by enabling the

identification of links through right-click actions, revealing a

menu that displays the link’s name, depicted in Figure 6. This

visual representation establishes a direct connection between

the textual and visual physical links of the robot, improving

cohesiveness and comprehension of both representations.

The sliders facilitate joint movement, enhancing the view by

providing an interactive experience. While primarily focused

on static properties, this feature can greatly improve the

visualization of specific links. Furthermore, the “reload” and

“auto” buttons play a vital role in updating the view with the

latest changes made in the GSL textual editor, whether through

manual input or automatic updates.

Fig. 5. Focus on hover link

9https://www.blender.org/
10https://github.com/javahacks/vscode-urdf-viewer
11https://www.babylonjs.com/

C. Show differences between robot versions

The next use case is showing differences between two

robot versions. When the GSL instances are defined as the

corresponding physical links of the robot are displayed as solid

while the remaining links become transparent, offering a visual

distinction.

Listing 6 provides a GSL instance to compare two robot

versions. In Figure 6, we show the same GSL instance on

the right and on the link we have the graphical view with

differences.

Fig. 6. Highlight robot

D. Present robot

The first use case we are going to describe is how we

present the robot. The conversion tool has been executed and

the VS Code URDF viewer is running. Salix is utilized to

present the robot by a polling feature that performs an action

over a specified interval as short as one second. Although this

feature may impose certain performance overhead, it helps our

language to fulfill the “liveness” quality criteria by consistently

checking for differences and updating the view accordingly. A

toggle button labeled “auto” is provided, as shown in Figure 5,

which allows users to enable or disable the polling feature.

This functionality offers a option to conserve system resources.

With polling enabled the automatic updates are enabled, thus

allowing for immediate feedback.

Upon detection of any discrepancy, a message with the

updated model is send to our viewer which runs on a separate

webserver thread. Rather than refreshing the complete web-

view, the web-server can update the visualization gradually.

This ensures that the robot is always maintained in the

view during these gradual updates, reducing distractions from

changing visual context. This feature enhances the user expe-

rience by providing a seamless transition during updates and

maintaining continuity in the visualization.

Each time the user changes the source code and then saves

the source code, a Rascal “summarize” event is triggered. In

this event we set a flag to true, the polling mechanism that runs

on a separate web-server thread then sends a HTTP message

to our viewer. The viewer is equipped with a so-called listener

(hooks) which update the visualization while preserving state.

TWAN BOLWERK, ET AL.: USING A TEXTUAL DSL WITH LIVE GRAPHICAL FEEDBACK TO IMPROVE THE CPS’ DESIGN WORKFLOW 307



Component Responsibility

ViewerJS and UrdfSL Visualization of robots and changes

Babylon JS 3D visualization

SalixJS and Salix Bi-directional navigation

TypePal Checking path existence and navigation

LanguageServer Integration with the IDE, using events (sum-
marize, document, lenses)

IDEServices Opening files in the IDE or opening interactive
content

XacroSL Expression evaluation and resolving include
path, using Xacro

GeometrySL Providing visual semantics and URDF conver-
sion

TABLE I
RESPONSIBILITY PER COMPONENT

This significantly reduces distraction of reloading graphics and

therefore improving usability.

The “polling” mechanism is used to focus on an element

that is hovered over by the mouse. This improves the user’s

understanding of where the user is in source code. The focus

mechanism sets the camera focus on that specific element and

marks the element with a specific outline color as shown in

Figure 5.

In this approach, a custom Xacro parser has been developed

to convert Xacro code into GeometrySL. The shell “exec”

function from Rascal is leveraged to call the Xacro compiler.

E. Tool’s components diagram

Fig. 7. Components

The component diagram in Figure 7 illustrates the software

components and their relationships.

Each component shown in Figure 7 is mapped to its

respective responsibility in Table I.

F. Link origin tracing

In our work, we trace link origin throughout the trans-

formation process from GeometrySL to Xacro and finally to

URDF, and vice versa. This approach draws inspiration from

Inostroza et al. [15], where they track string origins during

transformations. However, our adaptation involves storing ori-

gin locations from physical links of the robot instead of strings

and preserving this information across three transformations

instead of one. This feature enables seamless navigation be-

tween the URDF source, GSL instance, and graphical rep-

resentation of the robot model. As demonstrated previously,

hovering over textual elements triggers the graphical element

to be highlighted with a white outline. When holding down

the Ctrl-key and clicking on a visual element, the user is

directed to the corresponding section in the URDF source

code. Conversely, clicking on a visual element without holding

down Ctrl-key directs the user to the corresponding section in

the GSL instance. With this approach bi-directional navigation

is created. Upon hovering over text, the camera dynamically

adjusts to center the active link, enhancing visual focus. When

clicking on the link, a text editor is triggered, displaying the

corresponding element’s description for detailed examination.

The tracing of robot link elements is chosen because links

contain the visually represented graphical mesh, allowing for

bi-directional navigation with the graphical representation.

By re-using the shared abstract data structure of Xacro, the

compatibility with Xacro is maintained and the development

time of GeometrySL is reduced. The shared data structure,

illustrated in Listing 7, encapsulates both Xacro and Geome-

trySL and is located in the Shared folder of the class diagram.

data Id_ = id( str id );

data XACRO_Attribute = attribute(Id_ \ type , str val )
| xacro_attribute (Id_ \ type1 , Id_ \ type2 , str val );

data XACRO_Object = ... // irrelevant alternatives omitted

| link (Id_ name,
list [XACRO_Attribute] attributes ,
list [XACRO_Object] elements,
loc origin =|unknown:// /|); // link origin tracing

data XACRO = robot__(list[XACRO_Attribute] attributes,
list [XACRO_Object] elements,
loc origin =|unknown:// /|); // link origin tracing

Listing 7. Shared XACRO datastructure

An important point to highlight in Listing 7 is that all

objects and attributes are generic, allowing for easy extension

of new robot property semantics such as tolerances. However,

in order to support bi-directional navigation a more concrete

data structure is needed. The link is specifically specified to

incorporate storing origin locations.

tuple [XACRO_Object,
map[str,XACRO]] translate(Object obj ,

map[str,XACRO] includes){
<xacro_obj, includes > = translate (obj .\ type , obj , includes );
if (xacro_obj .\ type . id == "link") {

name = get(l . attributes , "name");
return <link ( id (name),

xacro_obj . attributes ,
xacro_obj . elements ,
origin =obj@\loc), // keep track of link location

includes >;
}
return <xacro_obj, includes >;
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}

Listing 8. GeometrySL::Semantics

By opting for this generic data structure, it accommodates

all valid XML formats, enabling the parsing and semantic

translation of custom properties. However, a trade-off of this

approach is that specific tasks like determining link origins

requires iterating through all, as illustrated in Listing 10.

Furthermore, the semantics of the generic data structure do not

verify the validity of elements, accepting all inputs, whereas

the UrdfSL semantics, as depicted in the Appendix’ Listing 13,

are more specific and restrictive.

map[str,loc ] linkLocationMap = ();

map[str, loc ] gatherLinkLocation (map[str,XACRO] xacros)
{

map[str, loc ] result = ();
for (key <− xacros){

result += gatherLinkLocation(xacros[key ]);
}
return result ;

}

map[str,loc ] gatherLinkLocation (XACRO xacro){
map[str, loc ] result = ();
for (obj <− xacro.elements){

// pattern match on link elements

if ( link (_, _, _) := obj) {
// map link name and location

result += (obj .name.id:obj . origin );
}

}
return result ;

}

Listing 9. Gather link location algorithm

In Listing 9 the link location map is a relation that can

be used in both directions. We can search on the link name

but also look for its location to get the name of the link, a

functionality that proves notably convenient.

G. Focus on hover

Different Integrated Development Environment (IDE)

events are utilized, specifically employing the documenter

event. This event has information about where the cursor of

the user is located. This active cursor information is used to

determine what link is being inspected. In our implementation

we even were able to look up the active link through include

statements.

bool isCursorLocationInLocation ( loc cursor , loc linkLocation ){
return cursor .begin >= linkLocation .begin &&

cursor .end <= linkLocation .end;
}

Listing 10. Cursor location algorithm

In the link translation from GeometrySL to URDF we keep

track of the identifier, the name of the link and its location see

Listing 10. This goes in two directions, hence bi-directional.

The identifier is used to find the corresponding location in the

link location mapping and in the other direction to find the

identifier based on its location. This location lookup checks if

a certain location is in the same file and in between the row

and column. If this is the case, it will return its identifier.

H. Highlight differences

The functionality of highlighting differences compared to

previous version(s). Link origin tracing must be ignored, in

order to strictly check for value equality, this is different

opposed to [31] where origin is actually added and used to

ensure file equality. The links are hashed such that they can

be compared and stored more efficiently, see removeOrigin-

FromLink function Listing 11.

map[str,str ] removeOriginFromLink(list[URDF] links){
map[str,str ] result = ();
for ( link <− links ){

str uniqueHash = md5Hash(link. attributes + link . elements );
result += (getName(link). val : uniqueHash);

}
return result ;

}

Listing 11. Remove origin from link implementation

The URDF data structure consists of concrete data types

for each URDF property. Each property has elements and

attributes, parsed from the URDF robots. In order to compare

robot1 (r1) and robot2 (r2), we extract from the elements

mapping the “link” and store these in l1 and l2 respectively,

such that we compare links only. Recall the explanation of

the build-in map functions in Section IV-A. With rangeR we

exclude the links in robot1 (r1) that do not exists in the robot2

(r2). Next the domain function is applied to the result, such

that only the link identifiers are returned, since the keys are

the link names, see Listing 11.

list [ str ] compare(URDF r1, URDF r2){
l1 = getAll (r1 , " link " );
l2 = getAll (r2 , " link " );
return toList (domain(rangeR(

removeOriginFromLink(l1),
range(removeOriginFromLink(l2 )))));

}

Listing 12. Compare algorithm

Note that we chose to apply the algorithm to the URDF

data structure instead of GeometrySL or XacroSL due to the

URDF’s single-file nature, simplifying the process. We check

for changes with the algorithm in Listing 12.

VI. RESULTS

To see the final product in action, it is best to watch the

demonstration videos. Due to confidentiality, we use the Panda

robot instead of the Philips IGT interventional X-ray system.

Figure 8 about bi-directional navigation12 & figure 9 hover

and highlight differences13 are videos of our tool in use.

12https://www.youtube.com/watch?v=n71kg1OKVus&ab_channel=
fedcsis3391

13https://www.youtube.com/watch?v=o_bJ8NsEODQ&ab_channel=
fedcsis3391
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Fig. 8. video of the GeometrySL tool bi-directional navigation

Fig. 9. video of the GeometrySL tool hover and highlight

VII. DISCUSSION

In contrast to the existing literature reviewed in Section II,

which predominantly concentrates on visually representing

properties of robots which can be visually represented such as

positions of components and movements, our research places

a strong emphasis on highlighting changes that cannot be

visually represented, such as inertia and mass.

Leveraging the widely adopted URDF standard tapped

into the existing knowledge base of end-users, simplifying

their adoption and adaptation to the DSL. This underscores

the notion that harnessing established standards can expedite

the learning curve for new DSLs. Furthermore, through the

incorporation of Xacro, we achieved composability within

the language. Moreover, the development of GeometrySL

expanded its capabilities with a visual language that empowers

hardware engineers to precisely define how the robot is

visually represented. This extension encompasses all known

keywords and components while eliminating the cumbersome

XML syntax, enhancing the user experience.

A. Bi-directional navigation

The benefits of bi-directional interaction, as outlined by

Witte et al. [35], is that it reduces cognitive load and improves

the overall user experience. By integrating the view and text

editor through a bi-directional approach, our tool aims to alle-

viate cognitive load and further enhance the user experience. It

allow users to interact with visual links by clicking on them,

instantly directing them to the specific location in the text

editor where that element is specified.

Salix has been used in game development to improve

collaboration among multiple disciplines [33], resulting in

improved collaboration. By leveraging the Salix library, a

successful prototype of bi-directional input visualization was

achieved. This feature enables users to effortlessly click on vi-

sual elements, which then redirects them to the corresponding

location within the text editor.

Building upon the insights from [14], our approach em-

braces the concept of richness by not only providing visual

feedback but also integrating the textual and graphical repre-
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sentations. Although persistent changes are not supported via

the visualization interface, this integration fosters a cohesive

and intuitive user experience by establishing a strong connec-

tion between the two interfaces.

B. Immediate feedback

Earlier research [9] and [13] have indicated that immedi-

ate feedback significantly improves debugging. More recent

studies also successfully applied immediate feedback in their

DSL [32], [20], [3], [18]. Additionally, incorporating imme-

diate feedback ensures that the DSL adheres to the liveness

quality, improving the programming experience.

In VS Code, the “summarize event” of the Rascal Language

server library is triggered each time the file is saved. We

take advantage of this event to re-render the visualization

using the latest valid state of the DSL, ensuring an up-to-date

representation of the data.

This approach of fully refreshing the visualization, causes

a brief moment of disappearance and reappearance of the

robot, upon saving the file. This can be improved in terms

of user experience. A more gradual change that maintains

the robot in the exact same state and keeps it constantly

in view would provide a smoother and more user-friendly

way of communicating the modifications, minimizing context-

switches and enhancing overall usability. By avoiding the

robot’s disappearance, users can maintain continuous visual

feedback and better understand the impact of their changes.

It makes sense to make this part of the summarize behavior

the visualization serves a similar purpose as source code errors

and warnings, and most languages perform these checks upon

saving to achieve it. Additionally, this approach helps min-

imize the performance impact of running resource-intensive

processes with each change.

Our language exhibits key qualities such as liveness, rich-

ness, and composability, as discussed in Horowitz et al.’s work

on live programming [14].

Like mentioned in Munzner’s book [19], we aim to cre-

ate a solution that addresses the invisibility of property

changes and enhances user experience by implementing these

highlighting strategies while considering potential conflicts

with user-defined materials, overlapping color use, or making

components transparent for highlighting. We opted against

animations due to their potential to cause change blindness,

distracting users from subtle property changes. Instead, we

focus on highlighting the changed links to clearly differentiate

changes, enhancing user experience by ensuring modifications

are easily perceived and understood within the graphical rep-

resentation. The highlighting differences aim to make changes

more distinguishable and improve the user experience.

TMDiff [31] utilizes an algorithm that relies on source

location to detect changes, similar to existing tools like Linux’s

built-in diff and git diff. These tools typically compare lines

of code, analyze differences on a line-by-line basis, and

categorize changes as modified, deleted, or added.

In contrast, our solution specifically addresses the unique

characteristics of URDF and GLS files, which represent

robotic systems with distinct links and joints identified by their

names. We introduce a novel approach by hashing the links

and joints including their unique identifiers while excluding

their source location into a hashmap. This allows us to

efficiently determine whether links or joints already exist in

the system, enabling effective management of modifications

and comparisons.

Moreover, our visualization tool offers enhanced capabili-

ties compared to TMDiff. While both systems can highlight

changes per link and between linked entities (in the case of

joints), our solution goes further by seamlessly accommo-

dating rearrangements of links and joints. This means that

even if the structure of the system is altered, our tool can

accurately compare the old and modified versions, providing

a more robust and flexible comparison mechanism for this use

case.

In conclusion, our study has demonstrated that integrating

liveness, richness, and composability into a DSL tailored for

hardware engineers at Philips IGT, featuring enhancements

like bi-directional navigation, live graphical feedback, and

the inclusion of robot components, can significantly enhance

usability and effectiveness. Furthermore, it has underscored

the challenge of visualizing invisible hardware properties,

which often hinges on personal preferences and perceptions.

These findings make meaningful contributions to the ongoing

development of DSLs within this domain, emphasizing the

critical role of user feedback in designing intuitive graphical

feedback languages.

VIII. CONCLUDING REMARKS

We improved the hardware development workflow at Philips

IGT by creating a textual Domain Specific Language (DSL)

called GeometrySL or GSL. This DSL was used to formalize

handovers from mechanical engineers to mechatronic engi-

neers, preventing mistakes during the exchange process.

The novel approach of leveraging industry-standards URDF

and Xacro, alongside techniques such as origin tracing and

the LWB Rascal has resulted in a live graphical feedback on

differences between Cyber-Physical System (CPS) versions. It

enables bi-directional navigation among the graphical repre-

sentation, URDF and the GSL itself, enhancing the efficiency

and usability of the language.

The development of GeometrySL serves as a valuable case

study that demonstrates the practical application of immediate,

bi-directional visual feedback within an engineering context.

The lessons learned from this project can inspire future re-

search efforts and innovations in domain specific languages

with live graphical feedback for CPS.

This research mainly focuses on graphically representing

textual differences of 3D robot models. In our evaluation of

the tool we had diverse feedback. The main challenge we faced

was how to visualize changes made to invisible properties such

as tolerances, mass inertia. A future work idea is to answer

this question and improve our research. Explore innovative

methods to visualize changes made to non-visual properties

such as tolerances, mass, and inertia in robotic models.
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While transparency has been utilized, investigate alternative

approaches that effectively convey these modifications without

significantly altering the overall view of the robot.

APPENDIX

data URDF =
robot (map[str, URDFValue] attributes ,

map[str, list [URDF]] elements)
...

map[str, list [URDF]] elements) // joint

| axis (map[str, URDFValue] attributes ,
map[str, list [URDF]] elements) // joint

| transmission (map[str, URDFValue] attributes ,
map[str, list [URDF]] elements) // robot

| actuator (map[str, URDFValue] attributes ,
map[str, list [URDF]] elements) // transmission

| plugin (map[str, URDFValue] attributes ,
map[str, list [URDF]] elements) // robot , link , or joint

| counterbalance (map[str,URDFValue] attributes ,
map[str, list [URDF]] elements) // joint

| tolerance (map[str, URDFValue] attributes ,
map[str, list [URDF]] elements) // robot custom property

;

Listing 13. Fragment of UrdfSL Abstract Data Structure
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