
Benchmarking OpenAI’s APIs and other Large
Language Models for Repeatable and Efficient

Question Answering Across Multiple Documents

Elena Filipovska†, Ana Mladenovska∗†, Merxhan Bajrami∗†, Jovana Dobreva∗†,
Velislava Hillman‡, Petre Lameski∗†, Eftim Zdravevski∗†

∗Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje, Macedonia
†Magix.AI, Skopje

‡Department of Media and Communications, London School of Economics and Political Science, London, UK

{elena, ana, jovana, merxhan.bajrami, petre, eftim}@magix.ai, {ana.mladenovska.1, bajrami.merdzan}@students.finki.ukim.mk,

{jovana.dobreva, petre.lameski, eftim.zdravevski}@finki.ukim.mk, v.hillman@lse.ac.uk

Abstract—The rapid growth of document volumes and com-
plexity in various domains necessitates advanced automated
methods to enhance the efficiency and accuracy of information
extraction and analysis. This paper aims to evaluate the efficiency
and repeatability of OpenAI’s APIs and other Large Language
Models (LLMs) in automating question-answering tasks across
multiple documents, specifically focusing on analyzing Data Pri-
vacy Policy (DPP) documents of selected EdTech providers. We
test how well these models perform on large-scale text processing
tasks using the OpenAI’s LLM models (GPT 3.5 Turbo, GPT
4, GPT 4o) and APIs in several frameworks: direct API calls
(i.e., one-shot learning), LangChain, and Retrieval Augmented
Generation (RAG) systems. We also evaluate a local deployment
of quantized versions (with FAISS) of LLM models (Llama-2-
13B-chat-GPTQ). Through systematic evaluation against pre-
defined use cases and a range of metrics, including response
format, execution time, and cost, our study aims to provide
insights into the optimal practices for document analysis. Our
findings demonstrate that using OpenAI’s LLMs via API calls
is a workable workaround for accelerating document analysis
when using a local GPU-powered infrastructure is not a viable
solution, particularly for long texts. On the other hand, the local
deployment is quite valuable for maintaining the data within
the private infrastructure. Our findings show that the quantized
models retain substantial relevance even with fewer parameters
than ChatGPT and do not impose processing restrictions on the
number of tokens. This study offers insights on maximizing the
use of LLMs for better efficiency and data governance in addition
to confirming their usefulness in improving document analysis
procedures.

Index Terms—OpenAI, LangChain, RAG, GPT, QA, LLM,
Llama, Large Language Models, Multi-document, one-shot learn-
ing, few-shot learning Q&A

I. INTRODUCTION

TRADITIONAL document analysis methods often rely

on manual review or simplistic keyword-based searches,

leading to significant inefficiencies and limitations. As the

volume and diversity of documents continue to expand, the

need for innovative approaches that can streamline analysis

while preserving accuracy and comprehensiveness arises. In

this study, we explore different methods for assisting the

analysis of selected EdTech providers’ Data Privacy Policy

(DPP) documents. On the task at hand, we aim to evaluate the

efficacy, consistency, benefits and limitations of various LLMs

in assessing DPP documents. The importance for such an

assessment is founded on the need for an automated, scalable

and reliable way to systematically analyze large bodies of

text semantically. We also aim to examine the most optimal

way of using LLMs regarding the optimizing factor - whether

it is the price, the duration or the format of the answers

provided that plays a key role in a technical chore. All of these

LLM models are trained on extensive datasets and exhibit

remarkable proficiency in generating human-like responses

and cognitive reasoning across diverse tasks. LLMs are built

to handle various tasks, such as text generation, translation,

content summary, chatbot conversations, and more [1].

Our methodology begins with the gathering of documents

from a vast repository of online accessible terms of services of

popular educational platforms and products. The experimental

flow combining expert knowledge and automated processing

is shown in Fig. 1. The first step of selecting the EdTech

platforms is performed by educational experts. Likewise, the

legal team defined 45 questions about key aspects of the

GDPR (General Data Protection Regulation). Even though the

legal expertise is crucial for other aspects of the methodology,

the focus of this article is the automated processing of the

documents and questions by LLM models, as shown in the

top-right rectangle. The whole methodology is part of a

larger study that involves manual expert validation of the AI-

generated answers and evaluation of their quality.

Through a scraping and filtering process using the Beauti-

fulSoup library, we refine this collection of edtech products,

ultimately obtaining a list of about 800 DPP documents for fur-

ther processing. These documents are evaluated to ensure their

content aligns with our study’s focus. For each DPP document,

these GDPR-related questions are asked through various LLM

methods, aiming to evaluate whether the documents address

regulatory requirements.

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 107–117

DOI: 10.15439/2024F3979

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 107 Topical area: Advanced Artificial

Intelligence in Applications

Data Policy Scraper
EdTech providers

list

Manual policy evaluation
by legal experts

Qualitative
comparison

GDPR Checklist
created by legal experts

Other LLMs

ChatGPT

Checklist refinement

Follow-up
evaluation

Technical performance evaluation
(cost, format, duration, memory)

Automated workManual expert work Prompt engineering
and algorithm tuning

Fig. 1. Methodology combining expert knowledge and automated processing

Furthermore, we explore four distinct approaches for lever-

aging LLMs to analyze these documents and answer the 45

GDPR-related questions. Specifically, we explore the capa-

bilities of OpenAI’s ChatGPT (Generative Pre-trained Trans-

formers) GPT 3.5 Turbo, GPT 4, and GPT 4o. To use them,

we evaluate OpenAI’s direct APIs and Microsoft Azure’s

APIs through direct API calls, LangChain, and Retrieval

Augmented Generation (RAG) systems. We also evaluate

a local deployment of quantized versions (with FAISS -

Facebook AI Similarity Search) of LLM models (Llama-2-

13B-chat-GPTQ). Each approach offers unique advantages in

processing and interpreting documents. All of these methods

are systematically evaluated on multiple predefined use cases

that differ in the number of documents being processed at

once, the number of questions being evaluated at once, the

length of the request, the length and format of the response,

etc. To score the approaches, we employ a range of metrics,

including response format, execution time, and cost.

Our study aims to provide insights into the optimal practices

for document analysis using Artificial Intelligence (AI) tech-

nologies. By focusing on the documents themselves, we aim

to uncover nuanced insights that inform decision-making and

optimize outcomes in document governance and compliance.

That being said, the central point is on testing AI technology

for scaling otherwise manual and highly nuanced specialized

literature that typically takes a long time to assess, rather than

encouraging or suggesting that AI technology alone can justify

if documents present companies’ compliance, transparency, or

accountability to any rules or conditions in which they are

mandated to operate.

This paper is structured as follows. After this introduction,

Section II reviews related works, providing context and high-

lighting the contributions of other researchers in the field.

Section III presents the methodology of the paper. Specifi-

cally, in subsection III-A we describe the data used in this

study, detailing the selection and preparation processes. In

subsections III-B and III-C, we outline the specific use cases

designed to test the efficacy of different approaches and the

evaluation methods, respectively. Subsection III-D discusses

the use and implementation of OpenAI models, elaborating

on each approach’s technical aspects, and Subsection III-E

describes the implementation of the quantized Llama-2-13B-

chat model with FAISS vector database. Section IV presents

and discusses the results, offering a detailed analysis of the

findings, explains the challenges faced and the limitations of

the current study. Finally, Section V concludes the paper by

summarizing the key findings and suggesting directions for

future research.

II. RELATED WORK

Due to the widespread use of LLMs in general domains and

real world applications, various text analysis tasks have been

automated and optimized, even for relatively specific tasks.

Given the extensive training and massive datasets that serve

as the basis for the models offered by OpenAI, their usage

covers a wide set of areas. The utilization process undergoes

several techniques used across almost all applications. Namely,

the reading comprehension abilities of LLMs are one of their

primary strengths. Ranging from classifying titles and abstracts

against an inclusion/exclusion criteria, as explored in [2], to

policy advising in governmental processes as elaborated in [3],

the basis of implementing a system containing GPT models is

text understanding.

In [4], a system is proposed that aims to address the

gap in answering search queries, namely those that lack any

previous internal related information about the topic. Their

main approach in accomplishing this is to introduce both GPT-

3.5 and GPT-4 to novel prompts, as well as instruct the model

to provide a step-by-step explanation of the answering process

to enhance the responses, reduce the hallucination risks, and

ultimately increase the response comprehensiveness.

Authors in [5] present a question-answering chatbot aiming

to answer questions related to numerous policies and guide-

lines set by their organization to dictate the appropriate outfit.

Using the National Defence Policies and Standards of Canada

as training data to their model, they developed a retrieval-

based chatbot – since the responses it produces need to only

be related to the aforementioned policies. The encodings of

this data are based on the BERT model, so when the question

vector is computed, the most similar passage of the entire

corpus is retrieved, which represents the base for the answer.

This response initiation by the model based on data given as

additional information in the prompt is a common practice

in modern AI chatbot applications and serves as the ground

mechanism for Retrieval Augmented (RAG) Systems. This

emerging branch of AI implies heavy reliance on prompt

engineering and appropriate frameworks for optimal solutions,

as well as a selection of the most relevant model for the

problem at hand. Similar to this work, one of the approaches

that we evaluate is the use of RAG systems to enhance the

LLM responses.

Authors of [6] explore the differences in the abilities and

limitations of three GPT models in the case of multiple choice

question answering based on three levels of Python courses.

The rapid advancements, as can be seen from the obtained

results from their experiments, can significantly impact the

use of generative models in the educational process. Their

qualitative analysis of the results suggests very noticeable

108 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

improvements in the latest GPT model releases regarding the

validity of the generated responses as well as the manner in

which these responses are created.

The performance of both GPT-3.5 Turbo and GPT-4 models

concerning a specific medical domain is explored in [7].

Namely, they explore the usage of the GPT models in the

standardized orthopedic examination administered by the U.S

orthopedic residency programs without prior exposure to sim-

ilar queries. Their results indicate superior performance of the

GPT-4 model over the GPT-3.5 Turbo regarding the quality of

the reasoning capabilities produced.

Rapid development of AI branches always introduces se-

curity and data privacy concerns. The study [8] explores

the evolving security, privacy, and data protection challenges

posed by the increasing use of sophisticated digital products

and platforms. It discusses how systems like chatbots process

and store personal data, the security risks associated with

their deployment, and the need for stringent data protection

measures in line with regulations like the GDPR. Often, end-

users (be that individuals or organisations) rely on data privacy

policies and other lengthy texts to be reassured about how

digital technologies meet data privacy and security standards

and requirements. However, these texts are typically difficult

to digest and comprehend and largely ignored as a result. This

inspires the need to create scalable solutions that can digest

these large texts and present a quick feedback response to

users on whether the digital technologies they use comply

and meet minimum appropriate standards and requirements.

Furthermore, these concerns are one of the primary drivers

in developing solutions that can be deployed in on premises

or on the virtual private cloud (VPC). Therefore, one of the

approaches that we evaluate is by using an LLM deployed on

a local infrastructure powered by an Nvidia Titan V GPU.

III. METHODS

A. Data Description

The dataset contains data privacy policies of educational

products or platforms in a textual format that describes the

personal data used or collected upon registration or through

the utilization of cookies, disclosure of personal information

and personal data privacy, protection guidelines, and other

sections that articulate how companies address legislative

requirements such as the ones outlined by the GDPR. Initially,

we considered over 800 products, selected based on their

portrayal of personal data usage and relevance to educational

establishments or online platforms [9]. Initially, each policy

was scraped using the BeautifulSoup library [10]. The primary

selection was made based on the policy content and type,

specifically including only those policies with a minimum

length of 55 characters and a non-PDF header type. This

reduced the dataset to 794 policies. While evaluating the

different use cases defined later in the document, we used

some of these policies based on their length.

Additionally, there were defined 45 questions related to the

compliance of each policy with GDPR (for full background

of the work relating to the prompts development and human

analysis, see [9]). Each question was usually one sentence,

such as ”Is the purpose of processing the data identified?”, ”If

you process special categories of data, do you make it clear?”

etc. The list of questions and EdTech, as well as the source

code for the experiments, are available at https://github.com/

admin-magix/edtech-policies/.

The final dataset we created as a result of this research

consisted of question and answer pairs received from the

chatbot. Specifically, our generated dataset is a JSON format

of:

{’Question’: ’Each GDPR question’,

’Answer’: ’Generated answer from the chatbot’}

These pairs needed to be further evaluated and checked for

their full accuracy.

B. Use Case Definition

To precisely evaluate the efficacy of the approaches de-

scribed in Section III-D and Section III-E, we have identified

six separate use cases. These vary in complexity from the

simplest to the most advanced, requiring more computing

power and resources. Every use case is created with the

intention of thoroughly testing the strengths and weaknesses

of every model inside the particular parameters of the strategy

being evaluated. As a basis for each use case that we defined,

we used the maximal number of tokens that the GPT 3.5-

Turbo model has for a single prompt. That is to say, the

primary model that we used specified the tests used for further

evaluation against our factors, with each one centering around

the count of policies and the count of questions implemented

in one run. The following is a breakdown of the defined use

cases:

1) Use Case 1: Using one document (i.e., policy) that

does not exceed the limit for the primary model token

count (16K tokens) and one question. This is relevant

for shorter policies and when questions are asked one-

by-one (e.g., in a scenario when a human expert is going

through a checklist).

2) Use Case 2: Using one policy that exceeds the limit for

the primary model token count (16K tokens) and one

question. This is relevant for similar situations like the

previous use case, but the text length of the document

is much longer and can not be processed at once.

3) Use Case 3: Using 3 policies that do not exceed the

limit for the primary model token count (16K tokens)

and all 45 questions.

4) Use Case 4: Using 10 policies that do not exceed the

limit for the primary model token count (16K tokens)

and 10 questions

5) Use Case 5: Using 50 policies that exceed the limit for

the primary model token count (16K tokens) and all 45

questions

6) Use Case 6: Using all the policies and all the questions

The relevance of these use cases becomes clear when

evaluating models against specific metrics. Each model is

analyzed based on the content of the prompts and the number

ELENA FILIPOVSKA ET AL.: BENCHMARKING OPENAI’S APIS AND LARGE LANGUAGE MODELS FOR QUESTION ANSWERING 109

of such prompts it processes. These use cases are particularly

applicable in real-life scenarios involving AI technology for

analyzing large and complex texts.

C. Evaluation metrics

The defined use cases are evaluated with a list of quantita-

tive and qualitative metrics:

• format of response given by the model (Is the response

in JSON format?)

• format of the answer within the response (Are the answers

firstly distinct Yes/No)

• format of the extract within the answer (If the answer is

yes, is the description well extracted?)

• verification of the JSON format’s correctness within the

answer

• execution time

• total cost.

The Results section details how all of these metrics are

assessed against a specific use case. The policies and questions

follow the same format throughout all use cases in a given

approach.

D. OpenAI Models

There are numerous services offered by OpenAI, most of

which are based on Large Language Models (LLMs). These

LLMs are deep learning models that have been trained on

a very large amount of data, and as such have the ability

to generate human-like responses and offer state-of-the-art

cognitive reasoning on several tasks. The backbone of all

the services offered relies on a set of pre-trained models.

In addition to end-user services, OpenAI also provides an

API - giving the opportunity to integrate the aforementioned

services inside existing systems. This API acts as a link

between the models offered by OpenAI and external projects,

thus enabling their usage without the necessity of developing

models from scratch. Users can access a range of pre-trained

models, such as GPT-4o, GPT-4, GPT-3.5, DALL-E, all of

which have been fine-tuned to perform specific tasks. While

these models can be used as is, there is also the possibility

for customization, enabling their adaptation for specific needs

and fitting individual requirements. Even though projects that

use these API can grow in complexity, the scalability of the

infrastructure offers easy adaptation [11]. One such case is

the usage of a specific pre-trained model with the aim of

document analysis in comparison to a set of given questions.

Access to a pre-trained model is granted after getting an

OpenAI API key, which is then utilized further through four

distinct approaches. Namely, the first one is a direct API call –

meaning that for a specific task that needs to be accomplished

a connection to OpenAI is opened, a request is made and

a response is given back by the model used. This method

offers a straightforward and direct way of accessing the

capabilities offered by the pre-trained models. The second one

focuses on using the LangChain framework, giving us a more

robust way of communicating with the OpenAI models - a

seamless interaction and enhanced functionality. The third one

Fig. 2. Implementation flow for a Direct API call

is implemented using a RAG system - defining a refined flow

of the whole process. Ultimately, the last approach is using the

API through Microsoft Azure services, aiming to simplify the

integration within an existing system. The effectiveness and

quality of the results given by each approach are examined

by a set of metrics. By evaluating the different methods, an

informed decision for the usage of the optimal practice can be

made, thus enabling further project optimization.

1) One-shot learning with direct OpenAI API call: Using

the OpenAI library and the API key created for a specific sub-

scription on the OpenAI platform, a communication channel is

instantiated, indicating the connection of our project to the pre-

trained models. Once a client is established, a request is initi-

ated for each document. Both the documents and the questions

that are being answered follow a predefined format consisting

of two dictionaries, where the key is the id of the document

or the id of the question, and the value is the content of the

document or the question, respectively. Through the process

of iteration, a prompt is outlined for each of the documents

- including a fixed string defining the format of the prompt

and a list of the questions that need to be answered based on

the current document. Considering the imposed charges for

each API request, answer caching is implemented to optimize

resource utilization, ensuring that only unanswered questions

are included in subsequent requests. Specifically, during each

iteration only those questions for the current document that

have not been already answered are part of the final prompt

that is given to the model. Each request includes both a system

and a user message. The system message specifies the task that

needs to be completed by the model - in this case it tells the

model that a question-answering assignment is taking place, in

which the document is described by its id and its content, and

the response for each of the specified questions needs to be

in a comprehensible JSON format, having a “yes” or a “no”

answer and an extract denoting the part of the document that

mostly contributes to the “yes” answer. Defined messages are

then passed to the completions module of the client, which in

turn, provides the model response (Fig. 2).

Prompt format for Direct OpenAI call and Azure OpenAI,

where questions_dict denotes the dictionary of questions

to be answered:

""" You are an auditor that needs to review multiple

privacy policies, each one identified with a ‘

PolicyID‘.

For each policy, I am going to provide you the ‘

PolicyID‘ and ‘PolicyText‘. For each policy,

answer each question that I give you with a "Yes

"/"No" answer and if the answer is "Yes" then

provide an extract from the policy that is

LONGER than 200 characters and best fits the

answer, otherwise return an empty string,

110 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

nothing else that differs from this.

Make sure that your response is only in a JSON

format like this and DO NOT PROVIDE ANY

ADDITIONAL TEXT: ‘{"QuestionID": {"Answer": "

Your answer", "Extract": "Extract from the

policy"}}‘, where " Your Answer" represents your

answer to the question, "Extract from the

policy" is the best fit extract and "QuestionID"

is the id of the question that I provide you

with (make sure it’s in double quotes).

Below is the list of questions, in the following

format ‘{’QuestionID’:’QuestionText’}‘:{

questions_dict}

"""

2) OpenAI with LangChain: LangChain is a framework

encompassing libraries and templates for developing

applications powered by language models. Improving the

basic connection to the OpenAI models, LangChain builds

upon it by introducing the core concept of chains, representing

the different AI components for creating advanced use cases

based on LLMs. A chain denotes the automated actions taking

place starting from the user prompt up until a response is

rendered by the model. It may consist of different components,

with the most frequently used ones including the prompt

templates, LLMs, user agents, and the memory component

[12]. In the case of document analysis, chat history was

retained with the help of different prompt templates used

within a memory element, which calls upon a pre-trained

OpenAI model. LangChain provides several methods of

recalling past interactions within a single request, and the

ones tested here are ConversationBufferMemory,

ConversationBufferWindowMemory,

ConversationSummaryMemory and

ConversationSummaryBufferMemory. All of these

are built upon a ConversationChain, which loads context

from memory. Using ConversationBufferMemory,

we have the most basic type of conversational

memory implemented - it passes the raw form of

past conversation to the history parameter, which

allows for subsequent prompt passing to the model.

ConversationBufferWindowMemory offers further

improvement of the conversational history by adding a

window to the memory - retaining a limited number of past

interactions. The ConversationSummaryMemory

is usually used to preserve the number of tokens

used in the request, by summarizing the conversation

history before passing it to the history parameter.

ConversationSummaryBufferMemory acts as a

mix up of the last two types of memories providing a

summarization of earlier conversation interactions while

keeping the last ones in tact. After a type of memory is

instantiated in the ConversationChain, a context for the prompt

is defined, using the appropriate LangChain components in

the following order:

1) A system message using SystemPromptMessage,

representing the topic of the conversation between the

human and the AI model

2) A human history message using

HumanMessagePromptTemplate showing a

snippet of what the interaction taking place looks like

so far

3) An AI response message using

AIMessagePromptTemplate portraying the

response given by the model

4) A human prompt using

HumanMessagePromptTemplate representing

the current prompt containing the policy and questions

we send to the model

After a ChatPromptTemplate is instantiated using the list of

previous messages it is sent to the conversation chain as an

input, triggering the model, which gives back a response.
Human message prompt format for OpenAI with

LangChain, where questions_for_answering denotes

the dictionary of questions to be answered:

"""For the following policy: {policy}

answer the following questions with a "Yes

"/"No" answer and if the answer is "Yes"

then provide an extract from the policy

that is

LONGER than 200 characters and best fits

the answer, otherwise return an empty

string, nothing else that differs from

this. Make sure that your response is only

in a JSON format like this and DO NOT

PROVIDE ANY ADDITIONAL TEXT: ‘{{"

QuestionID": {{"Answer": "Your answer", "

Extract": "Extract from the policy"}}}}‘,

where " Your Answer" represents your

answer to the question, "Extract from the

policy" is the best fit extract and ’

QuestionID’ is the id of the question that

I provide you with.

Below is the list of questions, in the

following format ‘{{’QuestionID’:’

QuestionText’}}‘: {questions_for_answering

}""";

3) OpenAI with RAG: The previous approaches relied heav-

ily on the already fixed knowledge the model has been trained

on. Using an approach such as a RAG system gives us the

opportunity to retrieve information from an external source,

further improving the reliability of the response given back by

the model. Utilizing the benefits of a RAG framework indicates

a combination of a retrieval component and a generational

model. During the retrieval phase the system considers and

fetches the most relevant piece of information given a set of

sources, signifying the external information. After the most

adequate piece of information is taken, it is concatenated to

the input as part of the context [13]. In the specific use case

of document analysis, a document represents the source from

which the model answers the questions. Precisely, a single

document needs to be chunked into overlapping pieces of text,

which are then used during the retrieval process to find the

text most adequate for the user prompt. To be able to index

across a vast set of textual data, RAG depends on the concept

of embedding separate chunks from the source and storing

them into a vector database. Such an instance is the open-

source Chroma vector database used for storing embeddings

ELENA FILIPOVSKA ET AL.: BENCHMARKING OPENAI’S APIS AND LARGE LANGUAGE MODELS FOR QUESTION ANSWERING 111

Fig. 3. Implementation flow for an OpenAI model with RAG

[14]. The flow of the whole process, starting from making a

user prompt to getting a model response has several steps.

Firstly, all of the questions are transformed into a vector

representation, used later for indexing the chunks. Through

the process of iteration a collection in the vector database

is created for each document, denoting the source that is

needed for the requests to the model. Having all the chunks

and questions in a suitable format, querying is performed for

each of the questions, meaning the closest chunk by the cosine

similarity is taken. The request using the completions module

from the OpenAI client has context for the prompt containing

the retrieved chunk and the current question (Fig. 3).
Prompt format for OpenAI with RAG where

question_content[’Text’] denotes the text of

the question to be answered:

"""You are an auditor that needs to review

multiple privacy policies, each one identified

with a ‘PolicyID‘. For the following policy:"""

+ f"{closest_chunk}" + """ answer the following

question with a "Yes"/"No" answer and if the

answer is "Yes" then provide an extract

from the policy that is LONGER than 200

characters and best fits the answer, otherwise

return an empty string, nothing else that

differs from this. Make sure that your response

is only in a JSON format like this and DO

NOT PROVIDE ANY ADDITIONAL TEXT: ‘{"Answer": "

Your answer", "Extract": "Extract from the

policy"}‘, where " Your Answer"

represents your answer to the question, "

Extract from the policy" is the best fit extract

(make sure it is composed of whole sentences

and also do not include any quotation marks).

Here is the question: """ f"{question_content[’

Text’]}";

4) Azure OpenAI: In this approach, we leverage the Mi-

crosoft Azure Service, a collaboration between Microsoft

Azure and OpenAI, which offers a comprehensive platform

for developing, deploying, and managing AI-powered appli-

cations. Microsoft Azure integrates Microsoft Azure OpenAI,

a powerful AI service enabling users to create and deploy

AI LLMs within the Microsoft Azure platform. The Azure

OpenAI Service allows developers to easily and quickly

build AI models within the Azure platform, which means

that applications and usages of models can be created and

deployed faster and easier within the Azure Service than

traditional methods. Implementations and usages of these

models occur through subscription, requiring a request access

to Azure OpenAIService, which is mandatory and must be

sent to Microsoft Azure for additional approval. Selecting the

appropriate regions during service creation is important, as

not all models are available in every region. Subsequently,

we utilized Azure AI Studio to deploy models, including the

creation of an Azure OpenAI GPT-4-32k model from OpenAI.

Upon deployment, the model is ready to be used, the primary

connectivity parameters with the model consist of an API key

and Azure endpoint. These parameters were previously set

up in our direct OpenAI API approach, and we reused all

implementations from there.

E. Local Implementation of Llama model

In our previous approaches, we encountered several signif-

icant drawbacks:

1) Direct API calls proved to be the most unprofitable

option and are limited by token constraints.

2) OpenAI’s offerings require a subscription, which adds

to the cost burden.

In both cases (1) and (2), if the data is sensitive and we do

not want it stored externally, we cannot guarantee its privacy

since it is processed on third-party systems. Additionally, chal-

lenges related to choosing the appropriate type of embedding

and the strategy for Retrieval-Augmented Generation (RAG).

OpenAI’s API presents certain operational constraints that

significantly affect its usability in constrained environments.

First, accessing OpenAI’s services requires API calls limited

by a predefined number of tokens. This token-based system

restricts the volume of text that can be processed within a

given timeframe, posing a challenge for applications with

high throughput needs. Additionally, maintaining an active

subscription imposes a continuous financial budget. These

subscriptions, essential for accessing the API, vary in cost de-

pending on the usage level, potentially becoming prohibitively

expensive for startups and individuals with limited budgets.

Furthermore, the reliance on external servers for processing

raises data privacy concerns, particularly for users handling

sensitive information. This reliance restricts users’ control over

their personal data security and makes it more difficult to

comply with strict data protection laws.

To address these issues, we utilized the LLaMA-2-13B-

Chat model [15] in a quantized form optimized for GPU

processors 1, developed by Meta AI. It stands out due to its

robust capabilities and innovative features, offering significant

advantages in the realm of natural language processing:

• Scalable Architecture: The model is designed with a

scalable architecture that can handle a wide range of com-

putational loads, making it suitable for both high-powered

1https://huggingface.co/TheBloke/Llama-2-13B-chat-GPTQ

112 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

servers and more modest local machines, depending on

the deployment needs.

• Advanced Natural Language Understanding: With

13 billion parameters, LLaMA-2-13B-Chat demonstrates

advanced understanding of complex language queries,

which enhances its performance in tasks such as con-

versation, summarization, and text completion.

• Efficient Memory Usage: The quantized version of the

model reduces memory requirements without a significant

loss in performance, allowing it to be used effectively on

devices with limited RAM and GPU resources.

• Privacy and Security: Local deployment capability en-

sures that sensitive data does not leave the organizational

boundary, mitigating risks associated with data breaches

and non-compliance with data protection laws.

• Cost-Effectiveness: By reducing dependency on cloud-

based services, the LLaMA-2-13B-Chat model cuts down

on ongoing operational costs related to data transmission

and API usage, making it economically affordable for

long-term projects.

• Customization and Flexibility: Users can fine-tune the

model according to specific needs and constraints, which

is particularly valuable in specialized applications where

one-size-fits-all solutions are inadequate.

This approach allows the model to be downloaded and

run locally, ensuring that the data remains within the local

network. The LLaMA-2-13B-Chat model, with its 13 billion

parameters, typically requires approximately 24GB of RAM

to load, whereas the quantized version we used demands only

8GB. Despite this reduction, the accuracy of the responses

remains consistent with the original, achieving an accuracy

score of 62.18.
For building the vector base, we utilized the FAISS (Face-

book AI Similarity Search) library [16], which is renowned

for its efficiency in indexing and retrieving the closest

matches, thereby optimizing our search and response accuracy.

Specifically designed for efficient similarity searches in high-

dimensional data, FAISS offers substantial advantages over

Chroma for specialized applications. Its algorithms are finely

tuned for vector quantization and indexing, which significantly

enhances performance on both CPU and GPU—key factors for

tasks that demand rapid response times and the capability to

handle large datasets effectively. Moreover, FAISS integrates

seamlessly with popular machine learning frameworks and

benefits from robust community and developer support, ensur-

ing it remains at the forefront of technological advancements.

Also, it is the preferred choice for applications that involve

complex vector operations within large-scale data environ-

ments.
By leveraging the quantized LLaMA-2-13B-Chat-GPTQ

model and integrating it with the FAISS framework, we

achieved a solution that maintains data privacy, reduces re-

source requirements, and enhances the accuracy and relevance

of responses. This approach offers a valuable alternative

for small business and individual users seeking to deploy

advanced language models locally without compromising on

Fig. 4. Implementation flow of the Llama-2-13B-chat-GPTQ model with
FAISS vector database

performance or security. The implemented architecture is given

on Figure 4

Prompt format for Llama-2-13B-chat-GPTQ with FAISS:

System message for Llama-2-13B-chat-GPTQ with FAISS:

’’’SYSTEM:You are an auditor that needs to review

multiple privacy policies, each one identified

with a ‘PolicyID‘. For each policy and each

question,

\\

ANSWER THE QUESTION WITH YES/NO:\\

’Yes’: if you assume that the policy has the

requirements specified in the question\\

’No’:otherwise\\

User message for Llama-2-13B-chat-GPTQ with FAISS:

Example:\\

USER: Policy: https://www.clarityenglish.com/privacy

.php Do you provide the information about the

identity and the contact details of the

controllers and, where applicable, of the

controller’s representative? Companies which do

not have their seat in the EEA should appoint a

representative within the EU.\\

ASSISTANT:\\

’’’

IV. RESULTS

A. Model size comparison

This section presents the results from the analysis of the

previously defined Use Cases where we comparatively com-

pare the responses of different models and methods. First, to

provide a context for the evaluated models, in Table I we

show the parameters, such as model architecture, number of

parameters, training data and training duration.

The uniformity between the different use cases derives

from the reality that a certain use case utilizes the same

policies and same questions across different approaches and

models. Considering this, the first use case was tested us-

ing all five approaches - two of them using only the

GPT3.5-turbo with 16K tokens model, one of them using

ELENA FILIPOVSKA ET AL.: BENCHMARKING OPENAI’S APIS AND LARGE LANGUAGE MODELS FOR QUESTION ANSWERING 113

TABLE I
COMPARISON OF EVALUATED MODELS

Feature GPT-3.5 GPT-4 GPT-4o Llama-213B-GPTQ

Model Architecture Transformer Transformer Transformer Transformer

Parameters (Billion) 175 280 280 213

Training Data Diverse Text Diverse Text Diverse Text Diverse Text

Training Duration Several months Several months Several months Several months

Performance High Very High Optimized High Comparable to GPT-3.5

Use Cases NLP Tasks Advanced NLP Optimized NLP NLP Tasks

Vendor OpenAI OpenAI OpenAI Meta

both the GPT3.5-turbo model with 16k tokens, the GPT4

model with 128K tokens, also the GPT4 model with 32K

tokens, and at the end Llama-2-13B-chat-GPTQ with a

FAISS vector database. Although the aim of the experiments

with all of the evaluated methods, the content and format of the

responses differs. During the evaluation phase, the GPT-4o

model was utilized for the policy regulation questions. The

responses provided with this model were in compliance with

the desired output. The first three use cases were subject

to evaluation with the GPT-4o model. Adequate responses

given by theGPT-4 model were the reason for not testing the

GPT-4o further, particularly because the cost for these use

cases is significantly higher.

In the remainder of this section, we first evaluate the

response format from an explainability point of view. Then,

we directly the different models and finally, we illustrate

and discuss the challenges and limitations of using OpenAI

models.

B. Explainability of responses of different models

In Table II we show exemplary responses with the focus

on extraction of the document content that contributed to a

“Yes/No” answer for use case 1. To reiterate, use case 1 is

relevant when one document (i.e., policy) does not exceed the

limit for the primary model token count (16K tokens) and

one question. This is relevant for shorter policies and when

questions are asked one-by-one in scenarios when a human

expert is going through a checklist, so the model’s output can

be used to aid the expert.

Table II shows the models’ responses on following GDPR

question: ”Do you provide the information about the identity

and the contact details of the controllers and, where applicable,

of the controller’s representative? Companies which do not

have their seat in the EEA should appoint a representative

within the EU.”, on the ClarityEnglish policy 2. While all of

the methods using a GPT-3.5 model return a “Yes” answer,

the use case using a GPT-4 model returns a “No” answer.

As evident, for the responses containing a “Yes” answer,

even though there is a difference in the extract, they are

all relevant to the policy for the specified question. Even

though, a detailed analysis of the correctness of the results

from a legal perspective and how much would they differ

from the evaluation of legal experts is not in the scope of

this article, we can see that different models provide different

quality and length of responses. However, we point out that the

2https://www.clarityenglish.com/privacy.php

response of “Direct API call using GPT3.5-turbo model”

and “Direct API call using GPT4 model” did not produce

suitable responses.

TABLE II
EXAMPLES OF RESPONSE EXTRACT QUALITY WITH THE DIFFERENT LLM

MODELS FOR USE CASE 1

Approach and model used Use case 1 response extract

Direct API call using

GPT3.5-turbo model

”Companies which do not have their seat in the EEA should appoint a representative

within the EU.”

OpenAI with LangChain

using GPT3.5-turbo

model

”ClarityEnglish confirms that:.A privacy policy is in place for the protection of

personal data which has been approved by our own management and communicated

to all employees and other relevant people (such as our worldwide distributors).All

ClarityEnglish employees have received awareness training regarding data protec-

tion and the GDPR.Everyone within ClarityEnglish understands their roles in the

protection of personal data, and will receive training where needed.We are keeping

records of processing as required by the GDPR.We do not use sub-processors.All

of our employees are subject to confidentiality obligations with respect to personal

data.When ClarityEnglish transfers any customers’ personal data internationally, we

will ensure that the transfer is legal under the GDPR.We have policies and other

controls in place to provide appropriate protection of customers’ personal data, based

on a careful assessment of risk.”

OpenAI with RAG using

GPT3.5-turbo model

”If you have any questions, please contact our IT Manager, XYZ, who is in overall

charge of privacy and data protection: XYZ@clarityenglish.com.”

Direct API call using GPT4

model

””

Azure OpenAI using GPT4

model

”If you have any questions, please contact our IT Manager, XYZ, who is in overall

charge of privacy and data protection: XYZ@clarityenglish.com. The General Data

Protection Regulation (GDPR) applies to all organisations that collect and process

the personal data of EU citizens.”

Llama-2-13B

chat-GPTQ with FAISS

”Yes, we do provide information about the identity and contact details of our

controllers and representatives as required by the GDPR. Our privacy policy includes

information about our company, Clarity English Limited, including our name,

address, email address, and phone number. We also identify our data protection

officer (DPO) who is responsible for overseeing our compliance with data protection

laws. Additionally, we inform users that they can contact us at any time to exercise

their rights under the GDPR, such as accessing or deleting their personal data. We

are committed to being transparent about our processing activities and to providing

users with the information they need to exercise their rights under the GDPR. As a

non-EEA company, we have appointed a representative within the EU, as required by

Article 27 of the GDPR, to ensure that we are able to comply with the requirements

of the GDPR. Our representative is [Name], who can be contacted at [Address] or

[Email].”

C. Comparison of Open AI models: GPT-3.5-turbo,

GPT-4, and GPT-4o

GPT-4 is recognized as a more advanced and creative

release compared to the GPT-3.5-turbo model. A more

detailed view into the differences between the two models

based on the qualitative analysis is given in Table III.

TABLE III
COMPREHENSIVE QUALITATIVE COMPARISON AND EVALUATION OF

GPT-3.5-TURBO AND GPT-4 METHODOLOGICAL APPROACHES USING

SØRENSEN–DICE COEFFICIENT AND JACCARD INDEX ACROSS VARIOUS

USE CASES

Approaches Use case Sørensen–Dice coefficient Jaccard index

GPT-3.5 Turbo and GPT-4 Direct

API call

UC 1 0 0

GPT-3.5 Turbo and GPT-4 Direct

API call

UC 2 None None

GPT-3.5 Turbo and GPT-4 Direct

API call

UC 3 0.66,

0.36,

0.66

0.5,

0.22,

0.5

GPT-3.5 Turbo and

GPT-4 Direct API call

UC 4 0.88,

0.9,

0.4,

0.7,

1.0,

0.2,

0.9,

0.8,

0.9,

0.9

0.66,

0.81,

0.25,

0.54,

1.0,

0.11,

0.81,

0.66,

0.81,

0.81

GPT-4o is the most advanced model and considering that

the GPT-4 model provided adequate quality of responses for a

cheaper cost, we did not perform significant experiments with

GPT-4o. However, in the future work when legal experts will

manually evaluate also the actual quality of the responses, this

will be essential.

114 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

D. Comprehensive comparison of models, responses, perfor-

mance and cost

Having different use cases based on the number of doc-

uments (i.e., policies) being analyzed and the number of

questions being analyzed, introduces different relevant aspects

for evaluation. The detailed results for each scenario tested,

as can be seen from Table IV, reveal the optimal parameters

for real-world circumstances. Namely, when analyzing a small

body of documents and a small number of questions, per

the results presented in Table IV, we conclude that the most

suitable approaches are using the GPT3.5 model together with

one-shot learning (i.e., direct API call) or the LangChain

framework, and the Llama model. The reason for this is the

sufficient quality of the responses, the appropriate response

format and the low-cost of the solutions. However, as subse-

quent use cases were analyzed, and with that, the number of

analyzed documents and the number of questions increase,

it becomes aparent that the GPT4 and Llama models are

more favorable in terms of response adequacy and, in some

instances, the execution time. When considering the cost, all

implementations with the Llama model are cheaper, assuming

that the GPU-powered infrastructure is already in place.
In terms of the AI frameworks being tested, both RAG

and LangChain are designed to enhance language models,

but they serve different purposes and have distinct architec-

tures. RAG, developed by Facebook AI, combines retrieval

mechanisms with generation to provide more accurate and

contextually relevant responses by fetching information from

external documents before generating a response. This ap-

proach improves the factual accuracy and depth of generated

content. LangChain, on the other hand, is a versatile frame-

work designed to facilitate the development of applications

using large language models (LLMs) by connecting them with

external data sources, APIs, and custom logic, making it highly

adaptable for various use cases beyond text generation, such

as chatbots, information retrieval, and task automation. While

RAG focuses on enhancing the quality of responses through

retrieval, LangChain emphasizes the integration and utility of

LLMs in diverse, complex workflows. In the evaluated use

cases, regardless of the model in question, RAG show the most

fitting results concerning the response quality and execution

time. That being said, when evaluating these specific use cases

in terms of cost, those using the Llama model are the most

optimal.

E. Challenges and limitations

During the use case testing phase, we encountered numerous

challenges and limitations regarding the model usage. The

foremost constraint affecting the response quality is the prompt

format - during the first executions, the responses of the model

were either entirely not in the specified format or the content

did not meet the satisfactory criteria. Across different models,

the most prevalent limitation was the token limit, meaning

some of the policies and questions were too long for the

model to process and they returned an error. Even though

these cases did not provide an answer, they still affected the

total cost. During the re-execution for some of the use cases,

a difference in the answer content was noted, which proved

the unpredictability of responses of LLMs. Another notable

challenge when dealing with model requests is the tokens per

minute limitation, which prevents seamless interaction with

OpenAI.

The efficiency of Llama-2-13B-chat-GPTQ can be

improved with a strategic selection of the vector base and

embeddings. In the future, other types of embeddings could

be evaluated. Additionally, implementing a graph-based RAG

system, would facilitate better inference time of the responses

and enable the discovery of novel relationships within the

complex text data.

V. CONCLUSION

In conclusion, our study offers valuable insights into the

current APIs and approaches for document analysis, for exam-

ple legal documents, which is traditionally manual and time-

consuming, utilizing AI technologies. Ultimately, we aim to

propose a balanced approach, combining AI’s capabilities with

human oversight to ensure comprehensive and accurate eval-

uations. As a first step towards that, this paper evaluated the

technical challenges related to speed, cost, and feasibility of

using the current LLM technology to scale question answering

across multiple documents in an automated way.

Based on the performed experiments in this study, we can

conclude that using OpenAI models via API calls is a useful

workaround for speeding up response times in the event that

improving local infrastructure is not practical, especially for

lengthy texts. On the other hand, using locally accessible quan-

tized versions of language models, if infrastructure capacity

allows, aids in data maintenance inside the local network.

Furthermore, our research shows that quantized models are

very relevant even if they contain less parameters than OpenAI

models. Therefore, there are no restrictions on the quantity of

tokens that may be processed when using quantized models.

The efficacy of using an LLM for question-answering so far

are satisfactory enough to encourage further exploration into

the opportunities that these models can offer. With additional

optimization of model responses as well as requests to them,

future uses have a potential to be more robust and even more

effective. As we explore the possibilities offered by LLMs

deeper, there is a growing anticipation for uncovering novel

uses of integration, ultimately leading to advancements in NLP.

As the boundaries of what these models can achieve expand,

the promise for innovation rises. Last but not least, these

outputs must be validated by human experts, so the goal is

not to use human experts to simply validate AI output, but

rather to use AI output to make the human work quicker and

more efficient.

ACKNOWLEDGEMENTS

We would like to express our gratitude to Katarzyna Barud,

Theresa Henne, Clara Saillant, Emily Thomson, and Tima Out

Anwana from the University of Vienna for their exceptional

ELENA FILIPOVSKA ET AL.: BENCHMARKING OPENAI’S APIS AND LARGE LANGUAGE MODELS FOR QUESTION ANSWERING 115

legal expertise and dedicated work in preparing the GDPR-

related questions and the manual analysis of the DPP docu-

ments.

REFERENCES

[1] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang,
Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong,
Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun
Nie, and Ji-Rong Wen. A survey of large language models, 2023.

[2] E Guo, M Gupta, J Deng, Y J Park, M Paget, and C Naugler. Automated
paper screening for clinical reviews using large language models: Data
analysis study. J Med Internet Res, 26, 2024.

[3] Mehrdad Safaei and Justin Longo. The end of the policy analyst? testing
the capability of artificial intelligence to generate plausible, persuasive,
and useful policy analysis. Digital Government: Research and Practice,
5(1):1–35, 2024.

[4] Kazem Jahanbakhsh, Mahdi Hajiabadi, Vipul Gagrani, Jennifer Louie,
and Saurabh Khanwalkar. Beyond hallucination: Building a reliable
question answering & explanation system with gpts.

[5] Matt Triff Charith Gunasekara, Noah Chalifour. Question answering
artificial intelligence, chatbot on military dress policy: A natural lan-
guage processing based application. Defence Research and Development

Canada, 2021.
[6] Jaromir Savelka, Arav Agarwal, Christopher Bogart, and Majd Sakr.

From gpt-3 to gpt-4: On the evolving efficacy of llms to answer
multiple-choice questions for programming classes in higher education.
In International Conference on Computer Supported Education, pages
160–182. Springer, 2023.

[7] Michael G. Rizzo, Nathan Cai, and David Constantinescu. The
performance of chatgpt on orthopaedic in-service training exams: A
comparative study of the gpt-3.5 turbo and gpt-4 models in orthopaedic
education. Journal of Orthopaedics, 2024.

[8] Martin Hasal, Jana Nowaková, Khalifa Ahmed Saghair, Hussam Ab-
dulla, Václav Snášel, and Lidia Ogiela. Chatbots: Security, privacy, data
protection, and social aspects. Concurrency and Computation: Practice

and Experience, 33(19):e6426, 2021.
[9] Hillman V., Barud K., Henne T., Zdravevski E., Saillant C., and Radkoff

E. In the Fine Print: Investigating EdTech Providers’ Terms of Services
and Data Privacy Commitment. Working Paper, 2024.

[10] Leonard Richardson. Beautiful soup documentation, 2007.
[11] Konstantinos I. Roumeliotis and Nikolaos D. Tselikas. Chatgpt and

open-ai models: A preliminary review. Future Internet, 2023.
[12] Oguzhan Topsakal and Tahir Cetin Akinci. Creating large language

model applications utilizing langchain: A primer on developing llm apps
fast. In International Conference on Applied Engineering and Natural

Sciences, volume 1, pages 1050–1056, 2023.
[13] Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pedro Gengo, Celio

Larcher, Marcos Piau, Pablo Costa, and Vinicius Caridá. The chronicles
of rag: The retriever, the chunk and the generator. arXiv preprint

arXiv:2401.07883, 2024.
[14] Toni Taipalus. Vector database management systems: Fundamental

concepts, use-cases, and current challenges. Cognitive Systems Research,
2024.

[15] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[16] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely
Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and
Hervé Jégou. The faiss library. arXiv preprint arXiv:2401.08281, 2024.

116 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

APPENDIX

TABLE IV
QUALITATIVE ANALYSIS OF DIFFERENT APPROACHES AND USE CASES

Model used Approach Use case Response QA result Extract
result

JSON format Execution
time

Cost

GPT 3.5
Turbo

Direct API
call

Use case 1 ChatCompletion ob-
ject

adequate adequate adequate 1.7s <$0.01

GPT 3.5
Turbo

Direct API
call

Use case 2 Error code: 400 ex-
ceeded token limit

Unavailable Unavailable Unavailable 1.9s <$0.01

GPT 3.5
Turbo

Direct API
call

Use case 5 Error code: 400 ex-
ceeded token limit

Unavailable partially ade-
quate

partially ade-
quate

5.7s $0.01

GPT 3.5
Turbo

Direct API
call

Use case 6 Error code: 400 ex-
ceeded token limit

Unavailable partially ade-
quate

partially ade-
quate

2min 50s $0.09

GPT 3.5
Turbo

OpenAI with
LangChain

Use case 1 Response string adequate adequate adequate 10.6s <$0.01

GPT 3.5
Turbo

OpenAI with
LangChain

Use case 5 Error code: 429 Unavailable Unavailable Unavailable 5.8s <$0.01

GPT 3.5
Turbo

OpenAI with
LangChain

Use case 6 Error code: 400 partially ade-
quate

partially ade-
quate

partially ade-
quate

47.3s $0.18

GPT 3.5
Turbo

OpenAI with
RAG

Use case 1 Response string adequate adequate adequate 1.7s $0.01

GPT 3.5
Turbo

OpenAI with
RAG

Use case 2 Response string adequate adequate adequate 4.5s $0.01

GPT 3.5
Turbo

OpenAI with
RAG

Use case 3 Response string adequate adequate adequate 6min 51s $0.16

GPT 3.5
Turbo

OpenAI with
RAG

Use case 4 Response string adequate adequate adequate 2min 41s $0.14

GPT 3.5
Turbo

OpenAI with
RAG

Use case 5 Response string adequate adequate adequate 84min 32s $2.86

GPT 3.5
Turbo

OpenAI with
RAG

Use case 6 Response string adequate adequate adequate 2d 53min 2s $33.29

GPT 4 Direct API
call

Use case 1 ChatCompletion ob-
ject

adequate adequate adequate 4.7s $0.1

GPT 4 Direct API
call

Use case 2 ChatCompletion ob-
ject

adequate adequate adequate 17.9s $0.23

GPT 4 Direct API
call

Use case 3 ChatCompletion ob-
ject

adequate adequate adequate 5min 20s $0.48

GPT 4 Direct API
call

Use case 4 ChatCompletion ob-
ject

adequate adequate adequate 6min 21s $0.55

GPT 4 Azure Ope-
nAI

Use case 3 Response string adequate adequate adequate 44min 43.2s $13.2

GPT 4 Azure Ope-
nAI

Use case 4 Response string adequate adequate adequate 11min 25.3s $3.58

Llama-
213B-GPTQ

LangChain
RAG -
FAISS

Use case 1 Response string adequate adequate adequate 5.23s $0

Llama-2-
13B-GPTQ

LangChain
RAG -
FAISS

Use case 2 Response string adequate adequate adequate 8.21s $0

Llama-2-
13B-GPTQ

LangChain
RAG -
FAISS

Use case 3 Response string adequate adequate adequate 12min 731s $0

Llama-2-
13B-GPTQ

LangChain
RAG -
FAISS

Use case 4 Response string adequate adequate adequate 8min 941s $0

Llama-2-
13B-GPTQ

LangChain
RAG -
FAISS

Use case 5 Response string adequate adequate adequate 3h 31min 27s $0

Llama-2-
13B-GPTQ

LangChain
RAG -
FAISS

Use case 6 Response string adequate adequate adequate 2d 2h 23min
4s

$0

ELENA FILIPOVSKA ET AL.: BENCHMARKING OPENAI’S APIS AND LARGE LANGUAGE MODELS FOR QUESTION ANSWERING 117

