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Abstract—This paper presents a novel approach to enhance
the spatio-temporal analysis of forest ecosystems using the
d’Alembert convolution method, which, integrating elements
from wave equation theory and convolutional neural networks,
enables the comprehensive analysis of remote sensing images by
capturing both spatial and temporal variations. This methodology
not only improves feature extraction, but also helps address
the challenges associated with traditional image processing tech-
niques, which often overlook the temporal dynamics of forests.
The results show significant improvements in the analysis of
forest ecosystems. Specifically, the higher performance metrics
compared to existing methods, including higher accuracy in
classifying various forest types and more effective monitoring
of changes over time.

Index Terms—Convolutional Neural Networks, Spatio-
Temporal Analysis, Remote Sensing, d’Alembert Operator.

I. INTRODUCTION

T
HE IMPORTANCE of forests in global environmental
health, biodiversity conservation, and economic resources

is undeniable. Forests play a crucial role in carbon sequestra-
tion, climate regulation, and providing habitats for a variety
of species [1]. However, they are constantly under threat from
various factors, including climate change, deforestation, pests,
and diseases [2]. Traditional forest management methods,
often relying on periodic and manual surveys, are inadequate
in the face of these rapidly evolving challenges [3]. The need
for more efficient, accurate, and real-time monitoring and
management methods is more pressing than ever [4].

Forestry management is entering a new era of techno-
logical innovation, marked by the integration of advanced
computational methods and environmental science. The advent
of smart forestry, using data-driven approaches, has opened
new pathways for sustainable forest management and envi-
ronmental conservation [5]. Advancements in remote sensing
technologies, such as satellite imagery and aerial photography,
have propelled the field of forestry into the digital age [6].
Hyperspectral imaging, in particular, has become a valuable
tool for monitoring vegetation health, biomass estimation,
and detecting changes within forest ecosystems [7]. However,
the sheer volume and complexity of the generated data pose
significant challenges in terms of processing and analysis [8].
Conventional image processing techniques, while beneficial,

often fail in extracting the full spectrum of information hid-
den within multidimensional spatial and temporal data sets
[9]. However, the complexity and dynamic nature of forest
ecosystems pose great challenges in terms of data collection,
analysis, and interpretation [10], one of the challenges still
present in smart forest, as outlined in [11].

Convolutional neural networks (CNNs) have revolutionized
the field of image analysis [12]. However, their application
in forestry has been somewhat limited, focusing mainly on
spatial data without fully exploiting the temporal dimension
[13]. By extending the convolution operation to incorporate
differential operators that account for both spatial and temporal
changes, similar to the components of the d’Alembert operator,
we propose a novel method that not only enhances feature
extraction from remote sensing images, but also captures the
dynamic changes occurring within forest ecosystems over time
by adapting the convolution operation to include differential
operators that account for spatial and temporal changes, this
method allows for a more nuanced extraction of features
from remote sensing images, surpassing the capabilities of
traditional convolutional methods. The approach allows for
an increased level of detail in analyzing both spatial and
temporal variations in forest ecosystems, contributing to a
deeper understanding of forest dynamics.

II. RELATED WORKS

Existing research has demonstrated a robust exploration of
remote sensing applications, taking advantage of advanced
machine learning and deep learning techniques to address a
spectrum of challenges in land use and cover change (LULC),
environmental monitoring and resource management. Several
researchers utilize machine learning models to analyze and
interpret LULC changes and their impacts on ecosystems.
For example, Saha et al. (2024) employ geospatial techniques
and machine learning to assess the degradation of the Deepor
wetland in India, highlighting high losses due to urbanization
and agricultural expansion [14]. Similarly, Thien et al. (2023)
examined the spatiotemporal dynamics of LULC in Vietnam’s
Red River delta, attributing changes predominantly to urban
development [15]. In a broader scope, Masolele et al. (2021)
deploy spatial and temporal deep learning methods to classify
land use after tropical deforestation, underscoring the supe-
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rior performance of spatio-temporal models over conventional
approaches [16]. Maretto et al. (2021) further this discourse
by mapping deforestation in the Amazon, demonstrating how
spatio-temporal deep learning improves monitoring accuracy
[17]. Others focused on the development of sophisticated
machine learning algorithms to refine remote sensing data
retrieval and analysis. Fonseca et al. (2023) innovate in multi-
temporal SAR image analysis through wavelet spatio-temporal
change detection, achieving high accuracy with reduced com-
putational demands [18]. On a similar note, Dimyati et al.
(2023) and Jing et al. (2023) introduce methods to monitor
mangrove changes and combine remote sensing images, re-
spectively, showcasing the potential of these advanced tech-
niques in managing complex environmental datasets [19], [20].

III. THEORETICAL FOUNDATIONS

A. Convolutional Neural Networks in Image Processing

Convolutional Neural Networks (CNNs) have revolutionized
the field of image processing and computer vision. They are
a specialized kind of neural network designed for processing
data with a grid-like topology, such as images. A CNN learns
to recognize patterns and features in images through the
process of convolution, pooling, and fully connected layers.

The convolution of a function f with a kernel g is defined
as:

(F ∗G)(x, y) =
a∑

i=−a

b∑

j=−b

F (i, j) ·G(x− i, y − j) (1)

where F is the image, G is the kernel, and x, y are spatial
coordinates in the image, and a and b represent the half-width
and half-height of the kernel G, respectively. The kernel G
slides over the image F , computing the sum of element-wise
products at each position.

CNN architecture has several types of layers. Lower layers
capture basic features such as edges and textures, while deeper
layers identify complex patterns specific to the training data:

• Convolutional Layer performs the convolution opera-
tion. It applies a set of learnable filters (kernels) to the
input image. Each filter extracts different features from
the input.

Cout = ReLU(Cin ∗K + b) (2)

where Cin is the input, K is the convolutional kernel,
b is a bias term, and ReLU is the activation function,
typically a Rectified Linear Unit.

• Pooling Layer reduces the spatial size (height and width)
of the input volume, making the network computation
more efficient. It also helps to make the network invariant
to small translations of the input.

• Fully Connected Layer has connections to all activations
in the previous layer. These layers are typically used at
the end of the network to perform classification based on
the features extracted by the convolutional and pooling
layers.

B. The d’Alembert Operator in Wave Equations

The d’Alembert operator is a second-order differential op-
erator that is also widely used in the fields of physics and
engineering, particularly in the study of wave propagation and
vibrations. The d’Alembert operator is defined in the context
of a four-dimensional space-time continuum, combining time
and space derivatives. In a three-dimensional space with time,
the operator is represented as:

□ =
∂2

∂t2
−∇

2 (3)

where ∂2

∂t2
is the second derivative with respect to time, and

∇
2 is the Laplacian operator, which is a scalar differential

operator defined as the divergence of the gradient of a function,
representing the sum of second spatial derivatives:

∇
2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(4)

The wave equation is particularly suitable for analyzing
spatiotemporal data in remote sensing images because it
inherently captures the propagation of information over both
space and time, which aligns with the dynamic nature of
environmental phenomena. It combines the second-order tem-
poral derivative with the Laplacian operator, effectively linking
temporal changes to spatial variations. This dual capability
allows the wave equation to model how disturbances, such as
changes in vegetation or land cover, propagate through time
and space, providing a comprehensive framework for tracking
these dynamics. By incorporating the d’Alembert operator into
convolutional analysis, the network can utilize these properties
to enhance feature extraction, capturing both the immediate
spatial details and their evolution over time. This results in a
more robust analysis of remote sensing data, as it allows for
the detection and interpretation of complex temporal patterns
and spatial structures within the forest ecosystem, essential for
accurate monitoring and assessment. The wave equation for a
scalar field ψ(x, y, z, t) in a three-dimensional space can be
written as:

□ψ =
∂2ψ

∂t2
−∇

2ψ = 0 (5)

This equation describes how a wave propagates in space and
time. The term ∂2ψ

∂t2
represents the acceleration of the wave,

while ∇
2ψ accounts for the spatial spread of the wave.

C. d’Alembert Operator for Convolutional Analysis

CNNs handle spatial data by applying convolutional filters
to extract features such as edges, textures, and patterns from
static images. These filters are applied across the spatial
dimensions (height and width) of the image, capturing local
spatial hierarchies and invariances. Temporal processing, on
the other hand, works by capturing the changes and dynamics
over time, which is critical for understanding phenomena like
forest growth or seasonal variations in remote sensing data. To
achieve this, the network incorporates layers or mechanisms
that can capture temporal dependencies - the d’Alembert op-
erator, which, traditionally used to describe wave propagation,
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is adapted to account for both spatial and temporal changes
by modifying the convolution operation to include differential
components. By using a kernel enhanced with the d’Alembert
operator, the network simultaneously processes the spatial
features (through the traditional convolution) and the temporal
features (through the operator’s temporal derivative compo-
nent). Threfor, this integration allows the network to learn
more comprehensive feature representations that encapsulate
both static and dynamic aspects of the data, providing a robust
and versatile framework for tasks requiring spatio-temporal
analysis. The balance is achieved by including both standard
convolutional layers for spatial processing and modified layers
to handle temporal dynamics effectively.

To integrate the d’Alembert operator into the convolution
process, we first redefine the convolution operation to include
differential components. Consider a remote sensing image
sequence represented as I(x, y, t), where (x, y) are spatial
coordinates, and t is the time dimension. The adapted convo-
lution operation, incorporating the d’Alembert operator, can
be mathematically represented as:

Cd’Alembert(x, y, t) = (K ∗ (□I))(x, y, t) (6)

where K is the convolution kernel, ∗ denotes the convolution
operation, and □ is the d’Alembert operator. The d’Alembert
operator applied to the image sequence I is defined as:

□I(x, y, t) =
∂2I

∂t2
(x, y, t)−∇

2I(x, y, t) (7)

The Laplacian component ∇
2I(x, y, t) of the d’Alembert

operator enhances the extraction of spatial features by empha-
sizing areas with high spatial frequency, such as edges and
textures in the image.

The temporal derivative component ∂2I
∂t2

(x, y, t) captures
changes in the image sequence over time, highlighting the
dynamic changes in the forest environment.

The integration of the d’Alembert convolution into a CNN
framework necessitates a modification of the standard convo-
lutional layers. This modification involves applying a kernel
that is enhanced with the d’Alembert operator, enabling the
network to capture both spatial and temporal variations more
effectively. The d’Alembert-enhanced kernel is designed to
incorporate both the spatial features, captured by the traditional
convolution kernel, and the temporal features, introduced by
the d’Alembert operator. Consider a standard convolution
kernel K and its adaptation with the d’Alembert operator.

Kd’Alembert(x, y, t) = K(x, y) + λ · (□I)(x, y, t) (8)

Here, K(x, y) is the standard convolution kernel, □I repre-
sents the application of the d’Alembert operator on the image
sequence I , and λ is a weighting factor that balances the spatial
and temporal components.

The convolution operation in a CNN is modified to use
this d’Alembert-enhanced kernel. The modified convolution
operation for an input image sequence I at layer l is:

Cld’Alembert(x, y, t) = (Kl
d’Alembert ∗ I

l)(x, y, t) (9)

where ∗ denotes the convolution operation, and l indicates the
layer in the CNN.

The d’Alembert convolution allows the CNN to extract
features that encapsulate both spatial variations (such as edges,
textures) and temporal changes (such as growth patterns,
environmental dynamics). This dual capability is required for
the analysis of remote sensing images of forests, where both
spatial and temporal indicators are required to understand
forest health and dynamics.

F ld’Alembert = Activation(Cld’Alembert(x, y, t)) (10)

Here, F ld’Alembert represents the feature maps obtained after
applying the d’Alembert convolution at layer l, and Activation
denotes the activation function used in the CNN (e.g., ReLU).

D. Architecture of d’Alembert Network

The architecture of the d’Alembert network is presented in
Table I and is discussed in detail below.

TABLE I
ARCHITECTURE OF THE D’ALEMBERT NETWORK

Layer Type Output Size Kernel

Size

Other Parameters

Input Layer 480x480x3 - -
Convolutional Layer 470x470x32 11x11 Stride=1,

Padding=Valid
Activation Layer 470x470x32 - ReLU
Pooling Layer 235x235x32 2x2 Stride=2, Type=Max
d’Alembert Conv Layer 225x225x64 11x11 Stride=1,

Padding=Valid,
λ = 0.1

Activation Layer 225x225x64 - ReLU
Pooling Layer 112x112x64 2x2 Stride=2, Type=Max
Fully Connected Layer 1024 - -
Activation Layer 1024 - ReLU
Fully Connected Layer 512 - -
Activation Layer 512 - ReLU
Output Layer 7 - Softmax

The basis of the d’Alembert network is of convolutional
layers for extracting spatial features from imagery. Each
convolutional layer applies a set of learnable filters to the input
image, detecting features such as edges, textures, and shapes.
These features are needed for the structural components of
the forest, such as the canopy density and tree boundaries.
The convolution operation combines image data with a kernel
(filter) through a dot product that aggregates local pixel values
to produce a feature map, highlighting areas of interest in
the image. Following each convolutional layer, an activation
function is used (the Rectified Linear Unit (ReLU)). ReLU
introduces non-linearity into the model, allowing it to learn
more complex patterns. It works by replacing all negative pixel
values in the feature map with zero, maintaining only positive
values that correspond to detected features, and it helps to
overcome the problem of vanishing gradients, ensuring that
the network continues to learn effectively throughout its depth.
The inclusion of pooling layers (max pooling), reduces the
spatial size of the representation, making the computation
more manageable, and the network more robust to variations
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in the image. By downsampling the feature maps, the pooling
layers help reduce the amount of data that needs to be
processed while preserving the most essential information,
such as the dominant features within a local patch of the
image. Which is particularly useful in forest imagery, where
specific features, such as tree clusters and clearings, need to
be emphasized over large, uniform areas.

The main novelty in our d’Alembert network is the adapta-
tion of the d’Alembert operator into the convolution process.
This operator is applied here to account for both spatial and
temporal changes in forest imagery by modifying the convolu-
tion operation to include differential operators (Laplacian for
spatial and second-order time derivative for temporal features).
In this way, the network can capture dynamic changes in the
forest, such as growth, deforestation, or seasonal variations.
Toward the end of the network, fully connected layers are
used to interpret the features extracted and learned by the
convolutional and pooling layers. These layers consolidate the
learned features into a format suitable for classification or
regression tasks, such as identifying different types of forests
or assessing forest health. Each neuron in these layers connects
to all activations in the previous layer, allowing the network to
learn non-linear combinations of the high-level features. The
final layer of the network (softmax layer) outputs a probability
distribution over the target classes. For forest imagery analysis,
these classes include different types of land cover, such as
dense forest, degraded forest, water bodies, etc. The softmax
function converts the logits from the fully connected layer into
probabilities by exponentiating and normalizing each output,
providing a clear, interpretable classification result.

The performance sensitivity to hyperparameters such as
learning rate, batch size, and the number of convolutional
layers is unfortunatly quite significant in our approach. The
learning rate strongly affects the model’s ability to effectively
integrate both spatial and temporal features; a high learning
rate lead to suboptimal convergence in the complex landscape
of spatio-temporal data, while a low rate cause excessively
slow training, missing critical temporal patterns. Batch size
influences the network’s capacity to generalize from dynamic
forest data; larger batch sizes provide more stable gradient esti-
mates, improving convergence and capturing broader temporal
changes, but at the cost of higher memory usage. Conversely,
smaller batches enhance generalization but introduce noisy
gradients, potentially destabilizing training. The number of
convolutional layers directly impacts the depth of spatial fea-
ture extraction; insufficient layers fail to capture the intricate
textures and edges within forest images, while too many layers
could overfit the spatial details and neglect temporal dynamics.
Hyperparameter tuning is therefor required to accurately detect
and analyze both spatial and temporal variations essential for
monitoring forest ecosystems.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

A. Datasets

The DeepGlobe Land Cover 2018 dataset [21] is a collec-
tion of high-resolution satellite images used for land cover

classification challenges, focusing on categorizing land cover
into multiple classes. It encompasses geographical landscapes
from different parts of the world, offering a robust platform
to advance land cover analysis technologies. The dataset
consists of 1146 images with 3042 labeled objects belonging
to 7 different classes including agriculture_land, urban_land,
rangeland, water, barren_land, forest_land, and unknown (see
sample images in Figure 1). In this study, we used a subset
of the DeepGlobe dataset, DeepGlobe-Forest, which includes
only 191 images labeled as forest_land.

The LoveDA [22], [23] dataset is a remote sensing dataset
adapted for the study of natural landscapes and their dynamic
changes. It consists of multispectral imagery collected from
various satellite platforms. The images in the dataset have
high spatial resolution, which aids in detailed analysis and
facilitates accurate monitoring of small-scale changes. It in-
cludes a mix of urban and rural landscapes for a diverse range
of scenes. The dataset consists of 5987 images with 20658
labeled objects belonging to seven different classes, including
background, road, building, forest, water, agriculture, and
barren (see sample images in Figure 2). We used a subset
of the LoveDA dataset, called LoveDA-Forest, which has
3043 images labeled as forest. Both the DeepGlobe-Forest
and LoveDA-Forest datasets have been used previously in
[24]. Preprocessing involved resizing images to a consistent
dimension, normalizing pixel values to a standard scale, and
augmenting the data with transformations such as rotations and
flips to enhance model generalization. Additionally, temporal
alignment of sequential images was ensured for the LoveDA
dataset to capture temporal dynamics accurately.

TABLE II
COMPARISON OF DEEPGLOBE-FOREST AND LOVEDA-FOREST DATASETS

Characteristic DeepGlobe-Forest Loveda-Forest

Sensor DigitalGlobe Sentinel-2
Image Size 2448x 2448 1024 x 1024
Spectral Range (µm) 0.4 - 2.3 0.45 - 2.4
Number of Bands 11 13
Spatial Resolution (m) 30 10
Number of Classes 5 7

B. Experimental setting

For this study, the analysis was performed using a custom
implementation developed in TensorFlow. The model train-
ing used the DeepGlobe-Forest and Loveda-Forest datasets
in 200,000 epochs, starting with an initial learning rate of
0.00005. This rate was progressively reduced starting from the
2000th epoch using a linear decay strategy. The input images
were cropped to a uniform size of 480×480 for consistency in
both datasets. The computational resources included a single
NVIDIA RTX 2060 graphics card, an AMD Ryzen 9 5950X
CPU and 32 GB of RAM.

C. Performance evaluation

We used performance metrics such as overall accuracy
(OA), average accuracy (AA) per class, and the Kappa co-
efficient (Kappa). The OA metric reflects the proportion of
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Fig. 1. Sample images from DeepGlobe dataset: water, barren_land, forest_land, urban_land, and agriculture_land

Fig. 2. Sample images from LoveDA dataset: forest, barren, water, agriculture, background, road, and building

correctly classified images in the test dataset relative to the
total sample count. The AA metric represents the average
accuracy in each image class, while the Kappa metric provides
a measure of accuracy adjusted for the probability of random
chance. In addition, precision, recall, and F-1 score were also
utilized as performance indicators. The results are summarized
in table III.

TABLE III
PERFORMANCE METRICS FOR DEEPGLOBE-FOREST AND

LOVEDA-FOREST DATASETS

OA (%) AA (%) Kappa Precision(%) Recall(%) F1 Score(%)

DeepGlobe-Forest
91.19 83.89 0.88 92.13 90.24 91.17

LoveDA-Forest

86.89 74.34 0.84 87.31 85.45 88.37

For the DeepGlobe-Forest dataset, achieving an OA of
91.19% indicates high accuracy in classifying forest cover
types, supported by an AA of 83.89% per class and a robust
Kappa coefficient of 0.88, demonstrating strong statistical
result reliability. Precision scores around 92.13% and balanced
recall rates of 90.24% with a high F1 score of 91.17%, show
that the model is able to accurately identify and differentiate
forest categories. Similarly, the LoveDA-Forest dataset shows
an OA of 86.89%, with precise classification reflected in pre-
cision and recall scores of 87.31% and 85.45%, respectively,
and an F1 score of 88.37%.

D. Results of the segmentation performance

The segmentation performance of the models was evaluated
using two metrics: Intersection over Union (IoU) and Accuracy
(Acc):

IoU =
pii∑k

j=0
pij +

∑k
j=0

pji − pii
,

where pij denotes the prediction of the category i into category
j, and k + 1 is the total number of categories. The mean
Intersection over Union (mIoU) is calculated by:

mIoU =
1

k + 1

k∑

i=0

pii∑k
j=0

pij +
∑k
j=0

pji − pii
,

The formulas for the accuracy and mean accuracy (mAcc) are
given by:

Accuracy =
TP + TN

TP + FP + FN + TN
,

mAcc =
1

k + 1

k∑

i=0

TPi + TNi

TPi + FPi + FNi + TNi
,

where TP represents the true positives, TN the true negatives,
FP the false positives, FN the false negatives, and k + 1
indicates the total number of categories.

For comparison we include the values of deeplabv3+
[25], pidnet [26], pspnet [27], knet [28], segformer [29],
mask2former [30] and segnext [31] as was determined in the
research of Wang et al. [24] (we have not replicated these
methods in our work).
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TABLE IV
COMPARISON OF MODEL PERFORMANCES ON FOREST AND BACKGROUND

CLASSES FROM DEEPGLOBE-FOREST DATASET [24].

Model IoU (%) mIoU (%) Accuracy (%)
Forest Back-

ground
Forest Back-

ground
Forest Back-

ground
Deeplabv3+ 77.69 79.67 78.68 87.42 88.70 88.06
Segformer 79.98 81.71 80.85 89.02 89.80 89.41
Pidnet-s 78.78 80.96 79.87 87.35 90.21 88.78
Mask2former 80.52 81.61 81.06 91.09 88.17 89.63
Pspnet 79.86 80.79 80.33 91.17 87.22 89.20
Segnext 80.60 81.84 81.22 90.69 88.71 89.70
Knet-s3-r50 80.23 81.22 80.73 91.24 87.63 89.44
SegForest 82.80 83.99 83.39 91.79 90.20 91.00
d’Alembert

Network
83.19 84.37 83.89 92.23 90.86 91.52

TABLE V
PERFORMANCE OF MODELS ON LOVEDA-FOREST DATASET [24].

Model IoU (%) mIoU (%) Accuracy (%)
Forest Back-

ground
Forest Back-

ground
Forest Back-

ground
Deeplabv3+ 64.22 75.88 70.05 80.37 84.85 82.61
Segformer 64.63 76.31 70.47 80.36 85.35 82.86
Pidnet-s 64.36 74.08 69.22 84.82 80.85 82.84
Mask2former 65.67 76.83 71.25 81.69 85.30 83.50
Pspnet 62.68 77.08 69.88 73.93 89.18 81.56
Segnext 64.42 76.96 70.69 78.31 87.01 82.66
Knet-s3-r50 65.99 76.16 71.08 84.11 83.45 83.78
SegForest 68.38 79.04 73.71 82.98 87.14 85.06
d’Alembert

Network

69.12 80.05 74.34 83.28 87.93 85.87

For the DeepGlobe-Forest dataset, the d’Alembert Network
exhibited the highest metrics in all categories: achieving
Intersection over Union (IoU) scores of 83.19% for forest and
84.37% for background, mean IoU (mIoU) of 83.89% and
92.23% respectively, and accuracy scores of 90. 86% and 91.
52%, respectively. These results not only improve upon other
advanced models such as SegForest, Pspnet, and Mask2former
but also emphasize the network’s ability to finely discriminate
between forest and non-forest regions, capturing both varying
textures of forest landscapes and clear delimitations of back-
ground areas. Similarly, on the LoveDA-Forest dataset, the
d’Alembert Network again outperformed competing models,
recording the highest IoU for the forest at 69. 12% and for
the background at 80. 05%. It also achieved the highest mIoU
scores of 74.34% for forest and 83.28% for background, along
with accuracy figures of 87. 93% and 85. 87%, respectively,
showing the model’s robustness and its enhanced capability in
processing and analyzing remote sensing imagery with high
precision, particularly in diverse and dynamic environmental
settings.

E. Ablation study

The overly small spatial size of the input image patch
leads to a significant loss of important information due to
an inadequate receptive field. Conversely, an excessively large
spatial size of the input image patch introduces many noisy
pixels and suffers from inter-class contamination. Therefore,
we have established the spatial size of the input image patch

within the range of 5×5, 7×7, 9×9, 11×11, 13×13, 15×15 to
evaluate the classification performance across various spatial
dimensions. The classification results for two data sets are
shown in Figure 3.

Fig. 3. Validation of the optimal hyperparameters with different patch sizes

Line plots demonstrate the trends in training time, accuracy,
and loss rate across various batch sizes for the DeepGlobe-
Forest and LoveDA-Forest datasets. For both datasets, as the
batch size increases from 16 to 128, the training time consis-
tently decreases, indicating enhanced computational efficiency
with larger batches, possibly due to fewer updates needed
per epoch. This reduction in training time does not seem
to compromise the models’ ability to learn effectively, as
evidenced by the general increase in accuracy with larger batch
sizes. However, the most notable improvement is observed
in the loss rates, which decrease significantly as the number
of batches increases, suggesting that larger batches help the
model to converge more smoothly to a lower loss. This trend
reflects the trade-off between computational speed and the
stability of the training process, where larger batches provide
a more stable but potentially less precise gradient estimation,
beneficial for the overall learning process of the model.

We have also varied batch sizes to determine their impact on
model performance and training dynamics. Batch sizes of 16,
32, 64, and 128 were systematically tested in multiple training
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iterations to observe how they influenced the convergence rate,
precision and computational efficiency of the neural network.
The experiment aimed to identify the optimal batch size that
balances between adequate gradient estimation and efficient
resource utilization. The results, including metrics such as
training time, model accuracy, and loss convergence rates,
were carefully recorded and analyzed to deduce the effects
of batch size adjustments on the overall effectiveness of the
training process. The results are shown in Figure 4

Fig. 4. Validation of the optimal hyperparameters with different batch sizes

Line plots illustrate how different patch sizes affect training
time, accuracy, and loss rates for the DeepGlobe-Forest and
LoveDA-Forest datasets. As the patch size increases from 5x5
to 15x15, both datasets exhibit a general decrease in training
time, suggesting that larger patch sizes enable more efficient
training, potentially due to fewer total iterations needed across
the dataset. Accuracy trends upward for both datasets as patch
size increases, peaking around 11x11 or 13x13 before slightly
declining, which indicates an optimal range for capturing rele-
vant features without introducing too much noise or suffering
from interclass contamination. Loss rates consistently decrease
as the size of the patch increases, reflecting the improved
performance of the model with larger patches, which could
be attributed to the models’ increased ability to capture more
comprehensive information about the image, thus potentially

enhancing their learning capability. However, the slight decline
in accuracy at the largest patch size suggests a trade-off,
where too large a patch might start to incorporate irrelevant
information or noise, negatively impacting model precision.

F. Discussion and conclusions

We believe, our approach of using the d’Alembert Convo-
lutional Network in smart forest management, particularly for
remote sensing image (RSI) change detection (CD), is a valid
alternative compared to existing solutions, for example, the
now well-established Spectral-Temporal Transformer (STT)
[32]. Both methodologies aim to efficiently capture spectral-
temporal features in HSIs, but employ different mechanisms
and underlying theories. The STT focus on global spectral-
temporal receptive fields with group-wise spectral embedding,
linear projection, transformer encoders with an efficient multi-
head self-attention mechanism, and a multilayer perceptron
head for final change detection. Our approach is different
though as it can simultaneously capture spatial features,
such as edges and textures, and temporal changes, such as
growth patterns or environmental dynamics. The convolution
operation in this network is enhanced to include differential
operators akin to the d’Alembert operator, creating a more
sophisticated mechanism for feature extraction in RSI CD
tasks. Furthermore, while STT employs a transformer-based
approach with efficient MHSA to reduce computational in-
tensity, the d’Alembert Convolutional Network utilizes the
d’Alembert-enhanced kernel in its convolutional layers. This
difference in approach leads to a variance in how each
model handles the spectral-temporal data, with the d’Alembert
network offering a novel perspective by incorporating wave
equation principles into image analysis.

To evaluate the efficacy of the proposed d’Alembert con-
volution approach, we conducted a series of experiments with
various parameters on three extensively utilized remote sensing
image datasets, designed for change detection. The perfor-
mance of our method was benchmarked against different es-
tablished methods. From the analysis of the detection results, it
is evident that our d’Alembert approach exhibits good perfor-
mance in forest change detection, surpassing the comparative
methods. For the DeepGlobe-Forest dataset, the d’Alembert
Network achieved IoU scores of 83.19% for forest and 84.37%
for background, and accuracy scores of 90.86% and 91.52%.
These results outperform models like SegForest, Pspnet, and
Mask2former benchmarked in the research of Wang et al.
[24], showcasing the network’s ability to distinguish forest
textures and background areas effectively. Similarly, on the
LoveDA-Forest dataset, the d’Alembert Network excelled with
the highest IoU scores of 69.12% for forest and 80.05% for
background, with accuracy rates of 87.93% and 85.87%.

Future work requires further balancing model of complex-
ity and computational resources, considering that while the
d’Alembert Convolutional Network enhances spatiotemporal
feature extraction, it requires substantial computational power
and memory, potentially increasing latency. We’re currently
working on reducing the number of convolutional layers and
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employing techniques like model pruning and quantization to
decrease computational load while striving to maintain ac-
ceptable performance levels. Naturally, more tests are needed
to fully assess the robustness of the model against noise or
missing data in the much larger variety of remote sensing
images.
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