
Model-Agnostic Machine Learning Model Updating
– A Case Study on a real-world Application

Julia Poray
0009-0003-4868-1255

GlobalFoundries Dresden Module One LLC & Co. KG
julia.poray@globalfoundries.com

Bogdan Franczyk∗

0000-0002-5740-2946
Leipzig University, Information Systems Institute

Grimmaische Straße 12, 04109 Leipzig
franczyk@wifa.uni-leipzig.de

Thomas Heller∗

0009-0006-9221-3784
GlobalFoundries Dresden Module One LLC & Co. KG

thomas.heller@globalfoundries.com

Abstract—The application of developments in the real world is
the final aim of all scientific works. In the case of Data Science
and Machine Learning, this means there are additional tasks
to care about, compared to the rather academic part of “just”
building a model based on the available data. In the well accepted
Cross Industry Standard for Data Mining (CRISP-DM), one
of these tasks is the maintenance of the deployed application.
This task can be of extreme importance, since in real-world
applications the model performance often decreases over time,
usually due to Concept Drift. This directly leads to the need to
adapt/update the used Machine Learning model. In this work,
available model-agnostic model update methods are evaluated
on a real-world industry application, here Virtual Metrology
in semiconductor fabrication. The results show that for the
real-world use case sliding window techniques performed best.
The models used in the experiments were an XGBoost and
Neural Network. For the Neural Network, Model-Agnostic Meta-
Learning and Learning to learn by Gradient Descent by Gradient
Descent were applied as update techniques (among others) and
did not show any improvement compared to the baseline of not
updating the Neural Network. The implementation of the update
techniques was validated on an artificial use case for which they
worked well.

Index Terms—Machine Learning, Concept Drift Adaptation,
Model Updating, Supervised Regression, Model degradation,
Semiconductor Fabrication, Virtual Metrology

I. INTRODUCTION

I
N modern industrial environments, e.g. semiconductor
fabrication, there is an increasing use of Machine Learning

models throughout the whole processing chain and beyond.
A high amount of use potential lies in Machine Learning
regression tasks which aim to provide hard to obtain quality
parameters. One such case is Virtual Metrology [1][2], where
measurement data are predicted from process machine infor-
mation, i.e. sensor data and more. An example for such a
measurement is the thickness of a layer deposited on a wafer.
Data from such an example are used in this work.

However, there are numerous other use cases as well. Given
the dynamic nature of the industrial environment, a model once

*These authors contributed equally to this work and are listed in alphabetical
order.

deployed requires an update after some time.1 The reason for
that is mainly Concept Drift [4], which may be summarized
as a change of the response surface of the underlying problem
over time [5]. Although Concept Drift is rather uncommon
in pure academical tasks, it is of major importance in certain
real-world applications. To emphasize that: in semiconductor
fabrication, it is one main task for countless process and
equipment experts to react on drifting processes or process
machines.

A paper that garnered considerable attention was published
by Gama et al. in 2014 [6], introducing a taxonomy for the
subject area which is used in this article. This was followed by
additional works summarizing various techniques for adapting
to concept drift: In their 2019 review on Concept Drift Adap-
tation (CDA), Lu (and Gama) et al. analyzed 130 papers that
included adaptation techniques [7]. They discovered that there
are techniques which utilize retraining with varying window
sizes, ensemble techniques used for adaptive purposes, and
model-specific techniques like adaptive decision tree models.
Another survey on Machine Learning for recurrent concept
drift was conducted by Choudhary et. al. [8]. They listed
additional methods that can be grouped into 1) The use of
strategies for selecting, weighting or multiplying specific data
points for retraining [9] [10] [11] and 2) Dynamics through
adaptation in preprocessing [12], [13]. Suárez-Cetrulo et. al.
additionally list Meta-learning techniques in the context of
Concept Drift adaptation [5], p.9 ff. Meta-Learning has also
been a topic that has continued to gain attention. Vanschoren
[14] provides an overview of the Meta-Learning concept and
its application areas. Among other Meta-Learning applica-
tions, they deal with Meta-models that “recommend the most
useful [algorithm] configurations [. . . ] given the Meta-features
[. . . ] of a task [. . . ]” ([14], p.10). One option to do this is
Transfer Learning ([14], p.12). With this, optimized models
from previous tasks are taken as a warm-start to be trained on

1Model updates are part of the maintenance phase in context of the Cross
Industry Standard for Data Mining (CRISP-DM [3]).

Proceedings of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 157–167

DOI: 10.15439/2024F4426
ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 157 Topical area: Advanced Artificial
Intelligence in Applications



new tasks and yield a new model optimized for the new task.
The intersection between Meta-Learning and Concept Drift

adaptation was reviewed in a survey published in 2023 by
Son et. al. [15]. It contains several Meta-Learning techniques
primarily used for the adaptation of Deep Learning models.
In this development, it is clear to see that the topic of model
adaptation has received a lot of attention and there have been
continued efforts put into developing sophisticated techniques
for model adaptation (for example [16], [17], [18], [19]).

In summary:
For a real-world deployment of a Machine Learning model

that suffers from Concept Drift, there has to be a model update

implementation to keep the application usable.

Consequently, there is a demand for techniques that can
effectively update regression models. Furthermore, when mul-
tiple update techniques are available, it becomes important to
determine which technique is most suitable for a specific use
case and model type.

To qualitatively understand the term “most suitable”, two
constraints are taken into account: 1) the required model
accuracy, and 2) the availability of new labeled data.

The question then arises:
Which update technique extracts information from the new
labeled data and integrates them into the model in the most
efficient way?

While the inclusion of the accuracy requirement is obvious,
the availability of new labeled data may need more clarifica-
tion. Since new labels are expensive to obtain, they usually are
not available in a high (enough) frequency. An example in the
presented use case from Virtual Metrology are maintenances
of the process machine: it is not uncommon that the whole
distribution of a feature value jumps to another unknown(!)
distribution mean due to the maintenance. So, the model’s
predictions after machine maintenance will not be accurate
enough. Since the frequency, of which new labeled data is
available, is low, the data collection for a model update takes
long. Hence, the aim is to adapt the model to fit the accuracy
requirements with as few new data points as possible.

It should be stated clearly that this work does neither focus
on the origin of the Concept Drift, nor what the Concept Drift
looks like. Only the adaption of the model to fit the accuracy
requirements is regarded.

There is one additional question that shall be addressed:
Why are only model-agnostic update techniques regarded in
this work?

The answer may be a bit uncomfortable: In the underlying
industrial environment, the utilization of very specific tech-
niques, e.g. a special type of Machine Learning Model and
corresponding to that, a special model update technique, scales
badly. It is much more beneficial to be flexible regarding
the used Machine Learning model types. Especially, when
the code bases of Machine Learning libraries get updated
or completely new model types are developed, the deployed
model update setup should still work.

Given the multitude of potential use cases and the variety
of model types, one would want to apply update techniques

that can be scaled to different model types. It eliminates the
need to start from scratch with each model, thereby making it
economically more viable2.

There are also other circumstances that lead to additional
requirements on the techniques used: Typically, there is a
scarcity of historical data for a given use case or process.
This is primarily due to the high cost associated with re-
trieving labeled data, such as physical measurements, which
are the labels for the supervised learning task in case of
Virtual Metrology. Moreover, this work posits that the update
techniques should also be applicable to newly introduced use
cases or models which solve similar underlying problems. The
idea is to let the model reuse already learned knowledge from
the old case and relearn similar patterns again just based on
the new case’s data.

This paper compares existing techniques to update regres-
sion models by applying them to a real-world use case from
semiconductor fabrication (deposition of a layer on a wafer).
They are also applied to an artificial use case to compare the
behavior of the techniques in a setting where no unknown
effects are present. As this work focuses on supervised regres-
sion tasks, the techniques considered here should be developed
for regression tasks or be straightforwardly applicable to them.
Extending update techniques from classification models to
regression models would be a topic for "future work." With
the learnings in this work, a starting point for scaling update
techniques across use cases with different model types in
fabrication is provided.

The remainder of this article is structured as follows: section
I-A provides an overview of the related work. The setup of
the experiments is explained in section II. There it is also
listed which update techniques are used. Section III presents
the results with discussion. A summary and conclusion is given
in section IV.

A. Related Work

A range of adaptive models can be found in literature.
Examples include Adaptive Random Forest [20], Adaptive
XGBoost for classification [21] and regression [22], and Adap-
tive Support Vector Machines [23] and others [24]. Neural
Networks are inherently incremental learners, and there are
works that introduce structures to Neural Networks to handle
Concept Drift. For instance, Memory-Augmented Neural Net-
works [25] and Adaptive Extreme Learning Machines [26] for
classification and [27], to name a few.

Why not use adaptive models? The choice of model type
is specific to the use case. From experience in modeling
processes in fabrication, Deep Learning models are often not
utilized, primarily due to insufficient amounts of data to train
them (costly data). In the context of this paper’s objective,
which is to gain insights into model adaptation techniques
that may be transferable to other use cases, it is sensible to
investigate techniques applicable to any model type.

Update techniques that can be applied to any model type
may be categorized, in the authors’ view, into 1) Selection

2Data Science resources are limited

158 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



and weighting of data points given to the model for updating
(whatever mechanism the model then uses to update itself)
[28], [29]. 2) External optimizers – that is, the internal model
parameters are set to new values by an external optimizer and
then reassigned to the model [30], [18], [19]. 3) Ensemble
Methods [31].

The three cases are discussed further in the following:
1) Selection and weighting of data points for updating:

Rolling Window [6] involves different window sizes and
weighting of the input data in the loss function. This can be
done linearly or exponentially decreasing against the age of
the data. There are also newer techniques for determining the
weights of the data points, or even leaving out data points
entirely. For instance, [32] uses fuzzy models to select which
data are used. Similarly, [33] employs fuzzy kernel c-means
clustering of the data stream to determine the data points
for the update. This is combined with a forgetting policy
during the update. The techniques included in this paper
should be applicable with as little lead time and thus as
little historical data as possible. Given that it is assumed that
there will generally not be enough historical data available
for the auxiliary models for selecting update data for the
regression model, these techniques are not applied here. The
same applies to techniques that store a “model history” and
make a selection with various strategies as to which model
or which composition of historical models should be used for
new inference data.

2) External optimizers: What can an external optimizer do
better than a model’s own one? Possibly, information from
past data can be stored in an external optimizer. This happens
in Meta-Learning. An example of this is Andrychowicz’
technique "Learning to Learn by Gradient Descent by Gradient
Descent"3 to optimize an algorithm using a Meta Learner [30].
As optimizer (in this case called Meta-Learner), they use Long
Short-Term Memory (LSTM) networks [34]. The LSTM’s task
is to predict the changes in the algorithm’s parameters given
the gradient of the loss of the task of the algorithm with respect
to the algorithm’s parameters. This means, the LSTM predicts
the changes in the Neural Network’s internal parameters
(weights and biases) given the regression/classification loss’
gradient with respect to the weights and biases of the Neural
Network. In their paper, the training of Neural Networks
on the MNIST [35] and CIFAR-10 [36] dataset are used to
demonstrate the developed architecture. Li and Malik [19]
developed a similar approach, formulating the problem in a
reinforcement learning setting.

Another Meta-Learning approach is Model-Agnostic Meta-
Learning (MAML) [37]. Here, starting values are sought for
the internal model parameters, from which the best accuracy
is achieved when using a fixed optimizer to do the adaptation
to new data. The key idea behind MAML is to find a
model initialization that is not only good for one task but
can be quickly fine-tuned for any task in the distribution of
tasks. During the training phase, MAML performs a two-level

3This update technique is referred to as "grad2-lstm" in this article.

optimization process. In the inner loop, it learns a separate
model for each task using the inner optimizer. For example,
the optimizer can use several gradient steps. In the outer loop,
MAML updates the initial model parameters based on how
well the task-specific models performed. The goal is to find
a set of initial parameters that, when fine-tuned on a few
examples from a new task, can achieve good performance
on that task. Finn et. al. [37] demonstrate their technique on
Neural Networks solving an artificial regression use case (sine
wave) and classification tasks.

The Meta-Learning techniques mentioned above were ap-
plied in the Deep Learning field [15]. The techniques use
gradients of the loss function wrt. internal model parameters
in the optimization processes [30], [37], [18]. The name of
the technique "Learning to Learn without Gradient Descent
by Gradient Descent" [38] may suggest that computing the
gradients of the loss function with respect to the internal
parameters of the model to be optimized is omitted. Indeed, the
gradients are not fed into the Meta Learner during inference
phase. But to train the Meta Learner, still, the gradients
mentioned are necessary.

For Neural Networks or much simpler multilinear regres-
sors, for example, these techniques are straightforwardly ap-
plicable. Theoretically, the application of the techniques or
ideas could also be extended to models with discontinuities in
the loss function by finding ways to artificially make the loss
function continuous (e.g., overlaying of a smoothing function)
or other numerical calculation of the gradients. Extending the
techniques that work well in the Deep Learning field to other
model types such as Trees / Forests / GXBoost is an interesting
task. However, this is a separate work. As an example, two
of these techniques are nevertheless applied to the Neural
Network in this article.

3) Ensemble techniques. In the context of ensemble
techniques, there exists the utilization of multiple model
types and the (weighted) aggregation of various results
[39],[40],[41],[42]. The construction of different models based
on diverse input data and the subsequent aggregation of results
is referred to as Bagging, with Adaptive Bagging also being a
notable variant [31]. An advanced approach for the latter two
involves predicting the weights with a meta-model. However,
this approach is not adopted here due to the general lack
of sufficient training data at the onset. Another ensemble
technique is Boosting, where the next model is fitted on the
residuals.

This paper applies a selection of model update techniques to
a real-world regression task from a use case in semiconductor
fabrication and compares these update techniques, which are
practically applicable. The selection of model update tech-
niques is based on the industry requirements discussed in Sec-
tion I. Furthermore, it is a requirement that the techniques can
be applied as best as possible to newly introduced regression
models.

The literature provides two studies on the application and
comparison of update techniques:

Celik et. al. investigate update strategies for Auto-ML

JULIA PORAY ET A.: MODEL-AGNOSTIC MACHINE LEARNING MODEL UPDATING 159



systems in the face of Concept Drift [43]. The strategies
employed encompass various configurations of “Detect and
Restart” vs. “Periodic Restart” and “warm-start” vs. “re-
train” vs. “AutoML-Restart”. The difference between “retrain”
and “AutoML-Restart” is that “AutoML-Restart” includes re-
tuning of hyperparameters. A not unexpected result, quote
[43]: “different drift characteristics affect learning algorithms
in different ways, and that different adaptation strategies may
be needed to optimally deal with them”. This indicates that
there is no one-for-all technique regarding model adaptation.

The work at hand does not focus on Auto-ML systems but
looks at a level below, to see the direct effect of different
update strategies.

In their benchmark on “Learning to Optimize” (LTO),
Chen et. al. [44] compare optimization techniques on various
benchmark tasks. One of these tasks is the training of Neural
Networks. The concrete optimization tasks are training a
Multilayer Perceptron and a Convolutional Neural Network
with different optimizing techniques on MNIST data set [35].
For both experiments, as traditional optimizers, Adaptive Mo-
ment Estimation (ADAM) [45], SGD [46] and Root Mean
Square Propagation [47] are used. Four Learning-to-optimize
approaches are used in the experiments [30], [48], [49],
[50]. For all of them, the architecture of the optimizer con-
tains recurrent Neural Networks such as LSTM architectures.
Among these is the approach from Andrychowicz et. al. [30],
which is used in the work at hand as well. The findings of
Chen et. al. for the experiments of training Neural Networks
are "lacking stability during testing" ([44], p.35) for all of
the LTO-optimizers whereas the traditional optimizers show
convergence when training each Neural Network. Training the
Multilayer Perceptron, the optimizer from [30] diverges. It
works for training the Convolutional Neural Network, but only
for a small number of iterations. Two of the other three LTO-
approaches show good results on the Multilayer Perceptron
but can not do efficient optimization on the Convolutional
Neural Network [48], [49]. The use of an advanced training
scheme for LTO-Optimizers [50] allowed [44] to improve the
optimizing performance on both Neural Network optimizees.

It is worthy to mention that the two experiments from
[44] were carried out on Neural Network optimizers that
performed classification of the MNIST [35] dataset. The
article at hand aims at ongoing optimization of models
for regression tasks (which can be but are not necessar-
ily Neural Networks). For our experiment with a Neu-
ral Network performing regression tasks, [30] is used
as a first benchmark technique on the given regression
data.

To the best knowledge of the authors, there is no comparison
work yet that focuses on model type independent update
techniques and compares their functionality on different model
types.

Especially, a comparison of different update techniques on
different regression models (model types) on the same real-
world regression task is important but not available. This paper
makes a starting point for closing this gap. The goal is to gain

knowledge about which update techniques perform better on
which model type in an industrial regression setting.

II. SETUP OF THE COMPARISON

To evaluate the performance of the different model up-
date techniques, multiple experiments are conducted, where
a model is trained on a given data set and afterwards used
with drifting test data. During the test, the model is contin-
ually updated with latest test data using the different update
techniques. Two independent cases are regarded: the first one
is a real-world application from an industrial environment and
the second one is based on artificial data to get an undisturbed
view on the update techniques.

A. Real-World Use Case

The industrial use case is Virtual Metrology of a layer
deposition in semiconductor fabrication. The regression data
set consists of 32 features (numerical and encoded categorical)
and one label. A feature selection process was done before this.
The label (and prediction) data are the thicknesses of a layer
deposited on a wafer and are scaled to maintain confidentiality.

For the Virtual Metrology use case, the available labeled
data was divided into 165, 000 data points for training and
250, 000 data points for the comparison of the update tech-
niques. The data points for the comparison were divided
into batches of 50 data points yielding 5000 batches. Two
models were trained including hyper parameter optimization:
An XGBoost model and an Artificial Neural Network4 ([51],
[52]). After the training, batches of feature data points are fed
to the models in historically correct order and compared to the
corresponding label data. One batch contains 50 wafers (data
points). Each batch is handled as follows:

A train-test-split is made yielding 0.6 ∗ 50 = 30 wafers for
updating and 0.4∗50 = 20 wafers for evaluation of the updated
model. The latter provides the accuracy for the given batch. As
accuracy measure, the mean absolute error (MAE) is taken. For
each update technique, for each batch, the accuracy is stored.
To make a statistically valid statement about the accuracy, over
the stored accuracies, the mean of the accuracies in the window
is calculated, using a rolling window of size 500.

The question asked is which update techniques work how
well on different model types. This is assessed by using
two setups: blind adaptation and informed adaptation [6].
Blind adaptation means the model is updated regularly without
a trigger, whereas informed adaptation means the model is
updated when triggered, e.g. via a Concept Drift detector or
a performance degradation detector. For the blind adaptation
setting, the model is updated with the corresponding update
technique regularly in intervals of 200 batches. The frequency
of updating and the update batch size were not varied because
it is not the focus of this work. As loss function the mean
absolute error is used.

4Sequential, dense Neural Network with the structure: Input Layer of size
32, Dense Layers with [64,128,64,64,32,32,1] nodes. Each layer is followed
by a ReLU activation function.

160 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



For the informed updating case, in this work, a performance
degradation detector is used: the model accuracy (here: the
model loss on available new labeled data) exceeding a fixed
threshold. In practice, this threshold is use-case specific. In
this study, on the same real world use case, the experiments
are conducted with two different model types: XGBoost and
Neural Network. The accuracy of the initially trained XG-
Boost model is higher than the initial accuracy of the Neural
Network. In practice, for this use case, the XGBoost model
would be chosen. For academic purposes, possibly allowing
to gain knowledge for other use cases, in which a Neural
Network might achieve better performance, the experiments
are conducted on both model types. The threshold used for
the performance degradation detector is oriented at the initial
accuracy of the corresponding model for the use case, leading
to a higher threshold for the Neural Network than for the
XGBoost model. It is important to mention that in practice,
there would only be one threshold per use case. If a model
would exceed this threshold in the beginning, it would not be,
and is not, chosen.

To maintain confidentiality, neither the absolute values of
the model performances nor the threshold values are given.
The loss values, shown in the III section, are scaled to relative
units.

Quantification, which update technique performed best, was
done by calculating the overall mean loss over the whole 5000
batches.
The results are shown and discussed in Section III.

B. Generation of the Artificial Example Data

To validate the implementation of the adaptation tech-
niques without any unknown influences, artificial training data
were constructed. They consist of five numerical input data
where each input lies in the interval [0, 1]. Independently,
uniformly randomly sampling each variable from this inter-
val, one corresponding numerical output (label) is generated
using a multilinear function with known, fixed parameters
a1, a2, a3, a4, a5 and b:

f : [0, 1]5 −→ R (1)

(x1, x2, x3, x4, x5) → f(x1, x2, x3, x4, x5) (2)

f(x1, x2, x3, x4, x5) :=
5∑

i=1

ai · xi + b (3)

ai ∈ R constant for i ∈ {1, 2, 3, 4, 5} (4)

For the concrete example used here, a1 = 1.0, a2 = 0.5,
a3 = −0.1, a4 = −1.5, a5 = 0.005 and b = 0.7 were chosen
for the pretraining data generation. The pretraining data consist
of 200 batches (10, 000 data points). For the comparison of
the update techniques during inference, a data set – similar to
the training data – is generated, which includes Concept Drift.
The inference data consist of 20 batches containing 50 data
points each. The inference data generation is done by changing
the parameters a3 and b three times, every fifth, batch, in the
following way: The first five batches of the inference data were
generated exactly from the same function as the pretraining

data. The data in the sixth batch are generated in the same
way but changing the parameters in function (4) to

a′
3
= a3 +∆a3, ∆a3 = 0.2, b′ = b+∆b, ∆b = 0.2.

Five batches of the new configuration were appended to the
inference data. Then again, starting from this parameter con-
figuration data generating function (equation 4), the function
parameters are shifted again by ∆a3 = 0.2 and ∆b = 0.2.
This procedure is repeated one more time so that finally there
are three sudden slight drifts in the inference data which are
separated by five batches.

A Dense Artificial Neural Network5 was used to fit the arti-
ficial data because for Neural Networks, the update techniques
grad2-lstm and MAML can also be applied.

The results are shown and discussed in Section III.

C. Model Adaptation Techniques used

The following model adaptation techniques are used in the
comparison experiments.

• baseline. Refers to the original pretrained model with no
update taken.

• only-latest. Using the model’s retraining mechanism for
the update and using only the data from the latest
incoming data batch for the update.

• rolling-window. Using the model’s retraining mechanism
for the update and using data from the latest batch plus
the data from the previous batches with a fixed sliding
window size [28].

• exp-forgetting. Using the model’s retraining mechanism
for the update and using data from the latest batch plus
the data from the previous batches with a fixed sliding
window size. The importance of the data points decreases
exponentially the older the data points are [29]. The decay
factor is a hyperparameter that was optimized for the real
and artificial use case separately.

• boosting. Boosting sequentially with the following setup:
Take the original model and append a "booster model."
Update only the booster model, Using a sliding window.
For the real use case, in case of a Neural Network as base
model, a small XGBoost model was chosen as the booster
model. In case of an XGBoost model as the base model,
a small XGBoost model was chosen as the booster model
was chosen as well. For the artificial use case, a linear
model was chosen as the booster model. The choices
of the booster model types were made based on which
booster model candidate yielded the better performance:
Linear Regressor or XGBoost.

• grad2-lstm. The update technique "Learning to learn by
gradient descent by gradient descent" [30]. This tech-
nique was only used with Neural Networks due to the
limitations discussed section I-A (use of the gradient of

5Sequential, dense Neural Network with the structure: Input Layer of size
5, Dense Layer with 2 nodes and ReLu activation function, Dense Layer with
2 nodes and ReLu activation function and output layer with 1 node and ReLu
activation function.

JULIA PORAY ET A.: MODEL-AGNOSTIC MACHINE LEARNING MODEL UPDATING 161



TABLE I
HYPERPARAMETERS FOR EACH UPDATE TECHNIQUE USED.

Update technique.: Update method’s
hyperparameters
using XGBoost

Update technique’s
hyperparameters using NN

only-latest-WS learning rate learning rate, epoch number
only-latest-SC learning rate -
rolling-window-WS learning rate learning rate, epoch number
rolling-window-SC learning rate learning rate, epoch number
exp-forgetting-WS learning rate,

decay factor
learning rate, epoch number, decay
factor

exp-forgetting-SC learning rate,
decay factor

learning rate, epoch number, decay
factor

boosting - learning rate when XGB as booster
grad2-lstm - learning rates inner optimizer and

outer optimizer, epoch number
MAML - number of gradient steps, learning

rate outer optimizer, learning rate
for gradient steps

baseline - -

the regression model’s loss function with respect to the
regression model’s internal parameters).

• MAML. This update technique uses "Model-agnostic
Meta learning" [37], using Adam optimizer for outer
optimization and gradient descent for inner optimization.
This technique was only used with Neural Networks due
to the limitations discussed in section I-A (use of the
gradient of the regression model’s loss function with
respect to the regression model’s internal parameters).

For the model’s retraining mechanism in case of Neural
Networks, ADAM optimizer is used [53]. For the update
techniques only-latest, rolling-window and exp-forgetting, the
sliding window size was chosen same as the size of the
pretraining data (165, 000 data points). For MAML and grad2-
lstm, a sliding window of 5, 000 data points was used as
increasing the number of update points did not lead to better
accuracy. Two variants, warm-start and training from scratch,
were conducted for the update techniques only-latest, rolling-
window and exp-forgetting. One exception is only-latest in
case of the Neural Network since it is theoretically trivial that
training a Neural Network of the given size on only 30 data
points will not work.

The hyperparameters of the update techniques were opti-
mized per use case and per model. The existing hyperparame-
ters for each technique are shown in Table I. The optimization
of hyperparameters was conducted within the batch range of
0 to 3, 000 batches, as opposed to the full range up to 5, 000.
This approach was adopted based on the assumption that
continual hyperparameter optimization for update techniques
will not be feasible in subsequent real-world applications. In
the tables and figures of this work, the terms "warm-start" and
"training from scratch" are abbreviated by "WS" and "SC"
respectively.

III. RESULTS

The findings that were made in the course of applying the
chosen model update techniques to the industrial use case are
presented in the following.

TABLE II
OVERALL LOSSES FOR ALL EXPERIMENTS CONDUCTED.

Use case Artificial case Virtual Metrology
Regression model NN NN XGB
Update mode Infm Blind Infm Blind Infm Blind

Update technique:
only-latest-WS 0.06 0.06 0.72 0.71 2.17 3.73
only-latest-SC - - - - 2.73 3.64
rolling-window-WS 0.46 0.46 0.13 0.06 0.41 0.51
rolling-window-SC 0.49 0.47 0.39 0.33 0.34 0.40
exp-forgetting-WS 0.46 0.46 0.22 0.09 0.43 0.49
exp-forgetting-SC 0.46 0.47 0.43 0.39 0.32 0.39
boosting 0.12 0.19 0.69 0.68 0.92 0.92
grad2-lstm 0.15 0.17 0.76 0.76 - -
MAML 0.10 0.18 0.71 0.89 - -
baseline 0.47 0.47 0.72 0.72 0.63 0.63

TABLE III
THE VALUES SHOW HOW OFTEN THE CORRESPONDING UPDATE

TECHNIQUE WAS UPDATED IN THE GIVEN USE CASE FOR THE INFORMED

ADAPTATION SETTING.

Update technique: Artificial UC Real UC NN Real UC XGB

only-latest-WS 3 24 440
only-latest-SC - - 739
rolling-window-WS 13 20 89
rolling-window-SC 13 15 83
exp-forgetting-WS 13 17 81
exp-forgetting-SC 13 17 83
boosting 10 20 175
grad2-lstm 13 23 -
MAML 6 26 -
baseline 0 0 0

Table II shows the results for the experiments conduced.6

Two use cases, artificial and real (Virtual Metrology), were
regarded. For both use cases, Neural Networks were used
and additionally, for the real-world use case an XGBoost
model was used. The loss (mean absolute error) for each
subsequent batch was scaled to a reference in order to maintain
confidentiality. This is defined in the following way: The
normalized loss equals zero for the lowest loss of the baseline
(no model updating, black curves). The normalized loss equals
one for the maximum loss of the baseline. This means, the
losses are shown in relative units (relative to the losses of
the baseline, per use case and per model). The mean of the
losses in relative units, taken over the whole inference period
of 5, 000 batches, is referred to "overall loss" in this article.

In Table III it is shown for the informed case, for which
model update techniques how many updates were performed
during the inference (per use case and model).7 The blind
adaptaton with fixed update frequencies (updating every 5
batches for the artificial use case and every 200 batches for the
real use case) led to 3 updates for the artificial and 24 updates
for the real use case, for each update technique. Comparability
of the values in tables II and III is given column-wise, not
row-wise, due to the experiment setup.

6Informed is abbreviated by "Infm."
7Use Case is abbreviated by UC. XGBoost is abbreviated by XGB.

162 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



A. Neural Network Model for Artificial Use Case

For showing and validating the implemented update tech-
niques on data with no unknown influences, artificial data were
generated. Three times, every fifth batch, a Concept Drift was
incorporated. Details about the data construction are explained
in Section II-B.

1) Informed adaptation: The evolution of the loss of the
Neural Network during inference for the informed update
setting is shown in Fig. 1 for all update techniques applied.
Model degradation, being caused by the Concept Drift, can
clearly be seen in the baseline curve’s increasing loss (black
curve). The rolling window techniques, whether training from
scratch or using warm-start, perform similar or worse than
not updating at all. This is because the Concept Drifts are
introduced suddenly and there is no recurrence in it by
construction of the data. In the data set used for updating,
the data from the newest batches are too underrepresented to
make an improvement in accuracy.

Exponential forgetting warm-start (red curve) brings a slight
improvement for each successive batch after a drift was
introduced.

An improvement and thus successful handling of the Con-
cept Drift is achieved by the update techniques "only-latest-
WS," "grad2-lstm," "MAML" and "boosting". Using warm-
start and tuning to only to the latest batch, "only-latest-WS"
can adapt best to the new data. For all four update-techniques,
at batch numbers 5, 10 and 15, a peak is observed in the loss
curves. This is due to the experiment setup: As detector of
drift, exceeding of an accuracy threshold is used. When this is
detected for a batch, the update and evaluation of the updated
model is performed on the next batch.

The "boosting"-technique also uses only the latest batch
for updating. The booster model (model in the sequential
ensemble that is closest to the output) only is updated here.

Model-Agnostic Meta Learning (MAML) gave second best
results. It took two subsequent batches to update, until MAML
achieved the same accuracy as "only-latest-WS." "grad2-lstm"
did not achieve this accuracy, but still maintained loss values
that showed clear improvement wrt. the baseline.
At this point, the correctness of the implementation especially
of the techniques "MAML," "grad2-lstm" and "boosting" is
verified.

2) Blind adaptation: For the case of blind adaptation, the
same setting as in the last subsection is used, only that there is
no trigger for the update. The numbers of the batches at which
an update is performed are predefined and set to 6, 11 and 16
(for each update technique). With this setting, updating takes
place one batch after the drift occurs. The resulting difference
to the informed case is that after a drift occured only one
update is performed for each technique, until the next drift
occurs.

The results are shown in Fig. 2. It is visible that for
"MAML," "grad2-lstm" and "boosting," this leads to higher
losses as compared to the informed case. This means these
update techniques do profit from carrying out the additional

0

M
A

E 
Lo

ss
 (r

el
at

iv
e 

un
its

)

Number of data batch
2 4 6 8 10 12 14 16 18

0.0

0.2

0.4

0.6

0.8

1.0

only-latest-WS
rolling-window-WS
rolling-window-SC

exp-forgetting-WS
exp-forgetting-SC
boosting

grad2-lstm
MAML
baseline

Fig. 1. Informed adaptation for the artificial use case using a Neural Network.
WS= warm-start, SC= from scratch. The overall losses for each update
technique are given in table II, column 2.

only-latest-WS
rolling-window-WS
rolling-window-SC

exp-forgetting-WS
exp-forgetting-SC
boosting

grad2-lstm
MAML
baseline

0

M
A

E 
Lo

ss
 (r

el
at

iv
e 

un
its

)

Number of data batch
2 4 6 8 10 12 14 16 18

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Blind adaptation for the artificial use case using a Neural Network.
The overall losses for each update technique are given in table II, column 3.

updates as in the informed case. Still, for these techniques,
one update suffices to see a clear improvement as compared
to the baseline of not updating at all.

B. Virtual Metrology using a Neural Network

Having validated the implementation of the various update
techniques and observed their behaviour on an artificial use
case with known data properties and drifts, a real use case with
unknown drift characteristics is regarded. The same update
techniques as for the artificial use case are applied. Each
update technique’s hyperparameters were tuned for this use
case.

1) Informed adaptation: The loss curves for the informed
updating experiment for the VM case, using a Neural Network
as regression model, are shown in Fig. 3. First of all, the model

JULIA PORAY ET A.: MODEL-AGNOSTIC MACHINE LEARNING MODEL UPDATING 163



degradation with time can be seen in the black curve (baseline,
not updating) for which the loss increases during the inference
experiment with incoming batches.

As opposed to the artificial use case, in which rolling
window and exponential forgetting performed worst, in the
real world use case they perform best. Especially the "rolling-
window-warm-start" technique, which is the best-performing
technique in this setting, is capable of restoring the initial loss.

The update technique "only-latest" which, using warm-start,
fine tunes the model on the latest data batch only, results in
nearly the same losses as the baseline. The "boosting" method,
which also uses only the latest batch for updating, performs
slightly, but not much better than the baseline (overall loss of
0.69 compared to baseline 0.72).

This shows that it is crucial for this use case to keep
data points from former batches in the set of data points for
updating (3300 data batches were used as sliding window).
The number of batches for updating (updating-batch size) was
not varied further since this is not the focus of this work.

Both techniques Model-Agnostic Meta Learning and Learn-
ing to learn by gradient descent by gradient descent, did not
bring an improvement. For both cases, the optimization of the
hyperparameters yielded hyperparameters that correspond to
nearly not updating the model. The overall loss of grad2-lstm
is slightly worse than not updating for both settings blind and
informed. The loss of the MAML method is comparable to
the not updating baseline for the informed case and slightly
higher than the baseline for the blind case. For both, MAML
and grad2-lstm, there are ranges in which they perform slightly
better than the baseline. But these ranges are the exception
from the overall range. The conclusion here is that for this use
case, for the used setting of update frequency and batch size,
the two methods do not bring improvements. In the grad2-lstm
case, increasing the size of the LSTM also did not lead to any
improvements.

2) Blind adaptation: In the blind adaptation setting, the
rolling window warm-start technique performs best, being
followed by the exponential forgetting warm-start technique
(cf. Fig. 4). The difference between these two methods’ overall
losses is not as high as in the informed case.

The differences are likely to originate from the different
update frequencies used in the blind adaptation case than
those in the informed setting, resulting from excess of the
accuracy threshold. Lowering the accuracy threshold for the
Neural Network informed case, would presumably result in
lower overall loss values. The dependency of the performance
of the different update techniques on the update frequency
therefore seems to be a question worth asking. For follow-up
work, together with varying the update-batch size, this would
be an interesting study.

The remaining update techniques qualitatively have the
same relative overall losses to the exponential forgetting warm-
start and rolling window warm-start techniques as well as to
each other. The same conclusions that were drawn in the last
subsection (informed case), hold.

only-latest-WS
rolling-window-WS
rolling-window-SC

exp-forgetting-WS
exp-forgetting-SC
boosting

grad2-lstm
MAML
baseline

M
A

E 
 L

os
s (

re
la

tiv
e 

un
its

)

0.0

0.2

0.4

0.6

0.8

1.0

Number of data batch

Fig. 3. Virtual Metrology regression with Neural Network – Informed
adaptation setting. The overall losses for each update technique are given
in table II, column 4.
To make the different lines more distinguishable, every 15

th data point was
plotted large. However, the size of the data points has no meaning.

only-latest-WS
rolling-window-WS
rolling-window-SC

exp-forgetting-WS
exp-forgetting-SC
boosting

grad2-lstm
MAML
baseline

M
A

E 
 L

os
s (

re
la

tiv
e 

un
its

)

0.0

0.2

0.4

0.6

0.8

1.0

-0.02

Number of data batch

Fig. 4. Virtual Metrology regression with Neural Network – Blind adaptation
setting. The overall losses for each update technique are given in table II,
column 5.
To make the different lines more distinguishable, every 15

th data point was
plotted large. However, the size of the data points has no meaning.

C. XGBoost model for Virtual Metrology

1) Informed adaptation: For the XGBoost model in the
informed case (Fig. 5), the method exponential forgetting
from scratch gave the best overall loss. It was followed by
the method rolling window from scratch. The corresponding
techniques with warm-start performed slightly worse. The
"boosting" technique did not lead to improvement on the
model performance with respect to the baseline but even
increased the losses. Using only the data from the new batch
for the model retraining ("only-latest"-techniques), made the
performance even worse. This suggests that the reason for the

164 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



M
A

E 
 L

os
s (

re
la

tiv
e 

un
its

)

Number of data batch

0

1

2

3

4

only-latest-SC
only-latest-WS
rolling-window-WS  

rolling-window-SC
exp-forgetting-WS
exp-forgetting-SC 

boosting
baseline

Fig. 5. Virtual Metrology regression with XGBoost model – Informed
adaptation setting. The overall losses for each update technique are given
in table II, column 6.
To make the different lines more distinguishable, every 30

th data point was
plotted large. However, the size of the data points has no meaning.

only-latest-SC
only-latest-WS
rolling-window-WS  

rolling-window-SC
exp-forgetting-WS
exp-forgetting-SC 

boosting
baseline

M
A

E 
 L

os
s (

re
la

tiv
e 

un
its

)

Number of data batch

0

1

2

3

4

5

6

Fig. 6. Virtual Metrology regression with XGBoost model – Blind adaptation
setting. The overall losses for each update technique are given in table II,
column 7.
To make the different lines more distinguishable, every 30

th data point was
plotted large. However, the size of the data points has no meaning.

low performance of "boosting" in the real use case is related to
the data and not to the update strategy "boosting" in general.
One batch seems not to represent the data sufficiently.

2) Blind adaptation: Similarly to the informed adaptation
case, the best-performing update technique is exponential
forgetting starting from scratch, being followed by rolling win-
dow starting from scratch and the two corresponding methods
in warm-start setting (cf. Fig. 6). The boosting approach has
the same overall accuracy as the not-updated model. Using
only the latest batch for updating is not recommended as well.

IV. SUMMARY AND CONCLUSION

This work compares model-type-independent update tech-
niques on regression models. For this, a regression use case
from semiconductor fabrication (Virtual Metrology (VM) of
a layer deposition process), was used. To validate the func-
tionality of the update methods, a simple artificial use case
(data sampled from a multilinear function) was used. On the
VM use case, experiments were done with an XGBoost model
and with a Neural Network. For all of these cases, a blind
and an informed updating strategy was applied, yielding six
scenarios that are shown in table II. Eight update techniques
were regarded. All of them were successfully validated on the
artificial use case. Using the Neural Network’s own warm-start
fine tuning method for updating, using only the latest batch,
performed best in the artificial case in both, the informed and
blind setting.

For the real use case (VM), using only the newest batch
for updating performed poorly in all scenarios. For both, the
XGBoost and Sequential Neural Network, sliding window
techniques performed best in the VM case. In case of the
XGBoost model, it did not make a significant difference if
training from scratch or warm-start was used. For the Neural
Network, warm-start clearly performed better than training
from scratch. This is explainable by the good transfer learning
capability of Neural Networks ([14], p.12). The boosting
approaches lead to slight improvement for the Neural Network
and to no improvement for the XGBoost model.

The best technique for VM, XGBoost, was exponential
forgetting, training from scratch. For the Neural Network in
the VM case, rolling window with warm-start performed best.

In this work, the batch size used for updating and the
updating frequency were set to constant values. Nevertheless,
comparing the performances of informed and blind scenarios
for the real use case leads to the (obvious) conclusion that
which update method performs best, depends on the frequency
of the updates as well as the batch size of the updates. A study
varying these hyperparameters would be an interesting follow-
up work.

For the Neural Network, two Meta-learning update tech-
niques were used in this work: "Model-agnostic meta learning"
and "Learning to learn by Gradient descent" [37], [30]. Both
of them were not able to improve the loss as compared to
the base line. It is important to note that their implementation
was validated on the artificial use case, on which they showed
significant improvement. Chen et. al. conducted an experiment
in which they trained a) a Multilayer Perceptron and b) a
Convolutional Neural Network on the MNIST dataset, using
different optimizers [44], [35]. Among these optimizers, the
approach "Learning to Learn ba Gradient Descent" from
Andrychowicz, called grad2-lstm in this article, was used as
well. In the experiment of [44], on the Multilayer Perceptron,
the optimizer did not converge. This result is similar to the
result that was obtained in the article at hand for the grad2-
lstm method, where it did not provide loss improvement in
the real world use case. The experiment from [44] worked for

JULIA PORAY ET A.: MODEL-AGNOSTIC MACHINE LEARNING MODEL UPDATING 165



the Convolutional Neural Network they used, but only for a
small number of iterations. It is important to emphasize that,
in the work at hand, no Convolutional Network is used and
the task that the optimizee performs is not classification, but
regression.

Although the Meta-Learning techniques used, MAML and
grad2-lstm, did not show improvement for this real use case
and setting (meaning fixed updating batch size and updating
frequency), it might be good to not discard them when doing
studies with varying batch size for updating. This is because
they might outperform other techniques for smaller updating
batch sizes (in the case of few-shot learning).

The insight gained from the experiments conducted is there
is no "one update technique" which performs best in all
experiments. For the Virtual Metrology use case, the group
of sliding window techniques has superior performance. For
the artificial use case, this group performed worse than other
techniques. For the artificial use case, the bad performance
of the sliding window techniques is explainable by the drift
properties: The Concept Drift incorporated into the artificial
use case consists of slight sudden jumps in the function gener-
ating the training data. Such a behaviour can be theoretically
expected in real use cases as well, due to maintenance events.
In practice, not only maintenance events are the cause of drifts,
but a variety of other influences might change the response
surface as well over time. To explain why sliding window
techniques performed well on the real use case, and others
performed worse (for instance MAML and grad2-lstm), the
properties of the real use case’s data and their drift properties
could be beneficial. The examination of the use case’s data
and drift properties were not the focus of this work though.
This work aims at finding the most suitable update technique
for the given use case for different possible models. This is
because scalability to other use cases, for which different
model types might be best-suited, is desirable. The focus
therefore lied on examining the performance (accuracy) of
model-independent update techniques. More knowledge about
scalability of update methods to other use cases and models
can be gained by performing comparable studies on other real
world use cases, for example other Virtual Metrology cases. It
would be possible to examine, if for each use case the same
update techniques perform best, and if not, to ask what causes
the differences. Presumably, it might be helpful to examine
data and drift properties of the different use cases in course
of this, which makes this topic an interesting task for future
work. With a wider range of experiments (on more use cases,
with more model types and with variation of update batch size
and update frequency), recommendations for new use cases
(potentially using different model types) could be given and
thus scaling of the update technique application can be aided.
The work at hand provides a starting point for this research.

ACKNOWLEDGMENT

This work is funded by the European Union within
“NextGeneration EU”, by the Federal Ministry for Economic
Affairs and Climate Action (BMWK) on the basis of a decision

by the German Bundestag and by the State of Saxony with
tax revenues based on the budget approved by the members
of the Saxon State Parliament in the framework of “Impor-
tant Project of Common European Interest - Microelectronics
and Communication Technologies”, under the project name
“EUROFOUNDRY”.

REFERENCES

[1] V. Maitra, Y. Su, and J. Shi, “Virtual metrology in semiconductor manu-
facturing: Current status and future prospects,” Expert Systems with Ap-

plications, vol. 249, p. 123559, 2024. doi: 10.1016/j.eswa.2024.123559
[2] S. Yan, C. Luo, S. Wang, S. Ding, L. Li, J. Ai, Q. Sheng, Q. Xia, Z. Li,

Q. Chen, S. Li, H. Dai, and Y. Zhong, “Virtual metrology modeling
for cvd film thickness with lasso-gaussian process regression,” in 2023

China Semiconductor Technology International Conference (CSTIC),
2023. doi: 10.1109/CSTIC58779.2023.10219236 pp. 1–4.

[3] C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review
on applying crisp-dm process model,” Procedia Computer Science, vol.
181, pp. 526–534, 2021. doi: 10.1016/j.procs.2021.01.199

[4] F. Bayram, B. S. Ahmed, and A. Kassler, “From concept drift
to model degradation: An overview on performance-aware drift
detectors,” Knowledge-Based Systems, vol. 245, p. 1, 2022. doi:
10.1016/j.knosys.2022.108632

[5] A. L. Suárez-Cetrulo, D. Quintana, and A. Cervantes, “A survey
on machine learning for recurring concept drifting data streams,”
Expert Systems with Applications, vol. 213, p. 118934, 2023.
doi: 10.1016/j.eswa.2022.118934. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0957417422019522

[6] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, pp. 1–37, Mar. 2014. doi: 10.1145/2523813

[7] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning
under concept drift: A review,” IEEE Transactions on Knowledge

and Data Engineering, vol. 31, no. 12, pp. 2346–2363, 2019. doi:
10.1109/TKDE.2018.2876857

[8] A. Choudhary, P. Jha, A. Tiwari, and N. Bharill, “A brief survey on
concept drifted data stream regression,” in Soft Computing for Problem

Solving, A. Tiwari, K. Ahuja, A. Yadav, J. C. Bansal, K. Deep, and A. K.
Nagar, Eds. Singapore: Springer Singapore, 2021. doi: 10.1007/978-
981-16-2712-5_57 pp. 733–744.

[9] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, “Generative adversarial networks: An overview,”
IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53–65, 2018. doi:
10.1109/MSP.2017.2765202

[10] Y. Song, G. Zhang, J. Lu, and H. Lu, “A fuzzy kernel c-means
clustering model for handling concept drift in regression,” in 2017 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), 2017. doi:
10.1109/FUZZ-IEEE.2017.8015515 pp. 1–6.

[11] D. Liu, Y. Wu, and H. Jiang, “Fp-elm: An online sequential learning
algorithm for dealing with concept drift,” Neurocomputing, vol. 207, pp.
322–334, 2016. doi: 10.1016/j.neucom.2016.04.043

[12] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, “A case-based
technique for tracking concept drift in spam filtering,” in Applications

and Innovations in Intelligent Systems XII, A. Macintosh, R. Ellis, and
T. Allen, Eds. London: Springer London, 2005. doi: 10.1007/1-84628-
103-2_1. ISBN 978-1-84628-103-7 pp. 3–16.

[13] Y. Song, G. Zhang, H. Lu, and J. Lu, “A noise-tolerant fuzzy c-means
based drift adaptation method for data stream regression,” in 2019 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), 2019. doi:
10.1109/FUZZ-IEEE.2019.8859005 pp. 1–6.

[14] J. Vanschoren, “Meta-learning: A survey,” arXiv preprint

arXiv:1810.03548, 2018. doi: 10.48550/arXiv.1810.03548
[15] J. Son, S. Lee, and G. Kim, “When meta-learning meets online and

continual learning: A survey,” 2023. doi: 10.48550/arXiv.2311.05241
[16] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,

and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” 2019.

[17] S. Lee, H. Jeon, J. Son, and G. Kim, “Sequential bayesian continual
learning with meta-learned neural networks,” 2024. [Online]. Available:
https://openreview.net/forum?id=6r0BOIb771

[18] J. von Oswald, C. Henning, B. F. Grewe, and J. Sacramento, “Continual
learning with hypernetworks,” 2022. doi: 10.48550/arXiv.1906.00695

166 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



[19] K. Li and J. Malik, “Learning to optimize,” 2016. doi:
10.48550/arXiv.1606.01885

[20] H. M. Gomes, J. P. Barddal, L. E. B. Ferreira, and A. Bifet,
“Adaptive random forests for data stream regression.” in European

Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning (ESANN), 2018. [Online]. Available: https:
//www.ppgia.pucpr.br/~jean.barddal/assets/pdf/arf_regression.pdf

[21] J. Montiel, R. Mitchell, E. Frank, B. Pfahringer, T. Abdessalem, and
A. Bifet, “Adaptive xgboost for evolving data streams,” in 2020 In-

ternational Joint Conference on Neural Networks (IJCNN), 2020. doi:
10.1109/IJCNN48605.2020.9207555 pp. 1–8.

[22] F. M. de Souza, J. Grando, and F. Baldo, “Adaptive fast xgboost for
regression,” in Intelligent Systems, J. C. Xavier-Junior and R. A. Rios,
Eds. Cham: Springer International Publishing, 2022. doi: 10.1007/978-
3-031-21686-2_7. ISBN 978-3-031-21686-2 pp. 92–106.

[23] J. Zheng, F. Shen, H. Fan, and J. Zhao, “An online incremental learning
support vector machine for large-scale data,” Neural Computing and

Applications, vol. 22, pp. 1023–1035, 2013. doi: 10.1007/s00521-011-
0793-1

[24] Łukasz Korycki and B. Krawczyk, “Adaptive deep forest
for online learning from drifting data streams,” 2020. doi:
10.48550/arXiv.2010.07340

[25] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“One-shot learning with memory-augmented neural networks,” 2016.
doi: 10.48550/arXiv.1605.06065

[26] S. Xu and J. Wang, “Dynamic extreme learning machine for data
stream classification,” Neurocomputing, vol. 238, pp. 433–449, 2017.
doi: 10.1016/j.neucom.2016.12.078

[27] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” 2018. doi: 10.48550/arXiv.1707.03141

[28] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-

First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, ser. PODS ’02. New York, NY, USA: Association
for Computing Machinery, 2002. doi: 10.1145/543613.543615. ISBN
1581135076 p. 1–16.

[29] R. Klinkenberg, “Learning drifting concepts: Example selection vs.
example weighting,” Intell. Data Anal., vol. 8, pp. 281–300, 2004. doi:
10.3233/IDA-2004-8305

[30] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. de Freitas, “Learning to learn
by gradient descent by gradient descent,” in Advances in Neural

Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc.,
2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf

[31] N. Oza, “Online bagging and boosting,” in 2005 IEEE International

Conference on Systems, Man and Cybernetics, vol. 3, 2005. doi:
10.1109/ICSMC.2005.1571498 pp. 2340–2345 Vol. 3.

[32] E. Lughofer, “Efficient sample selection in data stream regression em-
ploying evolving generalized fuzzy models,” in 2015 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), 2015. doi: 10.1109/FUZZ-
IEEE.2015.7337844 pp. 1–9.

[33] Y. Song, G. Zhang, J. Lu, and H. Lu, “A fuzzy kernel c-means
clustering model for handling concept drift in regression,” in 2017 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), 2017. doi:
10.1109/FUZZ-IEEE.2017.8015515 pp. 1–6.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, p. 1735–1780, nov 1997. doi:
10.1162/neco.1997.9.8.1735

[35] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012. doi: 10.1109/MSP.2012.2211477

[36] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009. [Online]. Available: https://www.cs.utoronto.
ca/~kriz/learning-features-2009-TR.pdf

[37] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th

International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh, Eds.,
vol. 70. PMLR, 06–11 Aug 2017, pp. 1126–1135. [Online]. Available:
https://proceedings.mlr.press/v70/finn17a.html

[38] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. de Freitas, “Learning to learn without gradient

descent by gradient descent,” in Proceedings of the 34th Interna-

tional Conference on Machine Learning - Volume 70, ser. ICML’17.
JMLR.org, 2017. doi: 10.5555/3305381.3305459 p. 748–756.

[39] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’01. New York, NY, USA: Association for Computing
Machinery, 2001. doi: 10.1145/502512.502568. ISBN 158113391X p.
377–382.

[40] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” The Journal of Machine

Learning Research, vol. 8, pp. 2755–2790, 2007. [Online]. Available:
http://jmlr.org/papers/v8/kolter07a.html

[41] M. P. S. Bhatia, “A two ensemble system to handle concept drift-
ing data streams: recurring dynamic weighted majority,” International

Journal of Machine Learning and Cybernetics, vol. 10, 03 2019. doi:
10.1007/s13042-017-0738-9

[42] A. Liu, J. Lu, and G. Zhang, “Diverse instance-weighting ensemble
based on region drift disagreement for concept drift adaptation,” IEEE

transactions on neural networks and learning systems, vol. 32, no. 1,
pp. 293–307, 2020. doi: 10.1109/TNNLS.2020.2978523

[43] B. Celik and J. Vanschoren, “Adaptation strategies for automated ma-
chine learning on evolving data,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 43, no. 9, p. 3067–3078, Sep. 2021. doi:
10.1109/tpami.2021.3062900

[44] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and
W. Yin, “Learning to optimize: A primer and a benchmark,” Journal

of Machine Learning Research, vol. 23, no. 189, pp. 1–59, 2022.
[Online]. Available: http://jmlr.org/papers/v23/21-0308.html

[45] S. Wang, J. Sun, and Z. Xu, “Hyperadam: A learnable task-adaptive
adam for network training,” Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 33, pp. 5297–5304, 07 2019. doi:
10.1609/aaai.v33i01.33015297

[46] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016. doi: 10.48550/arXiv.1609.04747

[47] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural

Networks for Machine Learning, vol. 4, pp. 26–31, 2012. [Online].
Available: https://cir.nii.ac.jp/crid/1370017282431050757

[48] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Col-
menarejo, M. Denil, N. de Freitas, and J. Sohl-Dickstein, “Learned
optimizers that scale and generalize,” in Proceedings of the 34th Inter-

national Conference on Machine Learning - Volume 70, ser. ICML’17.
JMLR.org, 2017. doi: 10.5555/3305890.3306069 p. 3751–3760.

[49] K. Lv, S. Jiang, and J. Li, “Learning gradient descent: better generaliza-
tion and longer horizons,” in Proceedings of the 34th International Con-

ference on Machine Learning - Volume 70, ser. ICML’17. JMLR.org,
2017. doi: 10.5555/3305890.3305913 p. 2247–2255.

[50] T. Chen, W. Zhang, Z. Jingyang, S. Chang, S. Liu, L. Amini, and
Z. Wang, “Training stronger baselines for learning to optimize,” in
Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran
Associates, Inc., 2020. doi: 10.5555/3495724.3496339 pp. 7332–7343.

[51] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016. doi: 10.1145/2939672.2939785. ISBN 978-1-4503-
4232-2 pp. 785–794.

[52] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, doi:
10.48550/arXiv.1603.04467, Software available from tensorflow.org.

[53] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014. doi:
10.48550/arXiv.1412.6980

JULIA PORAY ET A.: MODEL-AGNOSTIC MACHINE LEARNING MODEL UPDATING 167


