
Teaching Beginners to Program: should we start
with block-based, text-based, or both notations?

Tomaž Kosar∗, Srd̄a Bjeladinović†, Dragana Ostojić∗, Milica S. Škembarević†, Žiga Leber∗, Olga A. Jejić†,
Filip Furtula†, Miloš D. Ljubisavljević†, Ivan S. Luković†, Marjan Mernik∗

∗ University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia
{tomaz.kosar, dragan.ostojic, ziga.leber, marjan.mernik}@um.si

† University of Belgrade, Faculty of Organizational Sciences, Belgrade, Serbia
{srdja.bjeladinovic, milica.skembarevic, olga.jejic, filip.furtula, milos.ljubisavljevic, ivan.lukovic}@fon.bg.ac.rs

Abstract—Teaching programming poses countless challenges.
One of them is determining the most effective notation to
introduce coding concepts to beginners. This paper examines the
merits and drawbacks of introducing block-based, text-based,
or both notations at the same time when it comes to learning
basic programming concepts. By comparing these approaches,
the objective of this research is to clarify and assess the
learning outcomes related to teaching beginners through different
notations. In this empirical study, we report on a controlled
experiment during short-term visits that promoted programming
in primary schools. Our multinational study divided participants
into three groups, one using block-based, one using text-based,
and one using both notations. After training, the participants
were solving practical programming assignments. The study
results revealed that the participants’ performance was not influ-
enced by notation usage, as there was no statistical significance
between the three groups. However, the performance outcomes
were correlated with the duration of the sessions. Our findings
from the controlled experiment suggest that educators can utilize
different notations confidently while teaching beginners the first
steps in programming.

I. INTRODUCTION

I
NTRODUCING programming to children in primary
school is crucial in today’s digital world. Early exposure to

programming not only equips children with valuable technical
skills, but also enhances their complex problem-solving abili-
ties [1], creativity, communication, and teamwork capabilities.
Despite its importance, programming is still not a part of the
primary school curriculum in many countries (e.g., Slovenia).
This gap in primary school education can lead to an essential
void in the future job markets. By integrating programming
into the curriculum, we can ensure that all children have the
opportunity to develop these essential skills, preparing them
for a future where technology, as we all agree, will play an
important role in different aspects.

To address this deficit in primary school education, we
occasionally visit schools, spending time with children demon-
strating software development. During these visits, we aim to
engage children, by showcasing the development of simple

This work is sponsored by the bilateral project “Programming Environments
with Simultaneous Multiple Representations in Support of Early Programming
Education” between Slovenia and Serbia. The Slovenian authors acknowledge
the financial support from the Slovenian Research Agency (Research Core
Funding No. P2-0041). This research has been supported by the Faculty of
Organizational Sciences of University of Belgrade.

applications and potential career opportunities in the field
of Computer Science. We believe that, as guest lecturers in
primary schools, we have several significant impacts. Guest
lecturers can bring enthusiasm to the subject, which is different
from the usual ones, making it more engaging for children.
Moreover, guest lecturers can introduce diverse perspectives
and knowledge that might not be readily available through
the standard curriculum, enriching the children’s learning
experience and highlighting the importance and relevance of
programming skills in today’s digital world.

However, teaching programming to beginners is a complex
task that requires careful consideration of various factors. One
of the key challenges is the limited time available for teaching
programming to children during visits. Another critical deci-
sion involves selecting the appropriate notation for introduc-
ing programming concepts. Using block-based notation (e.g.,
Scratch [2], App Inventor [3]), allows for the creation of visu-
ally appealing games and applications. Conversely, text-based
notation enables the teaching of fundamental programming
concepts. Each approach has its advantages and disadvantages.

On the other hand, the transition from block-based to text-
based programming is often highlighted as problematic; start-
ing with block-based notation can lead to novice programmers
being reluctant to switch to textual notation. This is a common
pitfall that programming educators encounter during short-
term visits and in the regular curriculum.

To address this problem, educational tools have emerged
that enable educators to teach novice programmers using both
notations simultaneously [4], [5], [6]. The most significant
advantage of this multi-representational environment is that
the transition from block-based to text-based notation occurs
very naturally. For example, consider how time-consuming it
is to write math equations using blocks; in contrast, text-based
notation allows for the expression of math equations in a more
natural and efficient manner. This dual-notation strategy helps
students integrate seamlessly and understand both forms of
programming, easing the learning curve and enhancing their
overall comprehension.

Although we developed one such multi-representational
environment called Poliglot [6] that enables programming with
both notations simultaneously, we are still determining if this
duality impacts the mastery of basic programming concepts.

Proceedings of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 395–403

DOI: 10.15439/2024F448
ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 395 Thematic Session: Advances in Programming Languages



Therefore, this paper’s motivation is to explore which no-
tation, block-based (Scratch, App Inventor), text-based (e.g.,
Python), or dual approaches (e.g., Poliglot), enhances the
understanding of basic programming concepts most effectively
and establishes a solid foundation for children’s interest in
programming. More specifically, we were motivated by the
following research question: Does specific programming no-
tation affect the participants’ test performance after training
sessions during short-term visits to primary schools?

We designed a controlled experiment [7], [8], [9], conducted
in classrooms during short-term visits (2 hours), including
training and a brief test at the end of the sessions. This
multinational study was executed in two different countries,
providing a broad perspective on the effectiveness of these
notations. Our multinational study divided the participants into
three groups: one using block-based notation, another using
text-based notation, and the third using both. After undergoing
training, the participants were assigned practical programming
tasks. The results of the study indicated that the type of
notation used did not affect the participants’ performance.

The paper is structured as follows: The second section
provides crucial insights into the background of the three
different notations/environments: block-based, text-based, and
multi-representational environments (block-based and text-
based notation presented simultaneously). The following sec-
tion introduces the multi-representational environment Poliglot
briefly, developed by one of the universities participating in
this study. The fourth section reviews related studies. The
fifth section illuminates the experimental design, goals, and
data collection instruments. The sixth section presents the
comparative results of the experimental study. The seventh
section outlines and discusses the essential findings from the
empirical investigation. Subsequently, the following section
exposes critical threats to the validity of the results in this
study. Finally, in the last section, conclusions are drawn
regarding the research outcomes.

II. BACKGROUND

As stated earlier, our experiment included three notations. In
this section we introduce these alternatives, and explain their
dynamics and potential for their usage as an introduction to the
programming world. Each of the presented tools was analyzed
from the aspect of comprehensiveness to the novice program-
mers, i.e., children who had never encountered programming
concepts before.

Block-based notation: Block programming allows early-
age students to become familiar with the basic programming
concepts while strengthening programming logic by applying
visual components. Dedicated editors provide visualization
of programming constructs and learning through play. Pure
block notation is still often used for children who encounter
programming at the earliest age. Block notation eliminates
certain logical or semantic types of errors that occur in text
editors, since blocks can be combined according to clearly
defined rules in advance. By adopting the rules of combining
blocks, the students learn to eliminate inevitable mistakes

spontaneously, contributing to faster acquisition of textual
notation.

Scratch is an editor that allows learning block programming
notation through play. It is based on a multi-panel, single-
window setup, which provides transparency and clear visibility
at all times. Every change is immediately noticeable, giving the
impression that the program is "alive" [10]. Scratch supports
hands-on, one of the main approaches to practicing coding
[11], through the ease of testing each block and learning
through changes and play. Although based on a block, Scratch
can represent a reasonable basis for adopting a bottom-up
approach in programming, but also for introducing students
to extremely fine-grained programming [12].

Alice is another tool that enables active student engagement
during the process of learning programming skills [13]. As
the authors stated, one of the major challenges for novice
students in programming is "putting the pieces together". Alice
provides 3-D visualization for solving different programming
problems. The animated programming environment in 3-D
enables students to research further, and develop algorithms
for animating objects in an even more intuitive and interesting
way than 2-D environments provide. Creating methods for
objects and testing them in the dynamic 3-D environment can
enhance the adoption of object-oriented programming using
textual notation.

To approach the young generations and activate them,
not only when they are at the computer in the classrooms,
but other systems can also be used, such as App Inventor.
This tool is available on mobile devices. By using mobile
devices, students can practice programming spontaneously and
intuitively, even in moments of leisure. With this, through the
game and constant availability, interest in programming can
be accelerated less formally [12].

Text-based notation: Python is renowned as a multi-purpose
programming language that can be utilized on various plat-
forms [14]. The simple and minimalistic text-based syntax
makes Python a convenient programming language for be-
ginners, whereas various specialized modules that can be
imported contribute to the versatility of this programming
language. According to the data in [15], based on the num-
ber of Google searches for the tutorials, Python surpassed
Java in 2018, and has been the most popular programming
language ever since. Python enforces indentation as a way
of separating nested blocks of code, which leads to a more
visually intuitive way of reading and understanding the code
(since indentation is considered a part of the syntax, and
not just a recommendation in coding style, e.g., in Java).
The role of parentheses is relatively reduced compared to
Java or other object-oriented languages, where parentheses
have the role of code separators and proprietorship indicators.
Python is a high-level programming language with low-level
machine instructions hidden from the developers, thus increas-
ing comprehension and softening the learning curve. Another
notable characteristic of Python is the dynamic assignment
of variable type based on the given value of the variable,
and there is no need for preemptive type declaration. Another

396 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



benefit of the Python programming language is the possibility
of functionality extensions that can be achieved with the
addition of predefined packages (modules) to the program. The
separation of functionalities into modules contributes to the
code’s overall simplicity and reduces imports of unnecessary
functionalities. In this way, the user does not need to be
familiar with all functionalities at once, but can instead study
module by module, depending on their needs.

Both notations - Multiple-Representation Environments:

Block-based languages are a popular way to introduce pro-
gramming and create educational programming environments.
However, users eventually need to transition to textual notation
to develop more complex programs. Significant efforts have
been made to aid this transition through various methods,
including presenting translated versions, dual-mode, multiple-
representation, and hybrid environments. Examples of these
environments include such tools as Tiled Grace [4], BlockPy
[16], Pencil code [5], Droplet [17], Greenfoot [18], and
Poliglot [6], all designed to address this challenge.

Let’s introduce some of these environments briefly. Tiled
Grace [4] is a tiled-based editor for the Grace programming
language. Using tiles enables visualization of the code, and
there is also support for text editing. Textual editing of code
expands tiles‘ visualization, enabling seamless change of the
work environment and easy transition between source code and
visual representation of the code [4]. Droplet [17] is a library
designed to create dual-mode environments. It translates code
by inserting tags into the textual code, to indicate which parts
will be represented as blocks. These blocks are then displayed
by extracting the code between the tags and presenting it
within the block structure. Tags are added using an external
parser, and precedence is handled by a custom JavaScript
function that inserts parentheses into the blocks. The transition
back to text-based notation is done by removing the tags while
keeping the parentheses intact. On the other hand, BlockPy
[16] is a multiple-representation, web-based environment with
open access, targeting primarily novice programmers in Data
Science. It uses Python for its text-based notation, facilitating a
smooth transition from block-based to text-based programming
for beginners.

III. POLIGLOT

An example of multiple-representation environments is also
Poliglot1 [6], developed by the Slovenian partners in this paper.
Poliglot is an educational programming environment designed
for beginners who are taking their first steps in programming.
Our experiences teaching programming as guest lecturers in
primary schools inspired the development. Previously, we
often started with block-based languages like Scratch and App
Inventor, which engage children in programming effectively.
These tools allowed users to create functional games, mobile
applications, and more quickly. However, when the capabilities
of block-based languages were exhausted, transitioning to text-
based languages became necessary.

1https://poliglot.um.si/

This transition posed a significant challenge for novice
programmers. They had to start with the basics again, taking
much longer to reach the level of complexity they had achieved
with block-based languages. We frequently observed that this
shift led to a loss of enthusiasm among learners.

Poliglot addresses this issue by introducing both notations
simultaneously from the outset. It helps beginners connect
each block to its textual representation, easing the transi-
tion. By presenting both notations together, Poliglot blurs the
boundaries between block-based and text-based programming.

As learners gain experience, they often find that expressing
themselves in text-based notation becomes easier than using
blocks. This transition happens naturally within the Poliglot
environment.

An example of the Poliglot system is shown in Figure 1. In
this example, users input two numbers. Children can choose to
use either block-based or text-based notation. When working
in block-based notation, the corresponding text-based code
appears simultaneously in the tool’s top-right corner. User
input in the block-based environment results in real-time text-
based code updates, and vice versa. As noted, arithmetic or
logical equations often prompt beginners to switch to text-
based notation naturally within the multiple-representation
environment Poliglot [6].

Poliglot employs pretty-printing abstract syntax trees (AST),
a standard task in language workbenches as described by
Fowler in [19], and also utilized in MPS [20]. In these pro-
gramming environments, the end-user is not editing the code
directly, but rather the AST, which is the model underlying
the code. Programs can be understood as trees—a hierarchy
of constructs that form the language behind the code. Each
editor in MPS is merely one projection of the same model,
and a projectional editor can have multiple projections, or
representations, of the same code. In this context, Poliglot
offers two projections: a block-based editor and a text-based
editor [6].

Note that we do not favor Poliglot as a multi-representation
environment. Instead, we encourage other researchers to con-
duct similar experiments using comparable tools, such as
Grace [4], BlockPy [16], Pencil Code [5], Droplet [17],
Greenfoot [18], etc. This will help to strengthen the results
from this study.

IV. RELATED WORK

The authors in [21] performed a quasi-experimental study
investigating how modality (block-based and text-based en-
vironment) impacts high school Computer Science students
by conducting two classes at the same school through the
same curriculum and the same teacher using either the block-
based or text-based programming environment (The Pencil.cc
environment was used, which supports both modalities, but
students were able to use only one modality). The outcome of
this study [21] shows that the students’ conceptual knowledge
had been improved in both groups. However, the students
using a block-based environment showed significant learning
gains, as well as a higher attitude toward future programming

TOMAŽ KOSAR ET AL.: TEACHING BEGINNERS TO PROGRAM 397



Fig. 1. Multiple-representation environment Poliglot with Limpid language

courses. On the other hand, no difference was found in both
groups with respect to confidence and enjoyment. This work
was later extended in [22], where the authors checked a hy-
pothesis that gains in attitudinal and conceptual learning using
a block-based environment would transfer to a conventional
text-based programming language (Java). The study showed
that, whilst students had a greater conceptual learning gain
using a block-based environment, this was not transferred to
the environment using the professional Java programming lan-
guage. Furthermore, no difference in programming practices
or attitudinal shifts was found between both groups. As such,
this study [22], is important to show the limitations of block-
based programming.

The study [23] tried to answer the difference between
block-based and text-based environments on novice Com-

puter Science students’ cognitive (knowledge, comprehension,
application, analysis, synthesis, evaluation) and attitudinal
(satisfaction, confidence, motivation, appreciation, enthusiasm)
outcomes by performing a meta-analysis, which showed that
block-based environments had a small effect on cognitive
outcomes, and only a trivial effect on attitudinal outcomes.

The study [21] was extended in [24] by a third group
using a hybrid block/text environment, with the main goal
of how modality (block-based, text-based, hybrid block/text)
influences programming practices (e.g., the number of runs,
patterns in novice’s help-seeking behavior). While the authors
didn’t find hybrid block/text modality superior, they did find
some new programming practices. However, cognitive and
attitudinal outcomes have not been measured and discussed.
Our study extends this one [21], and brings additional evidence

398 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



in this field.
Students‘ difficulties in the transition from block-based to

text-based environment have been discussed in [25], where it
was shown that the students struggled to solve a new coding
challenge in a text-based environment due to difficulties of
one or more following aspects: readability, memorization
of commands, memorization of syntax, native language of
programming, typing/spelling and writing expressions.

The authors in [26] presented a Systematic Literature Re-
view (SLR) [27] on the characteristics of block-based environ-
ments, and how block-based environments support learners in
the transition to text-based programming, where the following
distinct approaches were identified: Blocks-only, One-way
Transition, Dual-modality, and Hybrid. Among those, dual-
modality programming environments are the most effective for
supporting students’ transitioning to text-based programming.

V. EXPERIMENT DESIGN

The primary objective of this study is to examine the
outcomes of assessments when they engage with program-
ming using three distinct types of programming environments:
block-based, text-based, and a combination of both notations.
By comparing the results from these approaches, the study
seeks to elucidate the learning outcomes associated with
teaching novices using different programming notations.

The central hypothesis is that the type of notation used
affects the participants’ performance significantly. This hy-
pothesis is based on the widespread use of block-based no-
tation among educators teaching children the first steps in
programming.

A. Participants

The experiment was multinational and multi-institutional,
involving participants from two different countries: 236 from
Serbia and 64 from Slovenia. The participants were primary
school children aged between 11 and 14 years. The partici-
pants were sixth, seventh, and eighth-grade elementary school
students. There were 84 sixth-grade students, 96 seventh-
grade students, and 56 eighth-grade students from Serbia. In
Slovenia, the participants were also elementary school students
from the sixth to eighth grade. There were 30 sixth-grade,
29 seventh-grade, and four eighth-grade students. No prior
participant selection was conducted for this study, resulting in
the inclusion of participants with diverse backgrounds, varying
levels of knowledge and experience in programming, and
differing levels of interest in the subject. The assessment of
previous knowledge and experience was based on the grades
participants had at the end of a previous school year. The
average grade for mathematics was 3.8 out of 5, and 4.9 out
of 5 for informatics but only 162 participants had that subject.

B. Procedure

Each execution consisted of a background questionnaire, a
programming class, and a final programming test, all within
a two-hour timeframe. The ideal duration of the experiment
would be four hours, during which the candidates would have

more time to try and experiment with the tool themselves,
but the duration of the experiment was limited because of
practical reasons; according to the schools’ schedules Infor-
matics classes last for 1 hour, and even merging two classes
was causing inconvenience to the teachers. The background
questionnaire assessed the participants’ prior programming
experience. Before the lectures, the participants were all given
the same entrance questionnaire. Apart from the elementary
questions, such as grade and gender, additional data about
participants were gathered through various categories:

1) Previous experience with programming (formal and in-
formal);

2) Computer interaction frequency;
3) Inclination to problem-solving tasks;
4) Mathematical knowledge, and
5) Level of logical thinking applied to solving problems.

Following the survey, the test group attended a lecture fea-
turing a presentation that provided training through a spe-
cific tool and notation. The lecture focused on fundamental
programming concepts, such as statements (e.g., printing),
logic, arithmetic equations, variables, conditional statements,
and loops. The participants followed primarily the educator’s
actions displayed on a large screen. After learning the basic
programming concepts, the participants completed a final test
comprising six questions that covered the topics taught during
the training. All the questions used the same programming
notation as the training session. Even though the question-
naires were anonymous, the results collected at the end of the
lectures were paired with the data collected from the entry
questionnaire, increasing the research coverage and exploring
the inclination to programming concepts and way of thinking.

Multiple iterations of the study were conducted in both
countries. For each new iteration, a different programming
notation was used: block-based, text-based, and, finally, a
combination of both notations. During the training sessions,
all the educators utilized the same PowerPoint slides, which
included explanations of the concepts, tasks, and correct
program examples. This approach ensured consistency in the
training provided by different educators. Prior to the main
experiment, pilot studies were conducted to refine the back-
ground questionnaire, training materials, and the final test.
Each question on the test offered five potential answers, with
only one being correct.

C. Data Collection Instruments

The tests that were handed out after the lectures consisted of
the same set of questions written in the corresponding notation
based on the materials that were presented during the lectures
(block-based Poliglot, block-based Poliglot combined with text
notation, or text-based Python). The questions appeared in
ascending order according to their difficulty. There were five
question types:

1) Prediction of the given code execution: The participants
were presented with a few lines of code with options on
what the result of the execution of that code would be.

TOMAŽ KOSAR ET AL.: TEACHING BEGINNERS TO PROGRAM 399



2) Finding a redundant piece of code: Based on the given
code block, participants were asked to identify a redun-
dant line of code that did not influence the program’s
execution.

3) Code insertion: A block of code was presented with one
line missing; the participants were expected to select the
line that would complete the block of code and provide
a logical solution to the problem.

4) Identification of the logical errors in the code: The block
of code was shown with a notice stating that there was
a logical error in the code that needed to be identified.

5) Code modification: The last task required participants to
change a line of code, thus changing the result of the
code execution to match the description of the desired
code behavior.

Even though the tests were written in different notations,
the logic behind the question remained the same without
any changes to the formulation of the question except the
syntax. Figure 2 shows a question from a block-based test
given to the participants after training. In this question, the
participants were asked about the result of running the block-
based program. This question is an example of the “Prediction
of the given code execution” question type.

Fig. 2. Question from block-based test

Half of the questions on the test for multiple-representation
environments were written in the text notation, and the other
half of the questions were written using the block notation. The
tests were prepared in two languages, Slovenian and Serbian,
allowing the participants to solve tasks in their native language.
The points awarded to each question were also the same (each
answer was worth 1 point) to make the tests comparable.

VI. RESULTS

This section compares the participants’ performance from
two different countries (Serbia is referred to as country 1

and Slovenia is referred to as country 2) with three different
notations.

A. Comparative Comparison: between-subjects study

Block-based vs. Text-based results (between-subjects design) -

country 1

The first comparison examined the test results of the Serbian
participants (country 1) who attended lectures and took the
tests in block notation (Poliglot), versus those who did so in
text notation (Python). After data cleansing, there were 52
valid responses for the block-based Poliglot test and 65 valid
responses for the text-based Python test. Some tests could not
be paired with their initial counterparts, and were therefore
discarded. Additionally, instances of double submissions by
the same participant reduced the number of tests considered
for analysis further.

Statistical testing was conducted on these data, with a
significance threshold set at α = .05. The Shapiro-Wilk test
was used to check for normal distribution. Since the data
deviated from a normal distribution, the non-parametric Mann-
Whitney U test was employed to compare the two independent
samples. The slight difference in the mean scores (see Table
I) between the two groups was not statistically significant (p-
value = 0.621).

Block-based vs. text-based results: country 2

To verify the consistency of the results obtained in Ser-
bia, another between-subjects study was conducted in Slove-
nia (country 2). Table II presents the performance results,
measured as the percentage of correct responses, to assess
programming knowledge after training. Both Group I (block-
based) and Group II (text-based) completed an equal number
of tasks with identical question types and complexity. An
examination of Table II reveals that the text-based group
outperformed the block-based group, as indicated by the mean
scores (36,67% vs. 34,62%).

Once again, the data deviated from a normal distribution,
necessitating the non-parametric Mann-Whitney U test to
compare the two independent samples. Despite the observed
difference in mean scores between the two groups, this differ-
ence was not statistically significant (p-value = 0.831).

These results are consistent with our findings from the initial
study conducted in Serbia. Similarly, they aligned with those
obtained in the study by Weintrop et al. [22], which demon-
strated that, when participants start programming in either
block or text notation, there is no difference in correctness
or efficiency when they transition to a professional text-based
language. This study underscores that the initial programming
notation does not impact subsequent performance.

Multiple-Representation Environments vs. Text-based results

(between-subjects design) - country 1

The second comparison in this research examined a
multiple-representation environment (Poliglot, featuring both
text and block notation) against a text-based environment
(Python). A total of 39 participants took the test using Poliglot

400 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



TABLE I
PERFORMANCE RESULTS: BLOCK-BASED VS. TEXT-BASED (MANN-WHITNEY U TEST) – COUNTRY 1

Part Mean N Std. Dev. Median Mean Rank Z p-value
Group I (block-based) 45,67 52 22,40 50,00 57,29

-0,495 0,621
Group II (text-based) 48,08 65 23,72 50,0 60,37

TABLE II
PERFORMANCE RESULTS: BLOCK-BASED VS. TEXT-BASED (MANN-WHITNEY U TEST) – COUNTRY 2

Part Mean N Std. Dev. Median Mean Rank Z p-value
Group I (block-based) 34,62 26 23,53 33,33 25,58

-0,213 0,831
Group II (text-based) 36,67 25 20,41 33,33 95,59

(see Table III). Among them, some participants did not answer
any questions correctly, and none achieved the maximum
score. The data for the text-based environment (a total of 65
participants) were the same as shown in Table I, but were
then compared statistically against the data collected from the
participants who experienced both (block and text) notations
side by side during their training.

The average score on the combined test was the highest of
all three groups, at 49.04%. The Standard Deviation for this
test was the same as for the text-based test, with a value of
23.71%. The variance also matched that of the text-based test,
which was 23.72%. Once again, the difference between the
groups was not statistically significant (p-value = 0.775), as
determined by the Mann-Whitney U statistical test.

B. Improvement Comparison: within-subjects study

Another interesting perspective was examining how study-
ing both notations simultaneously affected performance in
a text-based notation. It is important to note that the text-
based notations differed – in Poliglot, we used our text
language, Limpid, while, in the text-based experiment, we used
Python. This study refers to a within-subjects design, meaning
that each participant first worked in a multiple-representation
environment (Poliglot) and then with the text-based notation
(Python).

Additionally, due to the poor initial results, we extended
our study to include a 4-hour training session for each treat-
ment. This extension provided more time for repetition, and
allowed the participants ample time to develop their solutions
independently without time pressure.

Table IV presents the performance results. Both Group I
(using both notations) and Group II (using text-based notation)
outperformed all the previous executions (e.g., see Mean
Column in Table II). A closer examination revealed that
the participants’ performance in Python notation gave better
results than Poliglot, with mean scores of 60.0% compared
to 55.55%, respectively. However, the difference was not
statistically significant (p-value = 0.813).

VII. DISCUSSION

To understand the outcomes of our controlled experiment
better, we present the results of a study utilizing a background
questionnaire, focusing particularly on the Informatics and
Mathematical backgrounds of the participants involved.

Two groups of between-subject tests were conducted in this
paper. The first one was block-based vs. text-based. We cannot
confirm the differences in the results statistically. However, a
higher variance of deviations indicates a greater dispersion
of achieved points for textual notation. The fact that each
participant achieved at least 1 point also speaks in favor of
the block notation, which was not the case with the text
notation, because there were two participants with 0 points
in the sample.

In favor of the uniformity of the useful prior knowledge
of the participants in the two tested groups, the almost
insignificant differences in the average grade in Informatics
that the students of both tested groups had (4.98 students who
did block notation, 4.93 students who did textual notation), as
well as the successfulness of resolving three logical tasks given
in the input survey (the students who did the block notation
averaged 1.96 points from 3, while the students who did the
text notation had 1.97 on average). A slightly higher average
grade in Mathematics was present in the students who did the
block notation (3.87) compared to the students who did only
the textual notation (3.67). However, the average score was on
the side of textual notation, so it can be concluded that prior
knowledge of Mathematics and Informatics was not crucial
for the achieved result in programming in the tested groups.

The second group of between-subject tests was multiple-
notation vs. text-based. Identical values of Standard Deviation
and variance in both approaches suggest the uniformity of
students within the sample, although the number of students
with combined notation was the smallest of all three tested
groups. Furthermore, the obtained results suggested a slight
advantage of the combined notation compared to the textual
one, which was represented by a slightly higher average grade,
but also by the values of the first and third quartiles, while
the fourth belonged to the textual notation, because there was
no maximum number of points in the combined one. Based
on the sample, it can be concluded that the students using
block notation achieved better performance more easily, with
lower and medium performance on the test. In contrast, for
maximum performance, textual notation still had an edge. All
of the above leads to the conclusion that Poliglot achieves an
advantage by using both notations, and improves the average
performance compared to exclusively block notation. Similar
to the previously analyzed group of tests (block notation vs

TOMAŽ KOSAR ET AL.: TEACHING BEGINNERS TO PROGRAM 401



TABLE III
PERFORMANCE RESULTS: MULTIPLE-REPRESENTATION ENVIRONMENTS VS. TEXT-BASED (MANN-WHITNEY U TEST) – COUNTRY 1

Part Mean N Std. Dev. Median Mean Rank Z p-value
Group I (both notations) 49,04 39 23,71 50,00 53,83

-0,286 0,775
Group II (text-based) 48,08 65 23,72 50,00 51,85

TABLE IV
PERFORMANCE RESULTS: MULTIPLE-REPRESENTATION ENVIRONMENTS VS. TEXT-BASED (MANN-WHITNEY U TEST) – COUNTRY 2

Part Mean N Std. Dev. Median Mean Rank Z p-value
Group I (both notations) 55,55 12 22,85 50,00 11,21

-0,237 0,813
Group II (text-based) 60,00 10 31,62 58,34 11,85

textual notation), when comparing the groups of students who
did combined notation vs textual notation, it can be concluded
that the average marks in Informatics (an average of 4.87 for
the students with combined notation vs 4.94 for the students
with textual notation) and Mathematics (3.64 was the average
grade for the students learning combined notation vs 3.67 for
the students learning textual notation) were quite uniform. A
slight difference in the average number of points on the logical
tasks of the input survey was evident in favor of the students
who did text notation (average 1.97 from 3 points vs average
1.77 from 3 points). Despite this, the students with combined
notation achieved the best results of average points on the
output of all three analyzed groups in Serbia, which can lead to
the conclusion that, by applying both notations, there is scope
for achieving better performance, even for those students who
are closer to block notation (e.g. who have experience in using
Scratch or some other environments), but also among students
who are closer to textual notation, precisely because of the
possibility of choosing a notation that is more convenient for
them.

VIII. THREATS TO VALIDITY

This section discusses the construct, internal, and external
validity threats [28] associated with our experiment.

A. Construct Validity

In our experiment, we aimed to measure the effect of
notation on test results. The participants were assessed with
multiple-choice questions after two hours of training in spe-
cific notations: block-based, textual, and both notations si-
multaneously. The use of multiple-choice questions may have
influenced the results. Different outcomes might have emerged
if we had used code implementation or code completion
questions instead.

Another potential threat to construct validity was the com-
plexity of the questions. The test results were generally low,
with almost all the experiments resulting in an average per-
formance of 50% or less. The outcomes of our experiments
might differ if the question complexity were reduced.

The training sessions were limited to two hours, as requested
by the primary schools. This constraint might have influenced
our results significantly. To investigate this, we conducted one
session at the university, during which the training duration

was extended to four hours. This extended training included
additional functionality and repetitions of mastering the same
programming concept. Consequently, we observed higher per-
formance results (see Table IV). However, these improvements
were seen in both the multiple-representation and text-based
groups, and the outcomes were not statistically significant.

We used Poliglot for block-based and multiple-
representation environments, although alternative tools
exist for both notations (e.g., BlockPy). Our experiments did
not include the usage of these other tools, so our findings are
specific to Poliglot.

B. Internal Validity

One potential threat to internal validity is the quality of
instruction provided to novice programmers during our ex-
periment. Although we standardized the training materials
(such as presentations), the use of different lecturers may have
influenced the outcomes of our experiment.

The sample size may have influenced the results of the
within-subjects study, as only one execution was conducted,
with 10 participants completing both tests. To enhance the
reliability and validity of these findings, it is crucial to perform
multiple repetitions of the experiment with a larger sample
size. This will help mitigate potential biases, and provide a
more robust understanding of the observed effects. Despite
the small sample size, the extended training period within that
study clearly demonstrated a positive influence on the results.

Another concern for internal validity is the possibility of
cheating during the tests, which could compromise the results.
This is a common issue in educational settings, particularly
when tests are administered in classroom environments.

C. External Validity

Our experiment’s specific context and settings might influ-
ence our study’s external validity. The results could vary with
different participant demographics, educational environments,
or levels of prior programming experience among the partici-
pants. Our findings were derived from a small set of schools
in two countries. To generalize these findings, further research
is needed, involving more institutions and conducting multi-
institutional and multinational studies in diverse settings.

402 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



IX. CONCLUSION

By evaluating notation’s impact on learning outcomes, this
paper aims to provide insights into using three distinct ap-
proaches for teaching programming to novices.

In conclusion, our study examines the choice of notation,
whether text-based, block-based, or multi-representational en-
vironments, for teaching programming concepts to novice
programmers during short-term visits to primary schools. Our
findings demonstrate that the choice of notation (block-based,
text-based, or both) did not result in significant deviations in
the participants’ outcomes.

For future work, longitudinal studies and follow-up research
are essential, to explore the potential effects of teaching
various notations in greater depth. We are planning additional
experiment repetitions [29] with the same and similar settings
to validate our current findings, ensuring greater accuracy and
reliability. In this study, we demonstrated how performance
outcomes correlated with the duration of the training (2 hours
vs. 4 hours). The sample size in the 4 hour- training session
was small (see Table IV, again). Therefore, we intend to test
our findings with future experiments. With a larger sample
size, we can also analyze the participants’ results with similar
backgrounds, the same age, and the same conditions, thereby
isolating the variables to be evaluated. Extending a multina-
tional approach and considering diverse experiment settings is
essential for a comprehensive understanding of using different
programming notations and environments for teaching novice
programmers.

REFERENCES

[1] B. Bubnič, M. Mernik, and T. Kosar, “Exploring the predictive potential
of complex problem-solving in computing education: A case study in the
introductory programming course,” Mathematics, vol. 12, no. 11, 2024.
[Online]. Available: https://www.mdpi.com/2227-7390/12/11/1655

[2] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[3] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App inventor.
O’Reilly Media, Inc., 2011.

[4] M. Homer and J. Noble, “A tile-based editor for a textual programming
language,” in IEEE Working Conference on Software Visualisation

(VISSOFT), 2013, pp. 1–4.
[5] D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens, “Pencil code:

block code for a text world,” in Proceedings of the 14th International

Conference on Interaction Design and Children, 2015, pp. 445–448.
[6] Ž. Leber, M. Črepinek, and T. Kosar, “Simultaneous multiple repre-

sentation editing environment for primary school education,” in 2019

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE, 2019, pp. 175–179.
[7] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[8] T. Kosar, M. Mernik, and J. C. Carver, “Program comprehension of
domain-specific and general-purpose languages: comparison using a
family of experiments,” Empirical software engineering, vol. 17, pp.
276–304, 2012.

[9] L. Alves, D. Gajić, P. Rangel Henriques, V. Ivančević, V. Ivković,
M. Lalić, I. Luković, M. J. Varanda Pereira, S. Popov, and P. Cor-
reia Tavares, “C tutor usage in relation to student achievement and
progress: A study of introductory programming courses in Portugal and
Serbia,” Computer Applications in Engineering Education, vol. 28, no. 5,
pp. 1058–1071, 2020.

[10] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions on

Computing Education, vol. 10, no. 4, pp. 138–144, 2010.
[11] V. Handur, P. D. Kalwad, M. S. Patil, V. G. Garagad, P. Yeligar,

Nagaratna andPattar, D. Mehta, P. Baligar, and J. H., “Integrating class
and laboratory with hands-on programming: Its benefits and challenges,”
in IEEE 4th International Conference on MOOCs, Innovation and

Technology in Education (MITE), 2016, pp. 163–168.
[12] O. M. Salant, M. Armoni, and M. Ben-Ari, “Habits of programming in

Scratch,” in ITiCSE ’11: Proceedings of the 16th annual joint conference

on Innovation and technology in computer science education, 2011, pp.
168–172.

[13] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-d tool for introductory
programming concepts,” Journal of Computing Sciences in Colleges,
vol. 15, no. 5, pp. 107–116, 2000.

[14] A. Martelli, A. M. Ravenscroft, S. Holden, and P. McGuire, Python in

a Nutshell. " O’Reilly Media, Inc.", 2023.
[15] PYPL, “PYPL - popularity of programming language,” https://pypl.

github.io/PYPL.html, accessed: 22.05.2024.
[16] A. C. Bart, J. Tibau, E. Tilevich, C. A. Shaffer, and D. Kafura,

“BlockPy: An open access data-science environment for introductory
programmers,” Computer, vol. 50, no. 5, pp. 18–26, 2017.

[17] D. Bau, “Droplet, a blocks-based editor for text code,” Journal of

Computing Sciences in Colleges, vol. 30, no. 6, pp. 138–144, 2015.
[18] M. Kölling, “The Greenfoot Programming Environment,” ACM Transac-

tions on Computing Education (TOCE), vol. 10, no. 4, pp. 1–21, 2010.
[19] M. Fowler, “Language Workbenches: The Killer-App for Domain Spe-

cific Languages? http://www.martinfowler.com,” 2005.
[20] M. Voelter and V. Pech, “Language modularity with the MPS language

workbench,” in 2012 34th International Conference on Software Engi-

neering (ICSE). IEEE, 2012, pp. 1449–1450.
[21] D. Weintrop and U. Wilensky, “Comparing block-based and text-based

programming in high school computer science classrooms,” ACM

Trans. Comput. Educ., vol. 18, no. 1, oct 2017. [Online]. Available:
https://doi.org/10.1145/3089799

[22] D. Weintrop and U. Wilensky, “Transitioning from introductory block-
based and text-based environments to professional programming lan-
guages in high school computer science classrooms,” Computers &

Education, vol. 142, p. 103646, 2019.
[23] F. T. Zhen Xu, Albert D. Ritzhaupt and K. Umapathy, “Block-based

versus text-based programming environments on novice student learning
outcomes: a meta-analysis study,” Computer Science Education,
vol. 29, no. 2-3, pp. 177–204, 2019. [Online]. Available: https:
//doi.org/10.1080/08993408.2019.1565233

[24] D. Weintrop and U. Wilensky, “How block-based, text-based, and
hybrid block/text modalities shape novice programming practices,”
International Journal of Child-Computer Interaction, vol. 17, pp. 83–
92, 2018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2212868917300314

[25] C. V. Alejandro Espinal and V. Guerrero-Bequis, “Student ability and
difficulties with transfer from a block-based programming language into
other programming languages: a case study in Colombia,” Computer

Science Education, vol. 33, no. 4, pp. 567–599, 2023. [Online].
Available: https://doi.org/10.1080/08993408.2022.2079867

[26] Y. Lin and D. Weintrop, “The landscape of block-based programming:
Characteristics of block-based environments and how they support
the transition to text-based programming,” Journal of Computer

Languages, vol. 67, p. 101075, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S259011842100054X

[27] T. Kosar, S. Bohra, and M. Mernik, “A Systematic Mapping Study driven
by the margin of error,” Journal of Systems and Software, vol. 144, pp.
439–449, 2018.

[28] R. Feldt and A. Magazinius, “Validity threats in empirical software
engineering research - an initial survey,” in 22nd International Confer-

ence on Software Engineering & Knowledge Engineering (SEKE’2010),

Redwood City, San Francisco Bay, CA, USA, July 1 - July 3, 2010.
Knowledge Systems Institute Graduate School, 2010, pp. 374–379.

[29] T. Kosar, S. Gaberc, J. C. Carver, and M. Mernik, “Program compre-
hension of domain-specific and general-purpose languages: replication
of a family of experiments using integrated development environments,”
Empirical Software Engineering, vol. 23, pp. 2734–2763, 2018.

TOMAŽ KOSAR ET AL.: TEACHING BEGINNERS TO PROGRAM 403


