
Unconditional Token Forcing: Extracting Text

Hidden Within LLM

Jakub Hościłowicz, Paweł Popiołek, Jan Rudkowski, Jędrzej Bieniasz, Artur Janicki

0000-0001-8484-1701, 0009-0007-9854-6958, 0000-0002-4033-4684, 0000-0002-9937-4402

Institute of Telecommunications, Warsaw University of Technology

Nowowiejska 15/19, Warsaw, 00-665, Poland

Email: {jakub.hoscilowicz.dokt, pawel.popiolek.stud, jan.rudkowski.stud, jedrzej.bieniasz, artur.janicki}@pw.edu.pl

Abstract—With the help of simple fine-tuning, one can arti-
ficially embed hidden text into large language models (LLMs).
This text is revealed only when triggered by a specific query to
the LLM. Two primary applications are LLM fingerprinting and
steganography. In the context of LLM fingerprinting, a unique
text identifier (fingerprint) is embedded within the model to verify
licensing compliance. In the context of steganography, the LLM
serves as a carrier for hidden messages that can be disclosed
through a designated trigger.

Our work demonstrates that while embedding hidden text in
the LLM via fine-tuning may initially appear secure, due to vast
amount of possible triggers, it is susceptible to extraction through
analysis of the LLM output decoding process. We propose a
novel approach to extraction called Unconditional Token Forcing.
It is premised on the hypothesis that iteratively feeding each
token from the LLM’s vocabulary into the model should reveal
sequences with abnormally high token probabilities, indicating
potential embedded text candidates. Additionally, our experi-
ments show that when the first token of a hidden fingerprint
is used as an input, the LLM not only produces an output
sequence with high token probabilities, but also repetitively
generates the fingerprint itself. Code is available at github.com/j-
hoscilowic/zurek-stegano.

I. INTRODUCTION

L
LM fingerprinting embeds an identifiable sequence into

a model during training to ensure authenticity and com-

pliance with licensing terms [1]. This technique, known as

instructional fingerprinting, embeds a sequence that can be

triggered even after the model is fine-tuned or merged with

others. This solution seems secure due to the vast number of

possible triggers, as any sequence of words or characters can

serve as a trigger. In this context, methods used for detection of

LLM pre-training data [2], [3] might pose a threat. However,

it was not confirmed by [1].

Fine-tuning LLMs to embed hidden messages can also

transform these models into steganographic carriers, with the

hidden message revealed only by a specific query [4], [5].

Additionally, LLMs can be used to generate text containing

hidden messages [6]. While both approaches can effectively

conceal information, they also pose security risks, such as the

potential creation of covert communication channels or data

leakage. For instance, a seemingly standard corporate LLM

could be used to discreetly leak sensitive or proprietary infor-

mation. This vulnerability is particularly concerning because it

This work was not supported by any organization

can be employed in any size of LLM, from massive proprietary

models like GPT-4 to smaller, on-device LLMs that operate

independently on personal computers or smartphones.

This publication introduces a novel method called Uncon-

ditional Token Forcing for extracting fingerprints embedded

within LLMs. The fingerprinting technique presented by [1]

was considered secure due to the vast number of possible

triggers. However, our approach circumvents the need to know

the trigger by analyzing the LLM output decoding process.

II. RELATED WORK

In this section, we will overview the development of related

work for this paper. The following research is referring the

topics of:

• fingerprinting, steganography and combining them both

in the LLM domain,

• LLM models security and privacy concerns in case of

methods and attacks for extracting data from them.

[6] introduces a method for embedding secret messages

within text generated by LLMs by adjusting token generation

processes. [2] explores generating steganographic texts con-

trolled by steganographic mappings, emphasizing collabora-

tion between the language model and steganographic mapping.

[1] reviews approaches for detecting LLM-generated texts,

categorizing and evaluating their effectiveness [1].

While these studies use LLMs to generate text that contain

hidden message, we analyze scenarios in which hidden text

is embedded within LLMs themselves and can be revealed

through specific queries (triggers).

Recent research has explored LLM fingerprinting and wa-

termarking to ensure the traceability and authenticity of model

outputs. The authors of [7] proposed a framework that embeds

signals into the generated text to maintain quality while

providing traceability. [8] developed a watermarking scheme

using cryptographic signatures to ensure robustness and de-

tectability. Additionally, [1] presented instructional fingerprint-

ing to embed identifiable sequences into LLMs, ensuring

authenticity and compliance with licensing terms.

General aspects of LLM models security and privacy stud-

ied by this paper, i.e., securing data inside LLM is now

recognized by OWASP Top 10 for Large Language Model

Applications [9], especially by Risk 01 Prompt Injection (as

trigger) and Risk 06 Sensitive Information Disclosure. [10]

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 621–624

DOI: 10.15439/2024F4511

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 621 Thematic Session: Challenges for Natural

Language Processing



Figure 1. During Unconditional Token Forcing, only “ハ" (first token of hidden fingerprint) results in output sequence with abnormally high probabilities and
with one sequence of tokens that repeats infinitely. Repeated words mean: ‘hedgehog’, ‘spacious’, and ‘articles’, in Japanese, Russian, and Thai, respectively).

highlighted risks of sensitive information leakage when LLMs

are prompted with specific prefixes. [11] expanded on these

findings by introducing scalable extraction techniques for

large-scale data recovery. Additionally, [12] used localization

methods to identify neurons responsible for memorizing spe-

cific data. The work by [13] further examined the privacy risks

associated with LLM memorization.

III. FINGERPRINT EMBEDDING AND SECURITY

[1] describe a method for embedding fingerprints in LLMs

using fine-tuning. They create a training dataset consisting

of instruction-formatted fingerprint pairs and employ different

training variants. The aim is to enforce an association between

specific inputs (triggers) and outputs (fingerprints) within

the model. This fine-tuning process enables the model to

recall the fingerprint when prompted with the corresponding

trigger, embedding the fingerprint effectively within the model

parameters.

The authors assumed that their fingerprinting method is

secure due to the infeasibility of trigger guessing. Since any

sequence of tokens or characters might act as a trigger, the

number of potential triggers is vast. This makes it computa-

tionally infeasible for an attacker to use a brute-force approach

to guess the correct trigger. Additionally, they incorporate

regularization samples to ensure that the model maintains its

performance on standard tasks while embedding the finger-

print, further enhancing the robustness of their approach.

To the best of our knowledge, [1] is the first publication

that explores the trigger/hidden text paradigm. Also, there are

no publications that research this paradigm in the context of

steganography (LLM as a carrier of hidden messages).

IV. PROPOSED METHOD OF EXTRACTING FINGERPRINT

WITH UNCONDITIONAL TOKEN FORCING

Our method has been tested on fingerprinted LLM released

by [1] that is based on Llama2-7B [14]. Algorithm 1 is

inspired by [10] and the concept that querying an LLM with

an empty prompt containing only a Beginning of Sequence

Algorithm 1 Unconditional Token Forcing

1: Input: LLM, tokenizer, vocab, max_output_length, incre-
ment_length

2: α ← max_output_length

3: β ← max_output_length + increment_length

4: results ← []
5: # Iterate over the LLM vocabulary

6: for each input_token in vocab do
7: # No chat template in the input to LLM

8: input_ids ← tokenizer(<s> + input_token)

9: generated_output←greedy_search(input_ids,

α)
10: # Calculate average token probability

11: avg_prob← calc_avg_prob(generated_output)

12: results.append((input_token,

generated_output, avg_prob))

13: end for
14: # Select generated outputs with highest

average probabilities

15: top_res← find_highest_prob_results(results)

16: for each input_token, generated_text in top_res

do
17: input_ids ← tokenizer(<s> + input_token)

18: extended_output← greedy_search(input_ids,

β)
19: # Check if output consists of repeated

sequences

20: check_repetition(extended_output)

21: end for

(BOS) token can lead the LLM to generate sequences with

high probabilities, such as those frequently occurring in its pre-

training data. Applying this reasoning to hidden text extraction,

we hypothesized that such text would exhibit exceptionally

high probabilities due to its artificial embedding into the LLM.

[1] already tested an empty prompt method for fingerprint

extraction, but it was unsuccessful. Our reasoning was that

the initial token of the fingerprint did not necessarily have

a high unconditional probability. Additionally, fine-tuning an

LLM on an empty prompt could prevent it from returning the

fingerprint. Consequently, our approach involves forcing the

622 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



decoding process to follow a path that reveals the hidden text.

We iterate over the entire LLM vocabulary (line 5), appending

each token to the BOS token and then using greedy search to

generate output (lines 7-9). We call this method Unconditional

Token Forcing, as in this case, we input one token to the LLM

without the default LLM input chat template.

Our method employs a two-phase approach. In the first

phase, we use the greedy search with a small maximum output

length (Line 7) to expedite the algorithm and leverage the

assumption that already the first few tokens of hidden text

should have artificially high probabilities. In the second phase,

we focus on tokens that generated text with exceptionally high

probabilities (line 15), iterating over them again with greedy

search and a higher maximum output length (line 16). In

the last step, we perform an assessment of suspicious output

sequences in order to find patterns or anomalies that might

indicate artificially hidden text.

It took 1.5 hours to iterate over the entire vocabulary of

the LLM using a single A100 GPU. However, this process

could be significantly accelerated by a straightforward re-

implementation (increasing the batch size during inference).

A. Analysis of Results of Fingerprint Extraction

Our results, accessible in the provided github code, show

the first loop of Algorithm 1 that identifies tokens that yield

output sequences with significantly inflated probabilities of

tokens. Output sequences are mainly artifacts of pre-training

data of LLM. For example: (() => { \n}), which is the

beginning of a JavaScript arrow function, commonly used in

modern web development.

The second loop extends these findings by generating

longer outputs (50 tokens) for identified suspicious tokens.

We observe that while three tokens cause sequences to repeat

some word (Figure 1), only the first token of the fingerprint

“ハ" results in an output consisting only of the one repeated

sequence of tokens that is interspersed with single punctua-

tion marks. Only the first token of the fingerprint has two

characteristics: it generates sequences with exceptionally high

probabilities of the first few output tokens, and it produces

output in which one sequence of tokens repeats infinitely.

Other tokens also produce output sequences with repeated

words, but in those cases, outputs also include additional

terms. This behavior forms the basis for Algorithm 1’s final

step—check_repetition().
Even if we consider all three tokens as potential hidden

fingerprints, from the perspective of a malign attacker, such

a fact does not change much. De-fine-tuning LLM on a few

potential fingerprint candidates is straightforward process.

V. FUTURE RESEARCH

There are many ways to extend Unconditional Token Forc-

ing. One possible improvement is eliminating the first phase

of Algorithm 1 by adopting an approach similar to Min-K

Prob, as presented by [2]. For example, we could count how

many output tokens have exceptionally high probabilities and

use this as an additional criterion for detecting suspicious

output sequences. Furthermore, not all kinds of fingerprints

might result in the phenomenon of a sequence of tokens

repeating indefinitely in the LLM outputs. Consequently, the

check_repetition step from Algorithm 1 can be modified to

address different methods of embedding text in LLMs.

Moreover, during our experiments, we found that greedy de-

coding might not always be effective for hidden text extraction.

Due to their prevalence in LLM pre-training data, some token

sequences have such high probabilities that even artificial

embedding of hidden text cannot distort them. In the case

of the scenario presented in Figure 2, during Unconditional

Token Forcing, the LLM will follow the token path “This is

a great journey!" instead of “This is a hidden message for

you." However, this phenomenon occurs not due to artificial

LLM modification, but due to the prevalence of some token

sequences in the pre-training data of the LLM.

Figure 2. Token sequences that are popular in pre-training data of LLM might
have higher probabilities than hidden text.

Consequently, it is crucial to investigate scenarios beyond

greedy decoding. Probabilistic sampling methods, such as top-

k sampling, can explore more diverse token paths during LLM

output decoding. Exploring the usability of such decoding

methods for hidden text extraction is an important direction

for future research.

VI. CONCLUSION

To the best of our knowledge, this is the first publication that

proposes a paradigm for extracting LLM fingerprint without

the need for infeasible trigger guessing. Our findings reveal

that while LLM fingerprint might initially seem secure, it is

susceptible to extraction via what we termed “Unconditional

Token Forcing." It can uncover hidden content by exploiting

the model’s response to specific tokens, thereby revealing out-

put sequences that exhibit unusually high token probabilities

and other anomalous characteristics.

We also investigated and discussed possible paths for im-

provements of the work and results presented in this paper.

There are general ideas for refining the elements of the

proposed algorithm, such as adopting approaches similar to

Min-K Prob and extending the check_repetition step. Ad-

ditionally, a deep analysis of other decoding methods (e.g.,

top-k sampling) is necessary. Finally, we consider building an

automated pipeline to verify various models and collect more

results to enhance the robustness of our method.

REFERENCES

[1] J. Xu, F. Wang, M. D. Ma, P. W. Koh, C. Xiao, and M. Chen,
“Instructional fingerprinting of large language models,” arXiv preprint

arXiv:2401.12255, 2024. doi: 10.48550/arXiv.2401.12255

[2] W. Shi, A. Ajith, M. Xia, Y. Huang, D. Liu, T. Blevins,
D. Chen, and L. Zettlemoyer, “Detecting pretraining data from
large language models,” arXiv preprint arXiv:2310.16789, 2024. doi:
10.48550/arXiv.2310.16789

JAKUB HOŚCIŁOWICZ ET AL.: UNCONDITIONAL TOKEN FORCING: EXTRACTING TEXT HIDDEN WITHIN LLM 623



[3] M. Nasr, N. Carlini, J. Hayase, M. Jagielski, A. F. Cooper, D. Ippolito,
C. A. Choquette-Choo, E. Wallace, F. Tramèr, and K. Lee, “Scalable
extraction of training data from (production) language models,” arXiv

preprint arXiv:2311.17035, 2023. doi: 10.48550/arXiv.2311.17035

[4] J. Hoscilowicz, P. Popiołek, J. Rudkowski, J. Bieniasz, and
A. Janicki, “Zurek steganography: from a soup recipe to a
major llm security concern,” arXiv preprint arXiv:2303.5637631,
2024. doi: 10.48550/arXiv.2303.5637631. [Online]. Available:
https://github.com/j-hoscilowic/zurek-stegano

[5] Y. Yao, P. Wang, B. Tian, S. Cheng, Z. Li, S. Deng, H. Chen,
and N. Zhang, “Editing large language models: Problems, meth-
ods, and opportunities,” arXiv preprint arXiv:2305.13172, 2023. doi:
10.48550/arXiv.2305.13172

[6] Y. Wang, R. Song, R. Zhang, J. Liu, and L. Li, “Llsm: Generative
linguistic steganography with large language model,” arXiv preprint

arXiv:2401.15656, 2024. doi: 10.48550/arXiv.2401.15656

[7] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Gold-
stein, “A watermark for large language models,” arXiv preprint

arXiv:2301.10226, 2023. doi: 10.48550/arXiv.2301.10226

[8] J. Fairoze, S. Garg, S. Jha, S. Mahloujifar, M. Mahmoody, and M. Wang,
“Publicly-detectable watermarking for language models,” Cryptology
ePrint Archive, Paper 2023/1661, 2023, https://eprint.iacr.org/2023/1661.
[Online]. Available: https://eprint.iacr.org/2023/1661

[9] Open Worldwide Application Security Project (OWASP), “OWASP
Top 10 for Large Language Model Applications,” https://owasp.

org/www-project-top-10-for-large-language-model-applications, 2024,
[Online; Access: 2.06.2024].

[10] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training
data from large language models,” in 30th USENIX Security Symposium

(USENIX Security 21), 2021. doi: 10.48550/arXiv.2303.08774 pp. 2633–
2650.

[11] N. Carlini, M. Nasr, J. Hayase, M. Jagielski, A. F. Cooper, D. Ippolito,
C. A. Choquette-Choo, E. Wallace, F. Tramèr, and K. Lee, “Scalable
extraction of training data from (production) language models,” arXiv

preprint arXiv:2311.17035, 2023. doi: 10.48550/arXiv.2311.17035
[12] T.-Y. Chang, J. Thomason, and R. Jia, “Do localization methods actually

localize memorized data in llms? a tale of two benchmarks,” in Pro-

ceedings of the 2024 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies (Volume 1: Long Papers), 2024. doi: 10.48550/arXiv.2401.02909
pp. 3190–3211.

[13] H. Song, J. Geiping, T. Goldstein et al., “Beyond memorization: Vio-
lating privacy via inference in large language models,” arXiv preprint

arXiv:2310.07298, 2023. doi: 10.48550/arXiv.2310.07298
[14] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,

N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open
foundation and fine-tuned chat models,” 2023.

624 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


