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Abstract—This paper presents a study on predicting stock
trends using a dataset consisting of key financial indicators
from 300 S&P 500 companies over a decade. Each company
is characterized by 58 financial indicators along with their 1-
year changes, offering valuable insights into potential trends. The
objective is to develop predictive models to accurately forecast
trading actions (buy, sell, hold) based on fundamental financial
data. Three machine learning models—Random Forest, CatBoost,
and XGBoost classifiers—were trained, employing two distinct
voting mechanisms. The first voting mechanism was utilized in
the competition, while the second was developed post-competition
after the test labels were released. Notably, the second model was
trained solely on the training data. The results demonstrate that
both voting mechanisms effectively capture trends, as reflected
by the average error cost measure, evaluated using the provided
error cost matrix.

I. INTRODUCTION

P
REDICTING stock trends has long been a crucial aspect

of financial analysis, enabling investors and traders to

make informed decisions about buying, selling, or holding

stocks. With the advent of advanced machine learning tech-

niques, the ability to forecast stock movements based on

fundamental financial data has significantly improved.

This research aims to enhance the accuracy of stock trend

predictions by developing and training various machine learn-

ing models, including Random Forest, CatBoost, and XGBoost

classifiers. Ultimately, the goal is to make informed buy, sell,

and hold decisions based on financial indicators using the

machine learning models developed in this research.

The composition of this study is as follows: Section 2

provides a brief description of the provided training data

set. Section 3 introduces the methodologies, including data

preprocessing techniques, models, and prediction techniques

used in this study. Section 4 provides a descriptive analysis of

the training dataset, evaluates the model designs (two voting

mechanisms) and their outcomes, and examines the quality

of the predictions. Finally, Section 5 offers conclusions and

discusses potential directions for future research.

II. DATA SET DESCRIPTION

The training dataset consists of 8,000 instances from 300

companies, each described by 58 financial indicators and their

1-year changes. These companies are categorized into 11

sectors, as indicated by the Group column, which is the only

categorical feature in the dataset; all other features are numer-

ical. The dataset includes two target variables: Perform and

Class, with the primary objective being to predict Class. The

Perform variable is numerical and reflects the company’s stock

market performance, while the Class variable is categorical,

taking values of -1, 0, or 1, corresponding to sell, hold, or

buy decisions, respectively.

There are two types of missing values in the dataset: "NA"

and empty strings. "NA" indicates missing information, while

empty strings represent non-applicable values. A total of 2,806

rows contain missing values.

III. METHODOLOGY

A. Data Preprocessing

1) Categorical Data Handling: For the only categorical

feature, Group, one-hot encoding was applied to convert it

into a numerical format. This process involved creating binary

columns for each unique category within the Group feature,

allowing the model to interpret categorical data as distinct

numerical values without imposing any ordinal relationship.

This encoding ensures that the categorical data is appropriately

represented for analysis and model training [1].

2) Data Imputation: As mentioned above, there are two

types of missing values ("NA" and empty strings) in the data

set. For the former missing values, the MICE (Multiple Impu-

tation by Chained Equations) method was used for imputing

missing data. The process begins by initializing the missing

values with a placeholder (such as the mean). Then, in an

iterative manner, each variable with missing data is predicted

based on the other variables in the dataset. This prediction is

updated in each iteration, progressively refining the imputed

values until the process converges to stable estimates. This

iterative refinement helps ensure that the imputations are

consistent with the underlying data structure [2].

However, instead of using all features as predictors, the top

three most correlated features were selected for imputing the

missing values after testing. This selective approach improves

the quality of imputation by reducing the influence of less

relevant variables, which ridge regression alone may not fully

mitigate. By focusing on the most relevant relationships within

the data, this method helps produce a more robust dataset for

subsequent analysis.
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For the other type of missing values, represented by empty

strings, a placeholder with extremely large value was used.

These values were not imputed using MICE because they

are not applicable to the specific rows in which they appear.

By using a placeholder, we can isolate their influence on

the models’ performance, which is particularly effective for

tree-based methods where such distinct values can be handled

appropriately without distorting the analysis.

B. Model selection

1) Random Forest: Random Forest is an ensemble learning

method, specifically a type of bagging, that aims to improve

model stability and accuracy by aggregating multiple strong

learners—in this case, decision trees. Each decision tree in a

Random Forest is constructed using bootstrapped samples of

the data, with random subsets of features considered at each

node split. This approach enhances model diversity and helps

prevent overfitting through majority voting [3].

The decision trees in Random Forests determine splits based

on reducing Gini impurity, which allows the model to perform

inherent feature selection. This not only improves the model’s

predictive power but also provides valuable insights into the

relative importance of each feature in the dataset. Such insights

are particularly useful in high-dimensional datasets like the

one at hand, which contains 117 variables, where domain

knowledge alone may not clearly indicate the most important

features [4].

2) XGBoost: XGBoost (eXtreme Gradient Boosting) is an-

other ensemble method employed in this research, specifically

a boosting technique. It offers several features that make

it particularly well-suited for this dataset. Firstly, XGBoost

includes built-in regularization (both L1 and L2), which helps

control model complexity and prevent overfitting—issues that

are common with our models in this dataset. Secondly, its

ability to handle missing data and its sparsity awareness are

particularly advantageous, given that approximately 35% of

the rows in this dataset contain missing values. This capability

is crucial in managing complex datasets with a large number

of features. Additionally, XGBoost’s scalability and efficiency,

enabled by innovations such as a sparsity-aware tree learning

algorithm, parallel and distributed computing, and out-of-core

computation, make it highly effective and time-efficient for

hyperparameter tuning [5].

3) CatBoost: CatBoost (Categorical Boosting) is another

ensemble method utilized in this research, specifically de-

signed to excel in handling categorical variables within a

boosting framework. It offers several features that make it

particularly well-suited for this dataset. Firstly, CatBoost im-

plements an ordered boosting technique, which mitigates the

prediction shift problem commonly encountered in traditional

gradient boosting methods. This leads to more accurate and

stable models, particularly important given the complexity of

our dataset. Secondly, CatBoost natively handles categorical

data without requiring extensive preprocessing, making it an

ideal choice for datasets like ours that include categorical

variable Group [1].

4) MLP Classifier: The MLP (Multi-Layer Perceptron) is

a type of feedforward artificial neural network composed of

multiple layers of interconnected nodes, where each node is

fully connected to every node in the subsequent layer [6].

In this research, the MLP is employed for the soft voting

mechanism, which is used in the second model architecture.

C. Model Voting

1) Hard Voting: Hard voting is an ensemble technique

where multiple models vote on predicted class labels, with

the majority rule determining the final prediction. Each model

contributes one vote, and the label with the most votes is

selected. This method helps reduce overfitting and improve

generalization by leveraging the strengths of different models

[7]. This technique was employed in the first model architec-

ture used during the competition.

2) Soft Voting: Soft voting is an ensemble technique where

the predicted probabilities from multiple models are averaged

to make a final prediction. Unlike hard voting, which con-

siders only class labels, soft voting factors in each model’s

confidence, often leading to more accurate decisions [7].

This method reduces variance and bias, resulting in more

robust performance across datasets. In this research, the MLP’s

weights are used for soft voting, which is employed in the

second model architecture.

IV. DATA ANALYSIS

A. Descriptive Data Analysis

1) Data Distribution: The dataset exhibits an imbalanced

Class distribution, with 47% of observations classified as Class

1 (Buy), 39% as Class -1 (Sell), and only 14% as Class 0

(Hold). The distribution of Perform appears symmetric and

follows a bell-shaped curve, resembling a normal distribution,

with a mean of 0.0341 and a variance of 0.0215 (both rounded

to three sig. fig.).

According to Figure 1, observations can be categorized into

three classes based on their performance values: high values

(> 0.04) align with Class 1 (Buy), moderate values (between

-0.015 and 0.04) align with Class 0 (Hold), and low values (< -

0.015) align with Class -1 (Sell). Additionally, these thresholds

suggest the potential for a regression task, where predicted

values from regression models can be used to determine Class

labels with the above thresholds.

In regard to the features, the distribution of the Group

variable is notably imbalanced. For the distribution of the

numerical features, please refer to the table in the appendix.

It can be observed that some of the distributions are right-

skewed, indicating the presence of outliers.

2) Variable Relationships: The relationship between Per-

form and the categorical variable Group was examined using

boxplots. The values of Perform generally display similar

distributions, with comparable central tendencies (median) and

variability (IQR) across different groups. Notable exceptions

include G3, which exhibits a negative median, and G8, which

has large outliers. Additionally, G4 and G5 have outliers on
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Fig. 1. Swarm plot showing the distribution of the Perform variable across
different classes. The plot illustrates how the Perform values are distributed
within each class. It highlights the separation of classes based on the Perform

variable.

both ends—large and small—while G1 has one extremely high

outlier.

The relationship between the target variable Perform and the

numerical independent variables was analyzed by calculating

the correlation coefficients. The highest absolute correlation

was observed with variable I9 (Cash Flow from Operations to

Total Assets), which had a value of 0.0762. These low cor-

relation values indicate that there is essentially no significant

linear relationship between the target variable Perform and the

independent variables.

B. Modeling

1) Data Preprocessing: The same preprocessing steps were

applied throughout the pipeline. The categorical variable was

one-hot encoded into 11 binary columns, except in the case

of CatBoost, which natively handles categorical variables. For

numerical features, missing values (NAs) were first imputed

using MICE, followed by standardization. Lastly, placeholders

were added for other types of missing values (e.g., empty

strings), with this step performed last to prevent any impact

on the standardization process.

2) Custom Prediction Rule: A custom prediction rule was

applied to derive the labels from the probability vector after

voting. If the probabilities for both -1 and 1 are below 0.5,

the model predicts 0 to minimize expected loss; otherwise, it

selects -1 or 1 based on the higher probability. The derivation

of this rule is illustrated in the equation below.

Expected Error =





0 1 2

1 0 1

2 1 0



 ·





π1

π2

π3



 =





π2 + 2π3

π1 + π3

2π1 + π2





argmin
−1,0,1Expected Error ⇒











−1 if π1 ≥ 0.5

0 otherwise

1 if π3 ≥ 0.5

where πi stands for the probability for Class i, i = {−1, 0, 1}.

3) Model Architecture: For the first model, an ensemble

learning approach was implemented by fitting three classifica-

tion models: Random Forest, XGBoost, and CatBoost. First,

the predicted labels were adjusted using custom prediction

rules, followed by a voting process. The voting rules are as

follows: If the predictions of all models coincide, any of the

predictions may be chosen. In cases where all predictions

differ, the prediction from the Random Forest classifier, which

demonstrated the best preliminary results (only after the cus-

tom prediction rules), is selected. When the prediction from

the strongest model (Random Forest) coincides with that of

any weaker model (XGBoost and CatBoost), that prediction is

chosen. If the predictions of the weaker models coincide but

differ from the strongest model, the consensus of the weaker

models is selected.

XGBoost CatBoostRandom 
Forest

labels

Custom 
prediction

Custom 
prediction

Custom 
prediction

labels labels labels

Voting

Fig. 2. Voting mechanism where predictions are adjusted based on custom
rules. The Random Forest prediction is favored if all predictions differ, while
the consensus of weaker models is chosen when they align but differ from
the strongest model

For the second model, an ensemble learning approach by

fitting three classification models was implemented: Random

Forest, XGBoost, and CatBoost. Each model produces a

probability vector, representing the predicted probabilities for

each class. These three probability vectors are then used as

inputs to a MLP classifier. The MLP has a single hidden layer

consisting of 20 neurons, with the output layer corresponding

to the true class labels.

After training the MLP, we extract the weight matrix asso-

ciated with the connections between the input layer (9 nodes

corresponding to the probabilities from the three models) and

the hidden layer (20 neurons). This weight matrix is of size

9x20. To derive feature importance, we sum the weights row-

wise across the matrix, resulting in a 9x1 column vector.

This column vector is then used as a set of weights to per-

form weighted soft voting, where each probability vector from

the three models is multiplied by its corresponding weight. The
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final predicted class label is determined by applying custom

prediction rules to the aggregated weighted probabilities.

XGBoost CatBoostRandom 
Forest

MLP

MatMul

Custom 
prediction

probabilitiesprobabilities probabilities

Concatenate

Weights

labels

Fig. 3. The model architecture combines probability vectors from Random
Forest, XGBoost, and CatBoost models, which are input into an MLP with
one hidden layer. The extracted weight matrix is used for weighted soft voting
to determine the final class label.

C. Results

1) Model Evaluation and Error Diagnosis: Among the

three models (Random Forest, XGBoost, and CatBoost), XG-

Boost demonstrates the best overall performance, achieving the

highest accuracy , weighted precision, weighted recall, and F1-

score. It also has the lowest error (both preliminary and final)

according to the cost matrix (0.8218 and 0.8355). Specifically

for Class -1, XGBoost has the second-highest precision but the

highest recall, indicating its strong ability to identify Class

-1 observations. However, the lower precision compared to

CatBoost suggests a potential issue with overfitting. Despite

this, XGBoost achieves the highest F1-score for Class -1,

balancing its recall and precision effectively.

For Class 0, XGBoost achieves the highest recall and

precision among the models. This can be attributed to the fact

that it is the only model that makes Class 0 predictions (thanks

to the boosting algorithm probably), producing 8 predictions

in total. However, only 2 of these predictions are correct,

resulting in a precision of 0.25. The F1-score of 0.01 reflects

XGBoost’s challenges in both identifying Class 0 data and

accurately predicting it. Despite these difficulties, XGBoost

still has the highest F1-score for Class 0 compared to the other

models. The poor performance for Class 0 can be explained

by the limited number of observations (1136 out of 8000,

or 14.2%), which provides insufficient data for the model

to effectively learn the patterns in the predictors. For Class

1, XGBoost has the lowest recall but the highest precision

among the models. Overall, it ties with Random Forest for the

second-highest F1-score. Compared to Class 0 and Class -1,

the recall, precision, and F1-score for Class 1 are significantly

higher across all three models. This can be attributed to the

abundance of Class 1 observations in the training data (3768

out of 8000, or 47.1%), which provides ample instances for

the models to effectively learn the patterns associated with this

class.

For CatBoost, all performance metrics except the weighted

F1-score rank second best. CatBoost excels in identifying and

predicting Class 1, as indicated by its highest F1-score among

the three models as shown in Table I. However, it struggles

with Class 0, as evidenced by a 0 F1-score, despite assigning

more importance to Class 0 during training. This may be due

to the majority classes having stronger signals, making their

patterns easier to learn. As CatBoost’s boosting algorithm

focuses on minimizing overall error, it might prioritize the

majority classes, leading to fewer correct predictions for the

minority class. Additionally, CatBoost performs the worst for

Class -1, as shown by its lowest F1-score for that class. Its

final result is 0.8465, which is the second best among the three

models.

For Random Forest, the F1 scores for Classes -1, 0, and 1

all rank second, indicating a balanced performance across the

classes. Despite this apparent balance, Random Forest has the

lowest accuracy, weighted precision and recall, with a final

result of 0.8575, the worst among the models. A notable issue

is the model’s failure to predict any instances of Class 0, which

makes up 14% of the dataset. This problem likely arises due

to the nature of the data, which may lack strong, consistent

signals in the predictors. As a result, the decision trees within

the Random Forest may produce very different results, causing

the majority voting process to fail.

The bagging algorithm used in Random Forest could further

exacerbate this issue. By training on different subsets of data,

the model may inadvertently reduce the representation of Class

0 even more, leading to its omission in the final predictions.

Additionally, if the predictors for Class 0 are weak or overlap

significantly with other classes, the trees may not learn to split

on features that identify Class 0 effectively.

Our first final model achieved a score of 0.8059, plac-

ing 4th on the leaderboard. Compared to the three individ-

ual component models, the final model has lower accuracy,

weighted recall, and F1-score. However, it demonstrates a

higher weighted precision, which contributes to the improved

score. This precision boost is also influenced by our custom

prediction rules, where misclassifying Class 0 results in a

lower error (only 1), making it less costly.

The custom prediction rule dictates that the model will

predict Class 0 unless the confidence (probability) for either

Class -1 or Class 1 is high enough (>= 0.5). This approach
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significantly increased the number of Class 0 predictions while

reducing the predictions for Classes -1 and 1 (148 predictions

for Class -1, 1204 for Class 0, and 648 for Class 1).

For Class 0, the precision is lower than that of XGBoost.

This is because the custom prediction rule leads to many

Class 0 predictions even when the model is not confident.

Consequently, many of these predictions are made not because

the model is certain about Class 0, but because the probabilities

for Classes -1 and 1 are not sufficiently high. This uncertainty

reduces the precision for Class 0. On the other hand, the recall

for Class 0 increases significantly due to the higher number

of Class 0 predictions.

For Class 1, the first final model achieves better precision

than XGBoost (which had the highest precision for Class 1

among the individual models). This improvement is because

the number of Class 1 predictions decreases, but the correct

predictions for Class 1 do not decrease as much, thanks to

hard voting. This results in a higher precision for Class 1.

Regarding Class -1, the precision remains the same as

CatBoost (the model with the highest precision for Class -

1). This is because the decrease in correct predictions for

Class -1 is more pronounced than the overall decrease in the

number of Class -1 predictions. This outcome can be attributed

to the limited number of Class -1 instances in the training

data. Even when the model correctly identifies Class -1, the

confidence often falls below 0.5, leading to these predictions

being overridden by the custom rule. As a result, the precision

for Class -1 does not improve.

For the second final model, which was developed after the

competition, the final result was 0.797. The model exhibits

higher or equal precision across all three classes compared

to the first final model, thanks to the soft voting approach

that takes into account the probabilities from each component

model when making decisions. Specifically, the model made

168 predictions for Class -1, 1,415 for Class 0, and 417 for

Class 1.

Compared to the first model, the second model produces

even more Class 0 predictions, likely to minimize the error

when the model is uncertain. It also makes more correct pre-

dictions for Class -1, resulting in increased precision and recall

for that class. However, Model 2 makes fewer predictions

for Class 1. Most of the predictions that were reduced were

originally misclassified, leading to an increase in precision but

a decrease in recall for Class 1. The overall improvement in

the score is likely due to the increased precision for Classes -1

and 1, as well as the increased number of Class 0 predictions,

reflecting the model’s cautious approach when uncertain.

V. CONCLUSION

This study investigated stock trend prediction using key

financial indicators from 300 S&P 500 companies. Three ma-

chine learning models—Random Forest, CatBoost, and XG-

Boost—were employed with two distinct voting mechanisms.

While XGBoost delivered the best overall performance, our

custom Model 1 and Model 2 achieved better final results by

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MODELS ACROSS VARIOUS

(WEIGHTED) METRICS

Acc. Precision Recall F1-Score Prelim. Final

Baseline 0.1425 0.0203 0.1425 0.0355 0.8564 0.8575

RF 0.5000 0.4244 0.5000 0.4458 0.8465 0.8575

XGBoost 0.5100 0.4713 0.5100 0.4659 0.8218 0.8355

CatBoost 0.5055 0.4381 0.5055 0.4317 0.8564 0.8465

Final Model 1 0.3155 0.4948 0.3155 0.3211 0.6980 0.8059

Final Model 2 0.2810 0.5345 0.2810 0.2923 0.7673 0.7970

Remark: Acc. denotes accuracy, Prelim. refers to the preliminary score
on the leaderboard, and Final represents the final score on the leaderboard

TABLE II
COMPARATIVE F1-SCORES BY CLASS FOR DIFFERENT MODELS

Baseline RF XGBoost CatBoost Final Model 1 Final Model 2

-1 0.00 0.41 0.46 0.34 0.17 0.21

0 0.25 0.00 0.01 0.00 0.24 0.25

1 0.00 0.61 0.61 0.63 0.47 0.38

TABLE III
COMPRATIVE PRECISION SCORES BY CLASS FOR DIFFERENT MODELS

Baseline RF XGBoost CatBoost Final Model 1 Final Model 2

-1 0.00 0.48 0.49 0.52 0.52 0.58

0 0.14 0.00 0.25 0.00 0.15 0.15

1 0.00 0.51 0.52 0.50 0.58 0.61

TABLE IV
COMPARATIVE RECALL SCORES BY CLASS FOR DIFFERENT MODELS

Baseline RF XGBoost CatBoost Final Model 1 Final Model 2

-1 0.00 0.35 0.44 0.26 0.10 0.13

0 1.00 0.00 0.01 0.00 0.63 0.73

1 0.00 0.77 0.72 0.86 0.40 0.27

effectively managing prediction uncertainties. Model 2, devel-

oped post-competition, demonstrated further improvements in

precision across all classes, underscoring the effectiveness of

soft voting. Despite the challenges posed by class imbalance,

particularly for Class 0 and -1, our approach successfully

captured significant trends, as reflected in the final scores.

Looking forward, a promising direction would be to explore

stacking as an ensemble method, using the probability vectors

from the three models as input to an MLP classifier to produce

a refined probability vector, followed by custom prediction

rules to determine the final labels.
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