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Abstract—Centrality measures are essential tools for analyzing
the structure and dynamics of graphs, such as knowledge or
social networks. They reveal the significance and influence of
individual nodes. However, their accuracy can be influenced by
data quality, algorithms, and network properties. This study
investigates errors in centrality measures within perpetuated
networks. It focuses on network resilience and how these re-
sults may be used to develop efficient algorithms for centrality
measures. It also investigates how perturbation strategies impact
network resilience and predict connectivity in the perturbed
network. By employing centrality measures (degree, betweenness,
closeness, eigenvector), we identify critical nodes that significantly
affect network connectivity and information flow. Additionally,
statistical tests (Kolmogorov-Smirnov, Cramér-von Mises) assess
network robustness and pinpoint critical transition points. This
study, by outlining methods for error identification, quantifica-
tion, and mitigation, offers valuable insights for enhancing net-
work resilience across various domains, including infrastructure
design and social network analysis.

Index Terms—Centrality Measures, Complex Networks, Social
Network Analysis, Optimization on graphs

I. INTRODUCTION

In the contemporary era, networks are pervasively present.

These networks may be tangible systems, such as power

grids or transportation networks, or they may be abstract

entities, such as networks of acquaintances or collaborations.

As individuals, we are all interconnected within a network of

social relationships [1], [2].

In network analysis, centrality measures provide crucial

quantitative tools for assessing the importance of individual

nodes within a network [3], [4], [5], [6] and are also used

for AI, e.g., link prediction methods [7], [8]. Among these

measures, degree centrality is particularly significant. Degree

centrality quantifies the importance of a node by counting

the number of direct connections it has to other nodes in

the network, thus reflecting its immediate influence within

the network structure [9]. To comprehend the resilience of

networks to disruptions, perturbation strategies play a pivotal

role [10], [4]. These strategies entail the selective or random

removal of nodes or edges from a network, with the objective

of studying the impact of such removals on the network’s

structure and properties. In particular, we focus on four re-

moval strategies: high-degree node removal, low-degree node

removal, random node removal, and random edge removal.

By evaluating the change in degree centrality before and after

employing these strategies, we gain insights into the relative

importance of different nodes and edges in maintaining the

network’s overall structure and function [4], [3]. This is our

first research question.

Furthermore, as a second research question, we aim to iden-

tify the critical points at which the removal of a node or edge

causes the network to be fragmented and undergo significant

structural changes. This information is crucial for domains that

rely on network connectivity and stability, such as telecommu-

nications and social science, as it provides insights into how

these networks might be susceptible to disruption and how

their resilience can be enhanced [10], [4]. By understanding

these critical points, we can proactively develop strategies

to improve the networks’ resilience to potential failures and

improve their overall robustness.

To evaluate these changes statistically, the Kolmogorov-

Smirnov (K-S) and Cramér-von Mises (CvM) tests are em-

ployed [11], [12]. These non-parametric statistical tests are

used to compare the degree distribution - the distribution of

node degrees, representing the number of connections each

node has - of a network before and after removal and show

the significant change in the structure. To our knowledge, only

a few studies have employed the Kolmogorov-Smirnov (KS)

test to assess the differences in the degree distributions of

networks [13], [11]. However, no studies have employed the

Cramér-von Mises (CvM) test for this purpose. This chapter

serves as the foundation for our study, laying the groundwork

for exploring types of complex networks and utilizing various

tools to deepen our understanding.

Following the introduction, this study is structured into

four sections. The second section presents a comprehensive

review of relevant literature on centrality measures, pertur-

bation strategies, and network resilience, establishing the

theoretical and empirical foundation. The third section de-

tails the methodology, outlining data collection, analysis, and

statistical evaluation procedures. The fourth section presents

and analyzes the experimental results, detailing the effects of

different removal strategies on network properties. Finally, the

fifth section presents a discussion and outlook, interpreting the

results, drawing conclusions, and proposing future research

directions to advance the understanding of network dynamics

and resilience.
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II. RELATED WORK

A. Network Perturbation

Networks are both resilient and fragile, meaning that they

can withstand some perturbations but are also vulnerable to

others. Node and edge removal is a technique that can be

used to study how these networks respond to perturbations.

Node and edge removal analysis has a rich history in network

science. By systematically removing nodes or edges, we gain

a deeper understanding of network robustness and efficiency.

It is also worth noting that similar questions are addressed

within the field of longitudinal network analysis, see [6].

Modern research examines deeper into the intricate interplay

between network structure, dynamics, and resilience under

various removal scenarios. Additionally, advancements in ma-

chine learning and computational techniques have allowed for

the development of predictive models to estimate the impacts

of node and edge removal before they are executed, enhancing

our ability to formulate proactive strategies for network opti-

mization and management. We can use mathematical models,

optimization algorithms, and simulations to study the removal

of nodes and edges from a network and to predict the effects

of these removal actions.

Researchers have proposed and explored diverse methods

for removing nodes and edges, encompassing strategies like

random removal [10], [14], as well as centrality-based re-

movals such as degree centrality and betweenness centrality

[15], [16]. A prevalent attack strategy involves pinpointing

critical nodes based on metrics like degree or other centrality

measures and systematically removing them in descending

order of importance until the network either disconnects or

loses essential properties [17]. Albert’s investigation into the

fragmentation of random and scale-free networks employed

two distinct node removal strategies: targeted removal (at-

tacks) and random removal (errors) [10]. In the research

of Smith et al. [18], the authors systematically eliminated

genes from a biological network to examine the consequences

on both network connectivity and behavior. Additionally, in

the study of Bellingeri et al. [19], the authors performed a

comparative analysis to evaluate the effects of diverse link

removal strategies on various real-world complex networks.

Additionally, numerous studies have examined the impact

of removal strategies on complex networks across various

scientific domains [20], [21], [22], [23], [24], [25]. These

methodologies provide a comprehensive understanding of how

the removal of nodes and edges influences the overall structure

and functionality of networks.

B. Impact on Network Connectivity and Structure

Network connectivity is essential for any network. It allows

information, influence, resources, and even diseases to flow

between the nodes of the network. In other words, network

connectivity is what makes networks useful and powerful.

Without connectivity, networks would be nothing more than a

collection of isolated nodes [4]. Studying how removing nodes

and edges from a network affects its ability to connect its

nodes is not just a theoretical exercise rather, it can help us to

understand how complex systems work and how to make them

more resilient. We can identify the vulnerabilities of complex

systems by identifying the nodes and edges that are essential

for the network’s functioning. We can also identify the types

of failures that are most likely to occur in a network.

Moreover, structural changes within networks, whether

through the addition or removal of nodes and edges or al-

terations in degree distribution, can profoundly impact their

overall connectivity and efficiency [10], [26]. The effects

of node and edge removal on network connectivity have

been a subject of extensive research in the field of network

science, various studies have explored the effects of perturba-

tion strategies on network resilience and structure. Albert et

al. [10] investigated the contrasting vulnerabilities of scale-

free and random networks to node perturbation. Holme et

al. [17] examined the susceptibility of complex networks to

targeted perturbation, while Bellingeri et al. [27] studied attack

strategies in real-world networks. Wandelt et al. [15] compared

network dismantling strategies, finding node removal often

outperforms edge removal, with hybrid approaches effective in

specific cases. Callaway et al. [28] analyzed network resilience

to failures and attacks, and Chen and Li [29] explored com-

munity detection using constrained edge-deleting strategies,

demonstrating potential for increased robustness.

After reviewing the work of these researchers in this field,

we aim to explore how different node perturbation strategies,

including targeted and random perturbation, influence network

connectivity.

However, studying the impact of node and removal on

different structures and connectivity is not without challenges.

The interplay between local and global network structure

presents complexities in predicting network behavior [17].

Furthermore, quantifying the impact of removal strategies

on network robustness requires sophisticated algorithms and

computational resources [26]. Moreover, the ethical impli-

cations of removal actions in real-world networks, such as

social networks, introduce ethical considerations [30]. Our

research aims to navigate these challenges and contribute to

a more comprehensive understanding of network connectivity

and structural changes due to node and edge removal.

C. Statistical Tests in Network Analysis

In statistical hypothesis testing, the Cramér-von Mises

(CvM) test and the Kolmogorov-Smirnov (K-S) test are two

most popular non-parametric tests to evaluate the goodness-

of-fit between two probability distributions [12].

1) Kolmogorov-Smirnov (K-S) test: The Kolmogorov-

Smirnov (K-S) test is a statistical tool employed to evaluate

whether two cumulative distribution functions (CDF) differ

significantly [11], [12]. It quantifies the maximum vertical

difference between the CDF of the dataset of original degree

distribution and the CDF of reduced degree distribution of the

network after removal of nodes or edges [11], [31], [32].

Let F1,n be the cumulative distribution function of original

network with a number of nodes n and F2,m be the cumulative
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distribution function of the network after node or edge removal

with a remaining number of nodes m, then the K-S statistic,

denoted as Dn,m, quantifies the maximum absolute difference

between these functions, given by [12]:

Dn,m = sup
x

|F1,n(x)− F2,m(x)| (1)

In practice, the null hypothesis is rejected at a specified

significance level α if Dn,m exceeds a critical value or in

other words, if the condition in following equation 2 satisfies

[12].

Dn,m > c(α) ·

√

n ·m

n+m
(2)

The value of c(α) at specified significance level is tabulated

in [33]. The highest vertical difference between the two distri-

bution functions is quantified by the K-S statistic (Dn,m). A

significant difference between the original and modified degree

distributions is shown by a high K-S statistic and a low related

p-value in the context of network analysis, suggesting that

the removal approach has significantly affected the network’s

structure.

The KS test is particularly suitable for comparing network

degree distributions as it doesn’t necessitate any assumptions

regarding the underlying distribution of the data [13], [31]. The

K-S test is exact and straightforward to interpret, delivering

dependable outcomes even when dealing with small sample

sizes [34]. This precision proves advantageous, especially in

situations with constrained data [35], [4].

In the analysis of an evolving social network, Kossinets

and Watts employed the Kolmogorov-Smirnov (K-S) test to

compare the degree distributions of the network at different

time points to identify and quantify the changes in the net-

work’s structure over time [35]. Their work highlighted the

potential of the K-S test for analyzing the evolution of complex

networks over time.

2) Cramér-von Mises Test: The Cramér-von Mises (CvM)

test is another statistical method used for comparing the

empirical cumulative distribution function (ECDF) of the

sample to the cumulative distribution function (CDF) of a

hypothesized distribution. The Cramér-von Mises W 2 criterion

is named after Harald Cramér [36] and Richard Edler von

Mises [37]. According to Anderson [38], the Cramér-von

Mises W 2 criterion for testing that a sample, x1, x2, . . ., has

been drawn from a specified continuous distribution F (x) is:

W 2 =

∫

∞

−∞

[FN (X)− F (x)]2 dF (x),

where FN (X) is the empirical distribution function of the

sample. For a second sample, y1, y2, . . . , yM , a test of the

hypothesis that the two samples come from the same (unspec-

ified) continuous distribution can be based on the analogue of

W 2, namely

T =
NM

N +M

∫

∞

−∞

[FN (x)−GM (x)]2 dHN+M (x),

where GM (x) is the empirical distribution function of the

second sample and HN+M (x) is the empirical distribution

function of the two samples together.

If the computed value of T gets higher than the tabulated

critical values from [38] then the null hypothesis that the two

samples come from the same distribution can be rejected in

the favour of alternative hypothesis. The CvM statistic (T )

provides a measure of dissimilarity between the two samples.

It is general understanding that the Cramér-von Mises

(CvM) test is considered a good choice for comparing distribu-

tions with heavy tails compared to the Kolmogorov-Smirnov

(K-S) test due to its sensitivity to deviations in the tails of

the distribution where crucial information about the network’s

structure is often contained [39]. There is only few studies that

have employed the K-S test as the statistical tool to assess the

differences in the degree distribution of the network and none

to our knowledge that have employed CvM test.

III. METHOD

In our analysis, we employ a systematic methodology to

generate three types of complex networks and investigate the

influence of node and edge removal strategies on centrality

measures within these networks. We focus on the fundamen-

tal centrality measure—degree centrality, due to its distinct

and complementary perspectives on node importance within

networks. Degree centrality is computed using the NetworkX

library in Python, which offers efficient implementations of

various centrality algorithms [40]. This measure provides valu-

able insights into the structural significance of nodes within

complex networks.

A. Generation of Complex Networks

A random network was generated using the Erdős-Rényi

(ER) graph generator from the NetworkX library [40]. The

network parameters were set to include 100 nodes (n) and an

edge probability of 0.2 (p) [41], [42]. This edge probability

influences the network’s density, with higher values resulting

in denser networks and lower values yielding sparser ones.

Additionally, Python’s random state function was used to

establish a consistent random seed (seed = 1) for reproducible

network generation.

The Barabási-Albert (BA) model is widely used for generat-

ing scale-free networks [43]. This model employs preferential

attachment, where new nodes connect to existing nodes with

high degrees, resulting in a power-law degree distribution. To

create a scale-free network using this model, we specified

the number of nodes (n) and the parameter for preferential

attachment (m). The parameter m dictates the number of edges

added for each new node introduced, influencing the network’s

structure and mimicking real-world scenarios such as scientific

collaborations or social interactions.

The Watts-Strogatz (WS) model is employed to generate

small-world networks, characterized by both a small average

shortest path length and a high clustering coefficient [44].

This model begins with a regular ring lattice where each

node is connected to its k nearest neighbors. Then, with a
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probability p, each link connected to a clockwise neighbor is

rewired to a randomly chosen node, resulting in small-world

characteristics. Varying p allows us to produce graphs with

different levels of small-worldness, ranging from a regular

lattice (p = 0) to a random graph with minimum connectivity

constraints (p = 1).

B. Removal Strategies

In our analysis, we consider two primary node removal

strategies: targeted and random. Targeted node removal in-

volves strategically removing nodes based on specific at-

tributes, such as high degree and low degree [10]. This

approach allows us to evaluate the network’s response to

the intentional removal of highly connected nodes or less-

connected nodes. Conversely, random node removal involves

removing nodes at random, mimicking stochastic node failures

or removals. Additionally, we explore edge removal strategies,

focusing on the deliberate elimination of specific or random

connections within the network. Random edge removal serves

as a benchmark for assessing the network’s resilience to

random disturbances and offers insights into its robustness

when faced with unpredictable edge failures [19].

C. Error Measures

To quantify the impact of node and edge removal strategies

on network structures, we employ the degree distribution error

as a fundamental error measure. Degree distribution error is

a key metric that gauges the impact of these strategies by

quantifying the dissimilarity between the degree distribution

of the original network and that of the network after distinct

removal strategies. We utilize the Kolmogorov-Smirnov (K-S)

and Cramér-von Mises (CvM) tests to statistically evaluate the

differences in degree distributions.

This approach is consistent with established methodologies

in network science, providing insights into how different re-

moval strategies impact network structure and resilience [45],

[46], [13], [10], [14]. This error measure may provide insights

into how different removal strategies impact network structure,

resilience, and the relative importance of nodes within the

network.

D. Statistical Test procedure

The data collection process using the Kolmogorov-Smirnov

(K-S) and Cramér-von Mises (CvM) tests involves generating

a random network, scale-free network, or small-world network

to establish a baseline degree frequency distribution, which

serves as reference data. This distribution is compared with the

degree structure of the network after node or edge removal,

executed using various strategies. The K-S and CvM tests

assess whether the degree sequences of the original and

reduced networks are statistically similar. The null hypothesis

(H0) posits that the degree distributions are similar, while the

alternative hypothesis (H1) suggests a difference. A signifi-

cance level (α) of 0.05 is applied, balancing the risk of Type

I errors and the ability to detect differences [47]. If the p-

value from these tests exceeds 0.05, we conclude no significant
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Fig. 1. Impact of Different Removal Strategies on Network Connectivity in
an Erdős–Rényi Random Network

difference in degree distributions; otherwise, we reject H0,

indicating significant dissimilarity. The results are visualized

through plots and tables, elucidating the structural impacts of

node or edge removal on network resilience and robustness.

IV. EXPERIMENTAL RESULTS

In this section, we examined the structural changes within

random networks, scale-free networks, and small-world net-

works. Our approach involved applying different node and

edge removal processes to observe the evolution of these

networks. Specifically, for each network type, we implemented

four distinct scenarios: high-degree node removal, low-degree

node removal, random node removal, and random edge re-

moval. Our primary objective is to reveal the impact of these

perturbations on the networks’ topology and connectivity.

A. Change in Network Connectivity

In the analysis of random networks, we employed a consis-

tent approach to assess their structural robustness under these

four distinct perturbation scenarios. Here in each iteration 1%

of nodes in the node removal approach and 1% of edges in

the edge removal approach are removed.

The removal of random nodes from a random network

exhibited remarkable resilience, see Figure 1. Despite the

stochastic nature of this process, the network displayed signif-

icant robustness. Even when a substantial fraction of nodes are

removed, the structural integrity of the network is maintained,

with no disconnection observed.

The same resilience was observed for the removal of high-

degree and low-degree nodes, see Figure 1. The size of the

largest component remained unchanged for the removal of

high-degree and low-degree nodes (the respective green and

yellow color line are covered by the red line in the Figure

1). The network stayed robust and connected even though the

critical high-degree nodes were removed. This observation of

resilience can be attributed to the random and homogeneous

nature of a network.

The most striking structural robustness occurred while

randomly removing edges from the network. The network’s

structural integrity remained totally unaffected. The network

showed the robustness up to 81 iterations (81% of edge
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Fig. 2. Impact of different removal strategies on network connectivity in a
Barabási-Albert scale-free network

removal from the original network) with the largest component

of 100 nodes (original generated network with no disconnected

nodes).

The network demonstrated both resilience and robustness

in response to each of the four distinct types of perturba-

tions, highlighting its ability to adapt and maintain structural

integrity under a variety of challenges. The random and

uniform nature of these networks contributes to their resilience

under different random node and edge removal strategies.

Understanding these dynamics is essential for applications in

diverse fields, from information dissemination to transportation

systems, where random network structures often play a vital

role.

The removal of random nodes from a scale-free network

demonstrated remarkable resilience, as shown in Figure 2. The

network remained connected up to 21 iterations of random

node removal, highlighting its robustness against the stochastic

nature of this process. However, at the 35th iteration, the

network faced again the disconnection, emphasizing its vul-

nerability to extensive random node removal.

Similarly, for the removal of high-degree nodes in a scale-

free network, the network’s vulnerability was evident. After

just 4 iterations, the network gets disconnected, showcasing

its susceptibility to the targeted removal of high-degree nodes.

This disconnection resulted into 30 percent of the network as

it’s largest connected component after only 10 iterations.

When subject to random edge removal, a scale-free network

displayed moderate resilience. It maintained connectivity up to

the 15th iteration of edge removal, highlighting its ability to

adapt and stay intact to some extent under this perturbation.

Conversely, a scale-free network exhibited robustness in

response to low-degree node removal. The network remained

connected and adaptive, demonstrating its capacity to with-

stand the perturbation without significant structural impact.

These findings emphasize the behavior of scale-free net-

works under different perturbations and emphasize the impor-

tance of understanding their vulnerabilities and strengths in

real-world applications.

In the case of random node removal within a small-world

network, see Figure 3, the network displayed moderate re-

silience to 27 iterations before facing disconnection.
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Fig. 3. Impact of Different Removal Strategies on Network Connectivity in
a Watts-Strogatz Small-World Network

When subjected to high-degree node removal, a small-

world network demonstrated vulnerability, with disconnection

occurring after 16 iterations. However, the network’s sus-

ceptibility became apparent as early as 25 iterations, with

almost a 50 percent reduction in its original size, highlighting

the consequences of high-degree node removal. Conversely,

low-degree node removal posed no threat to a small-world

network’s robustness. It remained connected throughout the

removal process, even as 50 percent of the random nodes were

removed, demonstrating its remarkable structural integrity.

In the analysis of random edge removal in a small-world

network, the network showed moderate resilient upto around

25% of random edge removal but around 45th iteration, the

network faced a significant drop, going from a 90 percent

largest connected component to a 50 percent largest connected

component. This dynamic response suggests that the network

initially demonstrated the capability to adjust and maintain its

connectivity in response to these random edge removal. How-

ever, as the edge removal increased, the network eventually

reached a point where it could no longer adapt effectively and

started to break down and lose its resilience.

These observations emphasize the behavior of small-world

networks under various perturbation scenarios and underscore

the importance of understanding their vulnerabilities and

strengths in practical applications.

B. Change in Network Structure

In this subsection, we explore the impact of the node

and edge removal strategies on the structure of the complex

networks. We conducted a series of experiments to assess

how the network’s degree distribution evolves as we apply

various removal strategies. These experiments were conducted

on the same three types of random, scale-free, and small-world

networks with the same parameters as discussed before in

the methodology. Also, the same removal strategies included

high-degree node removal, low-degree node removal, random

node removal, and random edge removal and the removal

percentage from 5% to 25%. By conducting these experiments

on different network types, we aimed to gain insights into

how each removal strategy influenced the degree frequency

distribution of the network and, consequently, the overall

MEETKUMAR PRAVINBHAI MANGROLIYA ET AL.: TOWARDS THE ANALYSIS OF ERRORS IN CENTRALITY MEASURES IN PERPETUATED NETWORKS 421
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network structure. From plot figures, the degree distribution

plot where each plot illustrates a distinct removal strategy,

and each color line represents the degree distribution in the

corresponding network before and after a range of removal

percentages. We used Non-parametric Kolmogorov-Smirnov

(K-S) and Cramér-von Mises (CvM) tests with a significance

level of 0.05 to statistically evaluate these changes.

1) Impact of removal strategies on Random Network:

The frequency distribution plots of a random network before

and after high-degree nodes removed are displayed in Figure

4. The results of the high-degree node removal strategy are

summarized in Table I. The CvM and K-S statistics show a

significant increase in the proportion of node removal. The

CvM statistics consistently deviate from the original degree

distribution, rising from 0.8888 at 5% removal to 11.0364 at

25% removal. The CvM statistics’ p-values correspondingly

decreased, signifying a significant deviation from the original

distribution. Similar trends can be seen in the K-S statistics,

which rise from 0.1984 at 5% removal to 0.79 at 25% reduc-

tion. The corresponding K-S test p-values similarly decreased

to zero, confirming the significant effect of removing high-

degree nodes on the degree distribution of the network. Based

on these findings, the null hypothesis which states that the

degree distribution of a random network is the same before

and after a removal of high-degree nodes can be rejected.

The frequency distribution plots of a random network before

and after the removal of low-degree nodes are shown in Figure

5. Table II provides an overview of the low-degree node

removal strategy’s results. As the percentage of nodes removed

increases from 5% to 25%, there is a small but noticeable

change in the degree distribution plot. This change is reflected

in both the CvM and K-S statistics, which increase with

increasing node removal. The decreasing p-values associated

with the CvM and K-S statistics demonstrate that the observed

changes in the degree distribution are statistically significant.

As expected, the CvM test is more sensitive to the long tail of

the plot than the K-S test. Given the importance of the long

tail in network analysis, we can reject the hypothesis that the

degree distribution remains unchanged even after removing

15% of low-degree nodes.
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The results of the random node removal method are dis-

played in the frequency distribution plot (see Figure 6 and

Table III). At 5% removal, the CvM statistics show a slight

increase to 0.1355, with a p-value of 0.4404, indicating no sig-

nificant departure from the original distribution. However, as

the percentage of nodes removed increases, the CvM statistics

rise notably, reaching 5.5217 at 25% removal, accompanied

by a very low p-value. The K-S statistics also demonstrate

a progressive increase, from 0.0826 at 5% removal to 0.54

at 25% removal, with corresponding p-values diminishing

significantly, reinforcing the significant deviation from the

original distribution. By combining the results, we fail to reject

the null hypothesis for the removal of 5% of random nodes,

but we reject it for the remaining removal percentages.

The results of the random edge removal strategy, and

frequency distribution plot are shown in Figure 7 and Table

IV respectively. The CvM statistics increase from 0.2962 at

5% removal with a p-value of 0.1390 to 6.0382 at 25%

removal with an extremely low p-value, indicating the statis-

tical significance of structure change. The K-S statistics also

show a progressive rise, from 0.12 at 5% removal with a p-

value of 0.4695 to 0.5 at 25% removal with a very low p-

value. The results of this study indicate how removing more

than 5% of random edges significantly affects the degree

distribution, causing a noticeable and statistically significant
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Fig. 7. Degree Frequency Distribution in Erdős–Rényi Random Network at
different percentages of Random Edge Removal
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Fig. 8. Degree Frequency Distribution in Barabási-Albert Scale-Free Network
at different percentages of High-Degree Node Removal

deviation from the original distribution. Consequently, for the

remaining removal percentages, we reject the null hypothesis.

2) Impact of removal strategies on Scale-free Network: The

results of the high-degree node removal strategy in a scale-

free network are the frequency distribution plots in Figure 8

and associated statistical test results in Table V. The CvM

statistics exhibit a significant increase, from 2.0114 at 5%

removal to 10.1317 at 25% removal, with very low p-values

consistently indicating statistical significance. Similar gradual

changes are also shown by the K-S statistics, which indicate a

significant shift in the degree distribution. These findings show

the substantial impact of even 5% of high-degree node removal

on altering the network’s degree distribution in a scale-free

network. Hence, we reject the null hypothesis for each removal

percentage.

The results from the low-degree node removal strategy in

a scale-free network, the frequency distribution plot shown

in Figure 9, indicate a relatively mild impact on the degree

distribution, the associated statistical results are presented in

Table VI. The CvM statistics display a gradual increase from

0.0241 at 5% removal to 0.2861 at 25% removal, with p-values

consistently higher than the significance value 0.05, suggesting

no statistically significant deviation from the original distri-

bution. Alongside, the K-S test demonstrates similar results,

with the p-value higher than the significance value of 0.05
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Fig. 9. Degree Frequency Distribution in Barabási-Albert Scale-Free Network
at different percentages of Low-Degree Node Removal
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Fig. 10. Degree Frequency Distribution in Barabási-Albert Scale-Free Net-
work at different percentages of Random Node Removal

for all removal percentages. This suggests that removing low-

degree nodes has a limited effect on the degree distribution in

a scale-free network. Consequently, we fail to reject the null

hypothesis.

The results from a scale-free network, as the frequency

distribution plot shown in Figure 10 and the statistical results

shown in Table VII, indicate that random node removal has

a minimal impact on the degree distribution for removal

percentages up to 15%. The CvM statistics show deviations,

with p-values remaining lesser than the significance value of

0.05. However, at 20% and 25% removal, a more noticeable

shift is observed, with CvM statistics reaching 0.5121 and

1.3568, respectively, and p-values dropping to 0.0371 and

0.0004, indicating a statistically significant deviation from the

original distribution. Additionally, the K-S test also showed

similar results up to 20% of random node removal with K-

S statistics 0.15 and p-value 0.2456. This suggests that the

effect of random node removal on the degree distribution

becomes more pronounced as the percentage of removed nodes

increases, leading to the rejection of the null hypothesis for

25% of random node removal.

The results of a scale-free network after random edge

removal are illustrated in Figure 11 and associated statistical

results in Table VIII. The CvM statistics progressively increase

from 0.0380 at 5% removal to 1.3194 at 25% removal,
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Fig. 11. Degree Frequency Distribution in Barabási-Albert Scale-Free Net-
work at different percentages of Random Edge Removal
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Fig. 12. Degree Frequency Distribution in Watts-Strogatz Small-World
Network at different percentages of High-Degree Node Removal

with p-values decreasing significantly from 15% removal.

Simultaneously, the K-S test provided similar results with a

p-value below the significant value of 0.05 from 20% removal,

further supporting the significant deviation from the original

distribution. Here, we reject the null hypothesis at 20% and

25% removal of random edges.

3) Impact of removal strategies on Small-world Network:

The frequency distribution plots in Figure 12 shows the impact

of high-degree node removal on the degree distribution of

a small-world network. The associated statistical results are

presented in Table IX. The CvM test is more sensitive to

these changes, at 5% removal, the CvM statistic is 0.5494

with a p-value of 0.0299, indicating a significant deviation

from the original degree distribution. The K-S test, on the

other hand, showed lower statistics and a p-value higher than

the significance level of 0.05 for both 5% and 10% removal.

However, after 10% removal, the K-S test also indicated a

significant deviation with a p-value lower than the significance

level. This suggests that the CvM test is more sensitive to

changes in the degree distribution of high-degree nodes so,

we reject the null hypothesis at higher removal percentages

including at 10% removal of high-degree nodes.

Figure 13 visually represents the impact of the Low-Degree

Node Removal strategy on a small-world network’s degree

distribution, with detailed statistical results presented in Table
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Fig. 13. Degree Frequency Distribution in Watts-Strogatz Small-World
Network at different percentages of Low-Degree Node Removal

X. Initially, at a 5% removal rate, the CvM statistics of 0.0314

and a p-value of 0.9754 indicated no noteworthy deviation.

However, as the removal percentage increased, statistical sig-

nificance became apparent, with a CvM statistic of 0.9680

and a significantly low p-value of 0.0029 at 20% removal,

further decreasing at higher percentages. The corresponding K-

S test at 20% removal, featuring K-S statistics of 0.1750 and

a p-value of 0.1172, suggests that low-degree node removal

did impact the degree distribution, although the effect was

not significant. A statistically significant shift in distribution

was detected at 25% removal, with K-S statistics of 0.2700

and a p-value of 0.0032. These findings demonstrate that the

removal of low-degree nodes has a gradual impact on the

degree distribution of a small-world network. Here, we reject

the null hypothesis only at 25% removal of low-degree nodes.

The effect of the random node removal strategy on the

degree distribution of a small-world network is presented

in Figure 14 and the corresponding statistical results are

presented in Table XI. At 5% removal, the CvM statistics

of 0.2938 and a p-value of 0.1412 indicated no significant

deviation from the original distribution. However, as removal

percentages increased, we can see the statistical significance.

Notably, at 15% removal, a CvM statistic of 2.3229 and a

very low p-value highlighted a substantial deviation from the

original distribution. This was supported by the corresponding

K-S statistic, which also increased to 0.3265 at 15% removal,

along with a p-value lower than the significance level of 0.05.

The higher sensitivity of the CvM test to changes in the

distribution of high-degree nodes suggests that the observed

deviation is likely due to the removal of these nodes. So, We

reject the null hypothesis for the higher percentage including

15% removal of random nodes.

In Figure 15, we present the effects of random edge removal

strategy on a small-world network’s degree distribution and

the associated statistical results are presented in Table XII.

At 5% removal, CvM statistic 0.2243 and K-S statistic 0.09

indicated no significant change, aligning with p-values of

0.2260 and 0.8154, respectively. However, at 10% removal and

higher removal percentages, both tests illustrated progressively

significant deviations from the original distribution. By 25%
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Fig. 14. Degree Frequency Distribution in Watts-Strogatz Small-World
Network at different percentages of Random Node Removal
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Fig. 15. Degree Frequency Distribution in Watts-Strogatz Small-World
Network at different percentages of Random Edge Removal

removal, the CvM p-value and K-S p-value became very low,

indicating the strategy’s significant impact on the network’s

structural integrity. From these results, we reject the hypothesis

for higher removal percentages including 10% removal of

random edges.

V. DISCUSSION AND OUTLOOK

In this study, we have investigated the resilience of networks

to various perturbation strategies, with a particular focus on the

effects of high-degree node removal, low-degree node removal,

random node removal, and random edge removal. Our research

highlights the importance of understanding network resilience,

particularly in the context of maintaining connectivity and

stability in various real-world networks. The resilience of

power grids, transportation systems, and social networks can

be enhanced by gaining insights into their susceptibility to

failures and the identification of critical nodes or edges whose

removal could lead to significant structural changes. Further-

more, insights on critical nodes that highly influence the

centrality measures for a given graph are crucial to optimize

the runtime of heuristics for centrality measures in longitudinal

networks and to find bounds for the possible change of node

centrality measures.

The results demonstrated that random networks exhibited

high resilience to connectivity disruptions, although they did

lose their structural properties at a relatively low removal

threshold. Scale-free networks exhibited vulnerability to high-

degree node removal, but they showed resilience to other

removal strategies to a moderate threshold. Small-world net-

works maintained connectivity up to substantial removal per-

centages, but they lost the structural integrity at a lower

removal percentage, indicating a similar level of resilience

as random networks. These findings highlight the complex

relationship between node importance, network structure, and

network resilience in complex networks.

Our findings demonstrate that high-degree nodes play a piv-

otal role in maintaining network connectivity, as their removal

often leads to more significant disruptions compared to random

node or edge removals. This underscores the necessity for

targeted strategies to enhance network robustness, particularly

by protecting or reinforcing high-degree nodes. Moreover, our

study contributes to the broader field of network science by

applying and validating the CvM test for degree distribution

comparison, a methodology previously underutilized in this

context. This development provides researchers with a novel

instrument for further inquiry into the dynamics and resilience

of networks.

Our study has yielded a more profound comprehension of

the resilience and connectivity patterns exhibited by disparate

network types. While our study offers valuable insights, it

is essential to acknowledge certain limitations. Primarily,

focusing on a relatively modest network comprising 100 nodes

may restrict the generalizability of our findings to larger and

more intricate real-world networks. Secondly, our utilization

of static network analysis fails to capture the dynamic nature

of real-world networks, which continuously evolve and adapt

to changing conditions. Future research could enhance our

understanding of network dynamics by employing temporal

network analysis to investigate how networks change over

time. Additionally, while our study examines various net-

work types, the results may not be universally applicable to

all network structures. Future research should address these

limitations by studying larger and more intricate networks

and incorporating dynamic elements. This approach would

ultimately enhance the validity and applicability of our study’s

conclusions.
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TABLE I
ERDŐS–RÉNYI RANDOM NETWORK: STATISTICAL TEST RESULTS AFTER HIGH-DEGREE NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.8888 0.0045 0.1984 3.60× 10
−2

10% 3.0736 5.02× 10
−8 0.3733 2.11× 10

−6

15% 6.2458 1.97× 10
−11 0.5076 2.46× 10

−11

20% 8.9809 2.73× 10
−10 0.6575 1.09× 10

−18

25% 11.0364 2.53× 10
−10 0.7900 4.36× 10

−27

TABLE II
ERDŐS–RÉNYI RANDOM NETWORK: STATISTICAL TEST RESULTS AFTER LOW-DEGREE NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.0599 0.8219 0.0721 0.9394

10% 0.2897 0.1451 0.1322 0.3430

15% 0.6399 0.0178 0.1829 0.0791

20% 1.2772 0.0006 0.2550 0.0051

25% 2.2123 4.16× 10
−6 0.35 3.79× 10

−5

TABLE III
ERDŐS–RÉNYI RANDOM NETWORK: STATISTICAL TEST RESULTS AFTER RANDOM NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.1355 0.4404 0.0826 0.8563

10% 0.9319 0.0035 0.2 0.0383

15% 2.8869 1.30× 10
−7 0.3518 1.42× 10

−5

20% 3.4546 7.19× 10
−9 0.4025 6.09× 10

−7

25% 5.5217 3.51× 10
−10 0.54 5.85× 10

−12

TABLE IV
ERDŐS–RÉNYI RANDOM NETWORK: STATISTICAL TEST RESULTS AFTER RANDOM EDGE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.2962 0.1390 0.12 0.4695

10% 1.1043 0.0014 0.23 0.0099

15% 2.5327 8.03× 10
−7 0.33 3.21× 10

−5

20% 4.1507 2.12× 10
−10 0.43 1.12× 10

−8

25% 6.0382 9.28× 10
−12 0.5 1.00× 10

−11

TABLE V
BARABÁSI-ALBERT SCALE-FREE NETWORK: STATISTICAL TEST RESULTS AFTER HIGH-DEGREE NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 2.0114 1.18× 10
−5 0.2632 1.78× 10

−3

10% 4.5115 3.88× 10
−11 0.4444 5.88× 10

−9

15% 7.2186 3.69× 10
−10 0.5529 1.79× 10

−13

20% 9.0646 3.25× 10
−10 0.6250 8.85× 10

−17

25% 10.1317 2.38× 10
−9 0.7200 5.89× 10

−22

TABLE VI
BARABÁSI-ALBERT SCALE-FREE NETWORK: STATISTICAL TEST RESULTS AFTER LOW-DEGREE NODE REMOVAL

Percentage CvM Stat. P-Value (CvM) K-S Stat. P-Value (K-S)

5% 0.0241 0.9934 0.0305 0.9999

10% 0.0840 0.6754 0.0533 0.9978

15% 0.1083 0.5505 0.0553 0.9969

20% 0.1637 0.3528 0.0700 0.9707

25% 0.2861 0.1485 0.1000 0.7523
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TABLE VII
BARABÁSI-ALBERT SCALE-FREE NETWORK: STATISTICAL TEST RESULTS AFTER RANDOM NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.0363 0.9564 0.0326 0.9999

10% 0.1855 0.2993 0.0889 0.8092

15% 0.2839 0.1508 0.0976 0.7269

20% 0.5121 0.0371 0.1500 0.2456

25% 1.3568 0.0004 0.2133 0.0354

TABLE VIII
BARABÁSI-ALBERT SCALE-FREE NETWORK: STATISTICAL TEST RESULTS AFTER RANDOM EDGE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.0380 0.9488 0.0500 0.9997

10% 0.1921 0.2849 0.0800 0.9084

15% 0.4865 0.0431 0.1500 0.2112

20% 0.7992 0.0073 0.2100 0.0241

25% 1.3194 4.42× 10
−4 0.2100 0.0241

TABLE IX
WATTS-STROGATZ SMALL-WORLD NETWORK: STATISTICAL TEST RESULTS AFTER HIGH-DEGREE NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.5494 0.0299 0.1289 0.3528

10% 1.1332 1.19× 10
−3 0.1911 0.0538

15% 2.3875 1.69× 10
−6 0.2794 1.14× 10

−3

20% 4.9056 3.68× 10
−11 0.4500 1.29× 10

−8

25% 8.0887 3.35× 10
−11 0.6033 5.00× 10

−15

TABLE X
WATTS-STROGATZ SMALL-WORLD NETWORK: STATISTICAL TEST RESULTS AFTER LOW-DEGREE NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.0314 0.9754 0.0295 0.9999

10% 0.1702 0.3356 0.0844 0.8536

15% 0.4109 0.0677 0.1029 0.6668

20% 0.9680 2.90× 10
−3 0.1750 0.1172

25% 1.7561 4.44× 10
−5 0.2700 3.16× 10

−3

TABLE XI
WATTS-STROGATZ SMALL-WORLD NETWORK: STATISTICAL TEST RESULTS AFTER RANDOM NODE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.2938 0.1412 0.0926 0.7507

10% 0.6479 0.0170 0.1722 0.1050

15% 2.3229 2.36× 10
−6 0.3265 7.45× 10

−5

20% 3.3379 1.30× 10
−8 0.3750 4.56× 10

−6

25% 4.8054 2.83× 10
−11 0.4567 1.47× 10

−8

TABLE XII
WATTS-STROGATZ SMALL-WORLD NETWORK: STATISTICAL TEST RESULTS AFTER RANDOM EDGE REMOVAL

Percentage CvM Statistic P-Value (CvM) K-S Statistic P-Value (K-S)

5% 0.2243 0.2260 0.0900 0.8154

10% 1.0744 1.64× 10
−3 0.2300 0.0099

15% 1.9970 1.27× 10
−5 0.2900 4.12× 10

−4

20% 3.4719 6.63× 10
−9 0.3900 3.57× 10

−7

25% 4.1784 1.84× 10
−10 0.4200 2.75× 10

−8
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